
 

 

METAL CONCENTRATION 

ANALYSIS AND HUMAN H

F. Azaman1, H. Juahir1,3,*, K. Yunus

Hasnam

1East Coast Environmental Research Institute (ESERI), Universiti Sultan Zainal Abidin, Gong 

Badak Campus, 21300 Ku

2Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, 

3Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Tembila Campus, 

ABSTRACT 

This study defined the concentration of

health risk towards human. 

Results revealed that most of the 

Zn, Co, Ni, As, Cr and Pb compared to 

permissible limit of Malaysia standard 

below than Malaysian standard permissib

component analysis (PCA) revealed that both 

responsible to possible metals

metals were within the safe limits, except for As in the Kerteh River for both adult and child 

well as to Paka River for both gender
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defined the concentration of metals in Kerteh and Paka River water and their potential

health risk towards human. 54 water samples were collected and analyzed using ICP

esults revealed that most of the stations in Kerteh River gave the higher concentration 

Pb compared to Paka River. However As, Cr and

Malaysia standard for all stations in both rivers. Cd, Cu, Zn, Co and Ni were 

standard permissible levels during the sampling 

component analysis (PCA) revealed that both geogenic and anthropogenic sources were 

metals contamination in both rivers. Moreover, risk assessments for all 

safe limits, except for As in the Kerteh River for both adult and child 

for both genders.  

OES; principal component analysis; risk assessment

mail: hafizanjuahir@gmail.com   

http://dx.doi.org/10.4314/jfas.v9i2s.16     

Journal of Fundamental and Applied Sciences 

http://www.jfas.info    

Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution
Libraries Resource Directory. We are listed under Research Associations

 

NG MULTIVARIATE 

EALTH RISK ASSESSMENT 

M. A. Amran1, C. N. C. 

 

East Coast Environmental Research Institute (ESERI), Universiti Sultan Zainal Abidin, Gong 

ala Nerus, Terengganu, Malaysia 

Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, 

Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Tembila Campus, 

water and their potential 

water samples were collected and analyzed using ICP-OES. 

in Kerteh River gave the higher concentration of Cd, Cu, 

As, Cr and Pb have exceeded the 

. Cd, Cu, Zn, Co and Ni were 

sampling period. The principal 

geogenic and anthropogenic sources were 

. Moreover, risk assessments for all 

safe limits, except for As in the Kerteh River for both adult and child as 

OES; principal component analysis; risk assessment. 

ibution-NonCommercial 4.0 
Research Associations category. 

Research Article 

Special Issue 



F. Azaman et al.             J Fundam Appl Sci. 2017, 9(2S), 217-237                218 
 

1. INTRODUCTION 

Heavy metals are basically derived from a variety of natural and anthropogenic sources in terms 

of aquatic environments [1-5]. Metal presence in nature is not dangerous to the environment 

because their small quantities [6]. Pollutions of heavy metal in surface water from natural 

processes occur due to the mineral weathering, erosion of bed rocks, volcanic activities and 

atmospheric deposition [7-9]. However, metal becomes a dangerous and pollutant if present in 

large quantities and usually attributed to industrial activities [10] and also known as 

anthropogenic sources [11-12]. 

Nowadays, industrial area such as mining industries widely discharge untreated heavy metal 

effluent into river water through various ways. River in urban areas was highly polluted due to 

the effluent discharge from industries and untreated domestic and become a problem that related 

to the water quality. These phenomena cause the levels of metal in water increase and 

automatically give a potential effect to the consumers [13-18]. In addition, global rapid 

population growth expanded the industrial and agricultural production and cause larger quantities 

of hazardous chemicals especially heavy metal have been discharged into rivers worldwide 

[19-21] and resulting to the water pollution.  

In 2014, East Coast of Malaysia have been heavily impacted by major discharges from industrial 

outflows and also municipal especially at the Paka River after flooding occurrence. It is due to 

the rapid development of industry such as chemical manufacturing, oil and gas and others. 

Villagers more prefer fish as their main source of protein, therefore, the potential risk of heavy 

metals in river water should not be overlooked. The contamination of river water gives impact to 

the growth of fish and also can cause bad impact towards human health [22-24]. 

