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ABSTRACT

The article presents the comparative analysis of the polyanion effect at its manifestation in the

pure form, i.e. with the participation in the electromigration process of only halide-ions with

the polyalkali effect. It was shown that expressions used to calculate the electrical

conductivity of two-alkali glasses, can not be directly applied to calculate the electrical

conductivity of two-halide glasses. Analytical expressions for such calculation are proposed,

giving a satisfactory compliance of calculated and experimental data.

Keywords: polyanion effect, polyalkali effect, electrical conductivity, transfer numbers,

nature of conductivity, additivity of electrical conductivity.

INTRODUCTION

Since the beginning of the 80s of the last century, the polyalkali effect as an especial case of

the more general phenomenon has been considered in the literature [1-8].

The question as to whether the polyalkali effect is the phenomenon inherent to only glasses,

wherein charge carriers are ions of alkali metals, or it is the particular case of a more general

phenomenon, was first raised in the paper [5]. Answering this question on the basis of his own

researches and data available in the literature, V.E. Kogan in papers [4; 5] comes to the

conclusion that the polyalkali effect is a particular case of the more general phenomenon,

namely, that the change of the electric charge carrier type in various classes of glasses being

in the solid state,
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Or change of glass structural fragments, throughout which the migration of the electric current

carrier takes place, leads to the presence of the minimum on the dependence of the electrical

conductivity as the function of the concentrations ratio of electric current carriers.

Ascertainment of the existence of the anion-halide transport in solid glasses raised the

question about the possibility of manifestation in mixed halide glasses of the effect similar to

the polyalkali effect. For the first time such assumption was outspoken in the work [9], but

verification of the presence of such effect on glasses of fluoroberyllate systems failed due to

the poor fixation of chlorides and bromides by the glass melt.

For the first time this effect, called, by the analogy with the polyalkali effect, the polyanion

effect was ascertained in the halide-containing phosphate glasses of

   32 2
0,3Ca F,Cl 0,7Ba PO composition [10]. However, at the time of the polyanion effect

detection, the nature of charge carriers and their transfer numbers in specified glasses were

not determined experimentally, that led initially to the incorrect representation of obtained

concentration dependences of the electrical conductivity.

It was shown later in the paper [11], that along with halide ions, ions, which are formed at the

dissociation of the structurally bound water, are also involved in the electricity transfer

process in halide-containing phosphate glasses. Thus, there failed the tracing the polyanion

effect in the pure form (at experimentally confirmed participation in the electromigration

process of only halide ions) in oxy-halide phosphate glasses.

A.A. Pronkin and V.E. Kogan in the paper [12] for the first time (without providing

specifically studied compositions and experimental data) pointed to ascertainment of a

polyanion effect in glasses of pseudo-binary system  2 2
PbO SiO Pb F,Cl  .

EXPERIMENTAL PROCEDURE

Glasses in the pseudo-binary system under study were synthesized in the corundum crucibles

according to the procedure of own designed product, described in detail in the paper [13], at

that, in the most cases, the synthesis was conducted in the glass melting furnace of own

design [14].

Measurement of the electrical conductivity was carried out on polished plane parallel samples

in the form of disks within the temperature range from 20 up to 250 °C as per GOST 6433.2-

71. Measurements were carried out at the direct current by the electrometric scheme on the

TR-8651 electrometer (Japan) in the TR-43C measuring cell (Japan). Transfer numbers were

determined according to the technique of Hittorf, which consists in studying the concentration
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changes in near-electrode spaces related to the passage of the measured amount of electricity

through electrolyte.

Density was determined with the help of the successive weighing of glass samples in air and

toluene.

RESULTS AND DISCUSSION

Our studies of glasses of  2 2
PbO SiO Pb Hal  system, where Hal F, Cl, Br, I pointed to

the possibility of introduction in the lead metasilicate of record high concentrations of halides.

Thus, the maximum content of halides throughout the synthesis reached 75.28 mol. % of

2PbF , 23.42 mol. % of 2PbCl , 18.81 mol. % of 2PbBr and 17.69 mol. % of 2PbI , at the same

time, according to the data of the chemical analysis, the volatility of halogens at the maximum

attainable halide content in the glass, on F, Cl, Br, I basis was respectively 0.88, 0.36, 0.66,

0.99 wt. %.