Maximum level for mercury (Hg), zinc (Zn) and cadmium (Cd) in water concentrations were 

0.02 µg/l, 30 µg/l and 1.2 µg/l respectively based on the Canadian Guidelines [25]. In addition, 

according to the WHO (2004), the permissible limit for Ni, Cu and Cd concentrations were 70 

µg/l, 2000 µg/l and 3 µg/l respectively. In [27] stated that the maximum limit for As, Cd, Cr, Cu 

and Pb were 50 μg/l, 10 μg/l, 50 μg/l, 20 μg/l and 50 μg/l respectively under classification of 

Malaysian Water Quality Standard for river class IIA/IIB.  

Mercury (Hg) is a non-essential element. Toxicity of Hg could be harmful for fish and its organ 

[28-29]. In human, Hg may damage the fetal development due to their toxicity and also 

considered as a carcinogen [30]. In [31] studied that neuronal loss in the cerebellum granule layer 
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and damage of discrete visual cortex area occurs in adult brain due to the Hg poisoning. However, 

chromium (Cr) is an essential trace element in some animals and humans. Cr may reduce body fat 

and also improve lean body mass. But, it could have an undesirable fatal effect in excess amount. 

Lack of Cr may affected the growth and disturbances in glucose, lipid and protein metabolism 

[32]. Based on the above consideration, the present study aimed to identify the concentration of 

metal such as Zn, Ni, Cu, Pb, Co, Cr, As and Cd in river water. Analyses metal concentrations 

were performed using ICP-OES. Besides, multivariate statistical analysis was applied to identify 

the source apportionment of contaminated water in Paka River and Kerteh River. Finally, the 

potential health risk assessment associated with metal exposure was determined for the 

population living near the Paka River and Kerteh River. 

 

2. METHODOLOGY 

2.1. Sampling Area 

The study area, Paka River and Kerteh River are located at the southern part of Terengganu. Paka 

River is originated from Dungun Watershed in Terengganu and it is about 100 km from south of 

Kuala Terengganu. Kuala Paka, Pantai Paka and Bandar Paka are places that located along the 

Paka River. Moreover, Kerteh River is located in the district of Kemaman also Southern 

Terengganu, Malaysia, about 2,536 km2 area with a population of 174,876 and also geographical 

location is 4º 31′ 38″ N and 103º 28′ 9″ E. This river is flow from downstream of Kerteh to Batu 

Putih and Rangon River. Tanjung Kerteh, Pantai Kerteh, Kerteh Petronas Plant and Bandar Baru 

Kerteh are places that located along the Kerteh River. In total, there were eighteen sampling 

points along the Paka River and Kerteh River. The sampling points are at S1(P), S2(P), S3(P), 

S4(P), S5(P), S6(P), S7(P), S8(P), S9(P), S1(K), S2(K), S3(K), S4(K), S5(K), S6(K), S7(K), 

S8(K) and S9(K). Fig. 1 shows the selected sampling points along the Paka River and Kerteh 

River. 
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Fig.1. Sampling points along the Paka River and Kerteh River 

2.2 Sample Collection 

A total of fifty four of water samples were collected at nine stations in Paka River and nine 

stations at Kerteh River. Water samples were collected at depth of < 2 meters using a water 

sampler and stored in 0.5 liter of polyethylene bottles. Water sample was taken in triplicate at 

each station and acidified with a few drops of high purity nitric acid to obtain value of pH around 

2 in order to prevent the biological growth and precipitation of metals [33-34]. Thereafter, 

samples were preserved in iceboxes at -18 ºCelsius before begin for water analysis [35].  
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2.3. Chemical Analysis by ICP-OES 

All acidified water samples were analyzed for Cadmium (Cd), Nickel (Ni), Lead (Pb), Zinc (Zn), 

Chromium (Cr), Copper (Cu), Cobalt (Co) and Arsenic (As) using an Inductively Coupled 

Plasma-Optical Emission Spectrometry. Innovative ICP-OES technology was driven by the 

Thermo Scientific™ Qtegra™ Intelligent Scientific Data Solution™ (ISDS) software platform.  

2.4. Quality Assurance and Quality Control 

The quality of the result obtained by the accuracy of the method used including the standard 

operating procedures, chemical blank analysis, replicate analysis and standard certified reference 

materials analysis. For water samples, the certified reference materials of the National Institute of 

Standards and Technology (river water: NIST SRM 1643b-trace metal in water) was used. The 

recovery studies are performed to detect metal losses or contamination of the sample during 

preparation and also to identify any interference during measurement [36]. The percentage of 

recovery were accepted between 95% to 110%, which is observed from the relationship between 

certified values and measured values as shown in Table 1. Besides, a multielement calibration 

standards act as calibration blank also was analyzed to confirm the calibration performance of the 

ICP-OES. All analyses were carried out in triplicate. 

Table 1. Recovery of metal using certified reference materials of water sample 

Metal River Water (NIST SRM 1643b) 

Certified Value (μg/l) Measured Value (μg/l) Recovery (%) 

Cd 12.2 ± 1.0 12.0 ± 0.1 98.36 

Cr 17.6 ± 0.1 18.8 ± 0.4 106.82 

Zn 73.9 ± 0.9 70.0 ± 0.8 94.72 

Cu 22.3 ± 2.8 21.6 ± 0.4 96.86 

Ni 47.2 ± 0.1 49.0 ± 2.8 103.81 

Pb 35.3 ± 0.9 34.4 ± 0.5 81.90 

As 42.0 ± 0.2 43.0 ± 3.0 102.38 

Co 24.0 ± 0.4 26.0 ± 1.0 108.33 

2.5. Data Analysis  

In this research, principal component analysis (PCA) was performed to the data set to exclude 

insignificant data. This analysis is based on eigenvalue criteria where value > 1 is considered as 

significant and a new group of variables built based on the resemblance of the entire data set [37]. 
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PCA technique was applied to extract the principal factors corresponding to the different sources 

of variation in the data of physical and chemical from Kerteh River and Paka River. For this study, 

factor loading > 0.75 for both positive and negative was considered [38] as well. Before applying 

data analysis using PCA, Kaiser-Meyer Olkin (KMO) and Barlett’s test should be performed first. 

KMO test results must be greater than 0.5 and the Barlett’s test must be significant (significant 

level < 0.05) [39-40]. Data were statistically calculated and analyzed using the XLSTAT 

software. 

2.6. Health Risk Assessment 

In order to estimate the non-cancer health risk, hazard quotient (HQ) was calculated. Thus, HQ 

can be calculated by the equation [41]: 

H =
���

���
                                                                                   (1) 

where CDI = chronic daily intake, RfD = reference dose for an individual metal (3 × 10-4, 3×10-4, 

1.5, 3.6×10-2, 4×10-2, 2×10-2, 3×10-1 and 1×10-3 mg/kg/day for Hg, As, Cr, Pb, Cu, Ni, Zn and Cd 

respectively based on [42].  

The exposed population considered safe when HQ less than 1 [43-44]. Several ways for metal 

enters into the human body, such as food chains, inhalation and dermal absorption, but become 

negligible if compared with oral intake all others [8, 45]. Chronic daily intake (CDI) through 

ingestion of water can be calculated by following equation [46]: 

CDI =  
� ×��

��
                                                                         (2) 

where C = concentration of heavy metal in water (μg/L), DI = rate of daily water intake (adult:  

2L/day and child: 1L/day) and BW = body weight (adult: 62.65kg and child: 31.20kg) 

 

3. RESULTS AND DISCUSSION 

3.1. Metal Concentration in Surface River Water 

The result of metal concentration in surface water of the Paka and Kerteh River are shown in the 

Table 2. Metal presence in nature is not dangerous to the environment because their small 

quantities [6]. Pollutions of heavy metal in surface water from natural processes occur due to the 

mineral weathering, erosion of bed rocks, volcanic activities and atmospheric deposition [8, 43]. 

However, metal becomes a dangerous and pollutant if present in large quantities [10]. 