Determination of halide-ion transfer numbers showed that the unipolar anion-halide nature of

the conductivity is achieved only for chloride-containing compositions with 2PbCl content –

23.42 mol. % and for fluoride-containing glasses, beginning from 2PbF content of 14.77 mol.

%. Therefore, for the studying polyanion effect, glasses of  2 2
PbO SiO Pb F,Cl  system with

the total lead halides content of 23.42 mol. % were chosen.

Data of the chemical analysis of the synthesized glass compositions with the total lead halides

content of 23.42 mol. % in the comparison with their synthetic composition are shown in

Table 1, and relative losses of halogens in percent calculated as the ratio of the difference

between synthetic and analytical content (% by weight) to the synthetic - in Table 2.

As it is seen from Table 1, the ratio of the content of different kinds of halogens in

compositions by analysis practically correspond to that in compositions by synthesis, i.e.

volatilization processes do not change the F value, corresponding to expression

F

F Cl
F



 

   
      

, (1)

where F   and Cl   – volumetric concentrations of ions of fluorine and chlorine,

respectively.

Volumetric concentrations of halide-ions  3Hal , mol / cm   are calculated by the formula
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 
 

2

2

wt. % PbHal
Hal

100 PbHal / 2

d   
, (2)

where d – glass density, g/ cm3;  2PbHal – molar weight of the lead halide, g/mol.

By the ratio of components of loss (Table 1), it can be assumed that the most likely

compounds, in the form of which components are volatilized from the melt during the melting

process are SiHal4, HHal and Hal2. At that, HHal escapes in the process of the lead

metasilicate melt dehydration at the introduction of  2Pb Hal in it due to reactions behaviour,

equations of which are the most likely to have the following form:

melt
2

melt

Si O H PbHal Si O Pb Hal HHal ,

Si O H Hal Si O HHal .

2+   

   

      

      
(3)

As it is seen from Table 3 and Fig. 1, in glasses under consideration, the total volumetric

concentration of halide-ions  jHal   remains practically constant, while dependences of

the specific electrical conductivity  V and the activation energy of the electrical

conductivity  aE on the value F is characterized by the presence of extrema. At that, the

unipolar conductivity by halide-ions takes place for all compositions, i.e. the sum of halide-

ion transfer numbers is equal to unity  Hal F Cl
1       .

Thus, the polyanion effect takes place in the considered system in the pure form, the depth of

which by the electrical conductivity is lg 1.0V   order and 0.15 eVE  by the

activation energy of electrical conductivity (Fig. 1).

The specified made it possible to verify the applicability of the additivity rule, proposed by

R.L. Mueller [15] for two-alkali glasses, and its modification for accounting specific features

of the structure of two-alkali glasses with the high concentration of alkali ions, namely, the

effect of dispersing single-cation structural units on the electrical conductivity of polyalkali

glasses with respect to the polyanion effect.

For polyanion effect, the additivity rule and its modification will have the following form:

Hal Hal Halj
                  

    (4)

and

 
Hal Hal Hal

exp / 2
j

S R                  

       
 

, (5)

where S – entropy factor determined by the increased number of statistically possible states

when transition from simple to complex glasses, corresponding to the expression
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 э т4,6 4,6i i iS R m m m        ; (6)

R – universal gas constant; э
im and т

im – values of electrical conductivity modules,

corresponding to expressions:

т
т 0lg

Hal
im




 

  

(7)

and

э
э 0lg

Hal
im




 

  

, (8)

wherein т
0 and э

0 – theoretical and experimental values of the pre-exponential multiplier; k

– Boltzmann constant; T – absolute temperature. The experimental value of the pre-

exponential multiplier is determined by the expression

0 exp
2

E

kT
     

 
. (9)

Undoubtedly, in the first place, it was necessary to check satisfiability of the expression (4).

To carry out calculations by this expression, it was necessary to know values of the electrical

conductivity of single-halide glasses with the volumetric concentration of the corresponding

halide-ion equal to its volumetric concentration in the two-halide glass.

Concentration dependences of the electrical conductivity of single-halide glasses (in the range

of the interesting for us content of PbHal2 – 23.42 mol. %) are shown in Fig. 2.