In Paka River, the maximum value of As in the S7 (54.900 µg/l), S8 (62.533 µg/l) and S9 (56.200 

µg/l) was higher than [27, 41, 47] guidelines. While, the maximum concentrations of As in the S2 
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and S4 at the Kerteh River were found to exceed [27, 41, 47] guidelines (Table 2). Elevated level 

of As in the river have resulted from an incline number of land use activities such as urbanization, 

industrial and mining activities [48]. The higher concentrations of As in the selected regions may 

be also because of chemical fertilizers used in the surrounding agriculture fields [49]. Thus, these 

wastes will runoff into the river especially during wet season and resulting to the high measured 

arsenic. Moreover, additional environmental impact also known as health risk assessments are 

necessary for metal levels above the maximum allowable limits. In Malaysia, the maximum 

permitted As concentration was 50 µg/l according to [27]. 

The highest level of Cd in the Paka River was found at the S7 (0.334 µg/l) and the lowest level of 

Cd was found at the S1 (0.003 µg/l) near to the upstream. While, the highest concentrations of Cd 

in the Kerteh River were found at the S6 (0.322 µg/l) and the lowest level of Cd was found at the 

S1 (0.010 µg/l) near to the upstream as shown in Table 2. This is due to the many industries area 

may contributes to the metal pollution by discharge their waste into river. In addition, Cd is 

generally produced by industrial processes or known as sludge-derived fertilizers. The major 

sources of cadmium pollution are smelting and refining of zinc, lead and copper ores, 

manufacture of cadmium alloys, pigments and plastic stabilizers, production of nickel-cadmium 

batteries and also welding [50]. Thus, discharges of wastewater from Cd factories contribute to 

the pollution of cadmium [51]. The use of Cd in plating, stabilizers, pigments and batteries ensure 

the continuing demand for Cd in the market and become one of the possible sources for 

environmental pollution [52]. However, all sampling station in the both river does not show that 

the concentration of Cd above than the maximum permitted by Malaysia guideline which is 10 

µg/l [27]. 

The maximum value of Cr in the S6 (101.000 µg/l), S7 (197.000 µg/l), S8 (248.667 µg/l) and S9 

(255.333 µg/l) at the Paka River was above than the maximum permitted by Malaysia guidelines. 

While, the maximum concentrations of Cr in the S2 (106.267 µg/l), S3 (118.667 µg/l), S4 

(156.667 µg/l), S5 (109.800 µg/l), S6 (112.467 µg/l), S7 (201.633 µg/l), S8 (250.633 µg/l) and S9 

(291.800 µg/l) at the Kerteh River were found to exceed Malaysia guidelines (Table 2). 

Environmental pollution with various forms of Cr results from its numerous uses in the chemical 

industry, wood preservations, chrome plating, dyes production, leather tanning, alloys 

manufacturing and in many other products and applications [53-57]. Cr in trivalent and 

hexavalent forms is normally used in chemical industries [57]. Thus, this is due to the many 
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industries in the Kerteh may discharge their waste into the river and caused the level of Cr in the 

river increased. Moreover, additional environmental impact also known as health risk assessments 

are necessary for metal levels above the maximum allowable limits. The maximum permitted Cr 

concentration based on Malaysia guidelines was 50 µg/l [27]. 

Based on the result obtained in the Table 2, the highest level of Cu in the Paka River was found at 

the S8 (18.567 µg/l) near to the downstream and the lowest level of Cu was found at the S2 

(0.134 µg/l) near to the upstream. While, the highest concentrations of Cu in the Kerteh river 

were found at the S8 (11.947 µg/l) near to the downstream and the lowest level of Cu was found 

at the S1 (0.030 µg/l) near to the upstream. However, all sampling station in the both river does 

not show that the concentration of Cu above than the maximum permitted by Malaysia guideline 

which is 20 µg/l [27]. Basically, Cu is an essential metabolic component in low concentrations 

and caused illness in high concentration as well as accumulates in tissues and prolonged exposure 

also can lead to illness. Heavy industry and mining activities can result in higher concentrations 

than those that would be found naturally [68]. In addition, the major release of Cu into the 

environment was municipal waste, agriculture and also publicly-owned treatment work (POTWs) 

[69]. Waste from these activities runoff with rainwater and resulting to the high measured copper 

concentration in river. Cu contaminations could result from local agriculture activities. 