The pattern of concentration dependences of the electrical conductivity of single-halide

glasses states that the introduction of fluoride and chloride of lead in the base composition

corresponding to lead metasilicate differently affects its electrical conductivity. So, if even

first additives of lead fluoride result in the increase of the electrical conductivity, the

introduction of lead chloride results in the significant increase only when its concentration is

more than 13 mol. %.

The concentration dependence pattern of the electrical conductivity of glasses with lead

chloride is outwardly similar to that obtained by R.L. Mueller for alkali-containing

compositions with the unipolar cation conductivity [16-18], however, it is determined by

other factors. Hereto, in particular, points the mentioned difference in patterns of

concentration dependences of glasses with chloride and fluoride of lead (Fig. 2). It is the most

likely that concentration dependences of the electrical conductivity of single-halide glasses

are determined in preference (within the framework of considered PbHal2 concentrations ) by

the degree of the glass dehydration with a certain type of halide, i.e. connected with a gradual
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transition with increasing content in PbHal2 composition from the proton conductivity, which

is characteristic for the glass of lead metasilicate composition [19-21], to the unipolar anion-

halide conductivity through compositions with the mixed proton-anion conductivity.

With due account for above mentioned dependencies (Fig. 2), the conclusion follows that the

dehydration proceeds more intensively in compositions containing lead fluoride. The noted is

confirmed by the IR spectroscopic study, carried out by us, and the concentration dependence

of halide ions transfer numbers in single-halide glasses (Fig. 3).

Consideration of concentration dependences of halide-ions transfer numbers in two- and

single-halide glasses (Fig. 1, 3) showed that if in a number of two-halide compositions the

unipolar anion-halide type of conductivity is determined, then it is not available in the

relevant single-halide glasses, i.e. in glasses with the same concentration of given type of the

lead halide, as in the two-halide glass. This fact is most likely due to the fact that dehydration

processes proceed more intensively in two-halide glasses, which is also confirmed by data of

the IR spectroscopic study.

Based on concentration dependences of the electrical conductivity in single-halide glasses

(Fig. 2) and its specific values at PbHal2 contents of our interest, it follows that the electrical

conductivity of two-halide glasses with F 0.36  should primarily be determined by the

electrical conductivity of corresponding chloride-containing compositions, and at F 0.36  –

by the electrical conductivity of corresponding fluoride-containing compositions. The

mentioned is confirmed by concentration dependences of halide ions transfer numbers in two-

halide glasses (Fig. 1), whereof it is obvious that in particular studied compositions of glasses

with this particular value F only in the two-halide glass with F 0.36  both types of halide-

ions concurrently take part in the process of electromigration, at that the share of fluoride-ions

participation is larger.

The calculation of the electrical conductivity of two-halide glasses, as well as its experimental

study (Table 3, Fig. 1) was carried out for specific compositions of glasses with

0.14; 0.36; 0.57; 0.78F  , at that, all above mentioned made it necessary to use the

expression (4) only in the calculation of the electrical conductivity of two-halide glass with

F 0.36  . In other cases, the expression (4) can be simplified to expressions

Hal Halj
          

   (4 a)

and
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Hal Halj
          

   , (4 b)

where
Hal F          
   – electrical conductivity of glasses of 2 2PbO SiO PbF  system with

PbF2 content in mol. %, equal to that in two-halide glasses with 0.57; 0.78F  (see Table 3);

Hal Cl          
   – electrical conductivity of the glass of  2 2

PbO SiO Pb Hal  system with

PbCl2 content in mol. %, equal to that in bi-halide glass with 0.14F  (see Table 3).

The validity of this simplification is bespoken by the data of Table 4, wherein are given

values of the electrical conductivity of single-halide glasses with PbHal2 content in mol. %,

equal to that in the corresponding two-halide glasses, and electrical conductivity values

obtained for all two-halide glass compositions from expressions (4), (4a) and (4b).

As it is seen from the data of Table 4, discrepancies in the electrical conductivity values

calculated for glasses with 0.14; 0.57; 0.78F  by the expression (4) and by expressions

(4a), (4b) lie within the error of measuring the electrical conductivity ( 0.2 of order lg )

and amount to not more than 0.05. The same order has the difference between the electrical

conductivity of the single-halide glass with PbF2 content in mol. %, equal to that in the two-

halide glass with 0.36F  , and the calculated value of the electric conductivity obtained by

the expression (4) for the two-halide with 0.36F  . This is another reference to the validity

of the above statement that the electrical conductivity of considered two-halide glasses with

0.36F  is determined primarily by the electrical conductivity of corresponding chloride-

containing compositions, and with 0.36F  – by the electrical conductivity of the

corresponding fluoride-containing compositions.