Highest Pb concentration was found in S8 (73.200 µg/l), while S1 (0.280 µg/l) has the lowest Pb 

concentration in the Kerteh River. Paka River showed that the highest Pb concentration was 

found in S7 (69.733 µg/l), while the lowest Pb concentration was found in S2 (0.044 µg/l) as 

shown in the Table 2. Naturally, lead occurs from the parent rocks decomposition. However, lead 

may accumulate from anthropogenic sources including traffic exhaust, lead-zinc smelters, dumps 

and other sites receiving industrial and household lead such as paints and batteries [57]. In 

addition, spillages or leakages of leaded petrol from the ship or boat also become one of the 

possible anthropogenic sources of Pb [26, 58]. Based on the result obtained, most of the sampling 

stations were above the Malaysia standard which is 20 μg/l [27] and thus they could be classified 

as unclean Pb areas. Station S6, S7, S8 and S9 for Paka River and station S3, S4, S5, S6, S7, S8 

and S9 for Kerteh River are noted to have high values of exceed the maximum permitted limit by 

Malaysia guideline. 

The highest Zn concentration in the Paka River was found at the S9 (153.667 µg/l) near to the 

downstream and the lowest Zn concentration was found at the S1 (1.937 µg/l) near to the 
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upstream. While, the highest Zn concentrations in the Kerteh River were found at the S8 

(132.500 µg/l) near to the downstream and the lowest Zn concentration was found at the S1 

(2.320 µg/l) near to the upstream (Table 2). Zinc occurs naturally in air, water and soil but 

concentration of zinc is rising unnaturally due to addition of zinc through human activities. The 

pollution related to the zinc usually comes from either zinc electroplating or zinc mining. 

However, the pollution of zinc in this area must be derived from zinc electroplating factories due 

there are no zinc mines in this area. Thus, this factor represents zinc pollution from industrial 

discharge. For example, tire-tread material has containing about 1wt% of Zn [59]. Zn-based 

fungicides or burning of agriculture waste also can be an additional of zinc source [60-61]. In 

addition, this probably occurs due to the transport of chemical or agriculture waste leachate with 

the runoff of rainwater [62]. However, all sampling station in the both river does not show that 

the concentration of Zn above than the maximum permitted by Malaysia guideline which is 400 

µg/l [27]. 

The highest level of Co in the Paka River was found at the S9 (10.630 µg/l) near to the 

downstream and the lowest level of Co was found at the S1 (0.010 µg/l) near to the upstream. 

While, the highest levels of Co in the Kerteh River were found at the S8 (8.407 µg/l) and the 

lowest level of Co was found at the S1 (0.003 µg/l) near to the upstream (Table 2). Typically, 

cobalt is naturally found in most soil, rocks, animals, plants and water in small amounts. In 

human activities, cobalt metal is usually used by mixing with other metals to form alloys which 

are more resistant and harder. These alloys are used in industrial and military applications such as 

grinding and cutting tools, magnets and aircraft engines. They are also used in artificial knee and 

hip joints. In terms of compound, cobalt are used as catalysts, paint driers and also as colorants in 

ceramics, glass and paints and also used as trace element additives in medicine and agriculture 

[63]. These activities contribute to the metal pollution like cobalt through discharging their waste 

into river. The concentration of cobalt might become higher due to the industry waste runoff with 

rainwater. In addition, all sampling station in the both river does not show that the concentration 

of Co above than the maximum allowable limit by [47] which is 500 µg/l.  

The highest Ni concentration was found in S9 (125.640 µg/l), while S1 (0.030 µg/l) has the 

lowest Ni concentration in the Kerteh River. Paka River showed that the highest Ni concentration 

was found in S8 (142.373 µg/l), while the lowest Ni concentration was found in S1 (0.046 µg/l) 

(Table 2). Based on the result obtained, all sampling station in the both river does not show that 
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the concentration of Ni exceed than the maximum permitted limit by Malaysia standard which is 

900 µg/l [27]. Many years, nickel is used mainly in the production of stainless steel about 42%, 

36% for alloy production such as non-ferrous alloys and super alloys. Other uses of nickel were 

in electroplating (18%), in nickel–cadmium batteries, in construction like welding products, in 

coinage and in certain electronic products. 8% of nickel is used for appliances of household [64]. 

Besides, in some food supplements, nickel is also incorporated which can contain several 

micrograms of nickel [65]. Waste from these activities directly or partly discharge into the river 

and automatically contributes to the nickel pollution. 

Table 2. Metal concentration of surface water from Paka and Kerteh River 

Location ID Co Cu Ni Zn As Cr Cd Pb 

Paka S1 0.010 0.185 0.046 1.937 3.777 0.225 0.003 0.085 

River S2 0.017 0.134 0.060 3.437 4.467 0.291 0.010 0.043 

 S3 0.036 0.280 0.053 4.070 4.443 0.442 0.017 0.077 

 S4 0.037 0.269 0.066 1.633 3.867 0.356 0.050 0.058 

 S5 0.080 0.546 0.139 3.317 5.067 0.554 0.003 0.173 

 S6 4.760 10.433 55.133 100.933 33.400 101.000 0.204 60.100 

 S7 7.593 12.233 104.867 121.667 54.900 197.000 0.334 69.733 

 S8 10.353 18.567 142.373 121.500 62.533 248.667 0.237 55.007 

 S9 10.630 13.667 125.267 153.667 56.200 255.333 0.287 63.647 

Kerteh S1 0.003 0.030 0.030 2.320 0.983 0.000 0.010 0.280 

River S2 2.963 6.177 40.200 14.767 19.533 106.267 0.212 12.367 

 S3 4.857 7.373 50.367 83.933 28.450 118.667 0.157 43.167 

 S4 4.650 7.817 53.533 26.900 44.833 156.667 0.308 28.367 

 S5 3.910 9.597 62.033 70.433 62.133 109.800 0.157 42.833 

 S6 4.170 10.800 63.367 43.233 56.067 112.467 0.322 22.267 

 S7 5.573 10.460 84.133 115.000 41.300 201.633 0.218 46.300 

 S8 8.407 11.947 102.000 132.500 74.733 250.633 0.127 73.200 

 S9 5.423 5.877 125.640 34.367 30.267 291.800 0.043 21.133 

3.2. Sources of Water Pollution  

PCA technique was applied in order to determine the source of pollution in Kerteh River and 

Paka River. Correlation analysis, Kaiser-Meyer-Olkin (KMO) and Bartlett’s sphericity tests were 
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performed to examine the validity of PCA. In the Kerteh River, KMO and Bartlett’s results were 

0.722 (greater than 0.5) and significant (0.0001, p < 0.05) respectively indicating that PCA would 

be effective in reducing dimensionality of the data set [38, 40]. The correlation analysis of 16 

physico-chemical parameter of Kerteh River water is listed in Table 3. 

In this study, PCA of the normalized dataset extracted by varimax rotation of PCs with 

eigenvalues >1 has been selected. There were two varifactors (VFs) that explained about surface 

water having 79.83% of the total variance in the data set (Table 4). The first PC (VF1) accounting 

for 53.04% of the total variance was correlated (strong loading > 0.75) with Cr, Co and Ni (r = 

0.891-0.930) and moderate loading on As, Cu, Pb and Zn (r = 0.556-0.716). Naturally, Cr, Co, Ni, 

As, Cu, Pb and Zn occur in the earth’s crust and natural discharges into water and air such as rock 

or soil weathering and erosion in small amount. However, the presence of these metals to the 

environment normally caused by anthropogenic activities like chemical industry activities, 

agriculture activities and municipal waste. Manufacturing alloy is the major contribution from 

industry area [54, 60, 63]. Besides, these metals were used as fertilizer in agriculture activities 

[49, 63].  