The above results bespeak that the differentiation of structural units by the anion type takes

place in two-halide glasses under consideration. Thus, the principle of motion independence

of charge carriers, namely of halide-ions, is realized in these glasses, i.e. migration of a

halide-ion of one kind occurs primarily on polar fragments of the structure, containing the

same halide-ions, and migration in the non-polar medium and in the medium of polar

structural units with a halide-ion of the other kind is complicated.

In favour of the formulated conclusion bespeaks also the comparison of experimental

electrical conductivity values  э in two-halide glasses (Table 3) with its theoretical values

 т , obtained by expressions (4), (4a), (4b), shown in Table 4, indicating extremely
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unsatisfactory results. The value    э тlg lg lg         for glasses with

0.14; 0.36; 0.57; 0.78F  was, correspondingly, 0.30; 1.30;  0.75; 0.40  , i.e. the

average difference between the experimental and theoretical values  lg   , determined as

the arithmetic average of four values is 0,7  .

It is important to note that, if, in a number of cases [19] for the polyalkali effect, its

experimentally found value is significantly greater than the theoretical one, then, for the

considered case of polyanion effect, there takes place the diametrically opposite pattern,

analogues of which for polyalkali effect are absent. This fact uniquely points out that, in two-

halide glasses, there is no dispersion of single-halide polar groups and formation of mixed

(two-halide) fragments of the structure. Thus, a situation arises wherein theoretical and

experimental results can not be brought to a satisfactory compliance by using the expression

(5), since it should have to take into account the dispersion of single-halide structural units,

which is not the case. Thus, the expression (5) for the polyanion effect loses its physical

meaning at its manifestation in the pure form.

The mentioned difference between experimental and theoretical values in cases of polyanion

and polyalkali effects, in our opinion, is the most probable, this is due to such reasons as:

different structural role of halide-ions in single- and two-halide glasses; absence of the

unipolar anion-halide conductivity in a number of single-halide glasses, electrical

conductivity values of which are used in the above calculations; presence of compositions of

two-halide glasses, wherein the unipolar anion-halide type of conductivity by one halide-ion

takes place, i.e. F 1  or Cl 1  (Fig. 1). To be able to use the additivity rules of R.L.

Mueller as applied to the polyanion effect in its manifestation in the pure form, i.e. to use

expressions (4), (4a), (4b), we introduced the empirical value k in them, defined by the

expression

0

0

lg lg Hal

lg lg Hal

j

j

k






    
    

, (10)

where Hal j
   – total volumetric concentration of halide-ions in the two-halide glass;

Hal j



   – volumetric concentration of that kind of halide-ions, which is predominantly

involved in the electromigration.

It should be noted that the numerator and denominator of the expression (10) are similar to

expressions (7), (8) for the electrical conductivity module. Preferential participation in the
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electromigration of halide-ions of one kind or another is determined from data by transfer

numbers of halide-ions in two-halide glasses.

Expressions (4), (4a), (4b), taking into account the empirical value k, should be written in the

form

Hal Hal Halj

k

A                  

 
    

 
, (11)

Hal Halj

kA          
   , (11 а)

Hal Halj

kA          
   , (11 b)

where A –coefficient, equal to unity, having the dimensionality 1 1S cmk k  . The issue of the

expression (11) simplification to expressions (11 a), (11 b) is solved for each specific glass

composition on the basis of data on halide-ions transfer numbers.

The calculation carried out with expressions (11), (11 a) and (11 b), points to the satisfactory

agreement with experimental results. The value  lg   was for glasses with

0.14; 0.36; 0.57; 0.78F  correspondingly 0.10; 0.20; 0.30; 0.25    , i.e.  lg 0.20     ,

that is within the error of measuring electrical conductivity ( 0.2 of lg order).

CONCLUSION

Thus, we have shown that the rule of the electrical conductivity additivity of R.L. Mueller as

applied to the polyanion effect in its manifestation in the pure form generally corresponds to

the expression (11), wherein the empirical value k takes into account the different structural

role of halide-ions in single- and two-halide glasses; absence of the unipolar anion-halide

conductivity in a number of single-halide glasses, electrical conductivity values of which are

used in calculations; presence of compositions of two-halide glasses, wherein the unipolar

anion-halide type of conductivity by one halide-ion takes place. The issue of the expression

(11) simplification to expressions (11 a), (11 b) must be solved on the basis of the study of

transfer numbers of halide-ions in two-halide glasses.
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Tables

Table 1. Data of the chemical analysis of  2 2
PbO SiO Pb Hal  system glasses

with the total  2Pb Hal content of 23.42 mol. %

F

Composition by synthesis, wt. % Composition by analysis, wt. %

PbO SiO2 F Cl PbO SiO2 F Cl

0

0.14

0.36

0.57

0.78

1.00

78.07

78.46

79.25

79.56

80.11

80.61

15.95

15.87

15.17

15.64

15.50

15.41

–

0.59

1.95

2.30

3.15

3.98

5.98

5.08

3.63

2.50

1.24

–

78.60

76.63

79.42

79.88

80.55

81.27

15.84

15.85

15.14

15.62

15.20

15.21

–

0.57

1.90

2.26

3.06

3.52

5.56

4.05

3.54

2.42

1.19

–

Table 2. Relative losses of halides for glasses of  2 2
PbO SiO Pb F,Cl  system with the

total  2Pb Hal content of 23.42 mol. %

F

Relative losses of

F, %

Relative losses of

Cl, %

Relative total

losses of halogens

0

0.14

0.36

0.57

0.78

1.00

-

3.4

2.6

1.7

2.9

11.6

7.0

2.6

2.5

3.2

4.0

-

7.0

2.6

2.5

2.5

3.2

11.6
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Table 3. Electrical properties of glasses of  2 2
PbO SiO Pb F,Cl  system with the total

 2Pb Hal content of 23.42 mol. %

Composition, mol. %

Volumetric

concentration

of halide-ions,

3mol / cm

d,
 g

/ c
m

3

F
 1lg , S cmV

   at

200 С

E ,

eV
0lg

P
bC

l 2

P
bF

2

P
bS

iO
3

[C
l– ]·

10
–2

[F
– ]·

10
–2

23.42

20.00

15.00

10.00

5.00

–

–

3.42

8.42

13.42

18.42

23.42

76.58

76.58

76.58

76.58

76.58

76.58

0.98

0.84

0.65

0.45

0.23

–

–

0.14

0.36

0.59

0.80

1.07

5.91

5.91

6.05

6.18

6.34

6.89

0

0.14

0.36

0.57

0.78

1.00

7.90

8.85

8.50

8.25

7.80

7.15

1.79

1.91

1.91

1.95

1.87

1.83

1.60

1.60

1.65

2.10

2.10

2.55

Table 4. Experimental values of the electrical conductivity of glasses of

( )2 2PbO SiO PbHal Hal F, Cl   systems and glasses of  2 2
PbO SiO Pb F,Cl  system

with the total content of lead halides of 23.42 mol. %

F
Cl

lg  
  

 

at 200 С

F
lg  

  
 

at 200 С

Hal
lg

j
 

  
 



at 200 С
[calculated by the

expression (4)]

Hal
lg

j
 

  
 



at 200 С
[calculated by expressions

(4), (4a) and (4b)]

0.14

0.36

0.57

0.78

8.85

10.35

10.60

10.70

10.50

9.75

9.00

8.20

8.85

9.80

9.05

8.25

8.85

9.80

9.00

8.20
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Figure captions

Fig.1. Variation of electrical conductivity, its activation energy, transfer numbers of halide-

ions at 200 °C and the total volumetric concentration of halide-ions depending on the value

F for glasses of  2 2
PbO SiO Pb Hal  system with the total lead halides content of 23.42

mol. %

Fig.2. Concentration dependences of the electrical conductivity of single-halide glasses of

 2 2
PbO SiO Pb Hal  system

Fig.3. Concentration dependences of halide ions transfer numbers in glasses of

 2 2
PbO SiO Pb Hal  systems at 200 °C
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