The second PC (VF2) accounting for 26.79% of total variance was correlated with strong loading 

on Cd with r = 0.792 and moderate loading on As, Cu and Pb (r = 0.542-0.695). At the beginning 

of the 20th century, cadmium commercially used in the electroplating industry and followed by 

production of nickel-cadmium batteries [66]. Other metals like As, Cu and Pb also used in 

manufacturing alloy and non-alloy [49]. All these activities contribute to the water pollution by 

discharge their waste directly (treated or untreated waste) into the river. In fact, study area are 

famous with busy town thriving on oil and gas activity and also other industries, agriculture 

activities included surrounding crowded with residential area especially in the peak area.  

For the dataset of Paka River, KMO and Bartlett’s results were 0.817 (greater than 0.5) and 

significant (0.0001, p < 0.05) respectively indicating that PCA would be effective in reducing 

dimensionality of the data set [38, 40]. The correlation analysis also was applied to confirm all 

the variables are correlated as shown in Table 3. In the case of Paka River, only one PC was 

defined after rotation and having about 94.11% of the total variance (Table 4). These PC showed 

correlated with positive and strong loading on As, Cd, Cr, Cu, Pb, Zn, Co and Ni with r = 

0.958-0.985. All these metals indicate that non-point sources and point source of pollution 

probably occurs. The non-point sources normally came from agricultural waste and point sources 
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from industrial waste. Basically, these metals could be classified as metal pollution. The 

existence of trace metal in this region indicates the effect of oil pollution from petroleum mining 

and chemical industries and might be directly discharge into the river and resulting to the river 

pollution [38, 67]. However, these metal also used as pesticide and fertilizer in the agriculture 

activity. Municipal solid waste also gave the contribution to the water pollution and usually come 

from residential area, school and others [49, 73]. Improper sewage treatment plant or also known 

as wastewater treatment plant (treat household waste, liquid waste from industry and other) also 

one of the sources of the water pollution [70]. 

Table 3. Correlation matrices of metal in water 

Kerteh River 

 
As Cd Cr Cu Pb Zn Co Ni 

As 1 

Cd 0.367 1 

Cr 0.447 0.015 1 

Cu 0.787 0.318 0.443 1 

Pb 0.734 0.156 0.514 0.746 1 

Zn 0.626 0.037 0.453 0.741 0.898 1 

Co 0.678 0.088 0.797 0.765 0.799 0.747 1 

Ni 0.518 -0.055 0.927 0.585 0.537 0.527 0.807 1 

Paka River 

 
As Cd Cr Cu Pb Zn Co Ni 

As 1 

Cd 0.938 1 

Cr 0.962 0.896 1 

Cu 0.944 0.936 0.913 1 

Pb 0.933 0.962 0.891 0.975 1 

Zn 0.948 0.931 0.960 0.967 0.947 1 

Co 0.960 0.896 0.959 0.928 0.887 0.946 1 

Ni 0.962 0.883 0.955 0.884 0.866 0.941 0.941 1 

Note: Values in bold are different from 0 with a significance level alpha = 0.05 

 



 

 

Table 4. Varimax rotated after component matrix for both rivers 

 Kerteh River Paka River 

 Components Components 

 VF1 VF2 VF1 

As 0.556 0.695 0.985 

Cd -0.201 0.792 0.959 

Cr 0.891 -0.058 0.971 

Cu 0.629 0.660 0.973 

Pb 0.716 0.542 0.961 

Zn 0.713 0.454 0.985 

Co 0.905 0.303 0.969 

Ni 0.930 -0.021 0.958 

Eigenvalues 5.072 1.314 7.529 

Variance explained (%) 53.04 26.79 94.11 

Cumulative variance (%) 53.04 79.83 94.11 

 Note: Bold and italic values indicate strong and moderate loadings respectively 

3.3. Health Risk Assessment for Water Consumption 

Metal concentrations in surface water were used to assess human exposure through oral intake. 

In this study, two population groups were considered which are adults and child. The chronic 

daily intake (CDI) and hazard quotient (HQ) through ingestion of water is summarized in 

Table 5. HQ by ingestion for adult and child, resulting that all elements (Co, Cu, Ni, Zn, Pb, 

Cr, Cd) were smaller than 1 except for As for Kerteh River and Paka River. The highest value 

of As indicated to the Kerteh River were above 3 (3.686 and 4.058 for adult and child 

respectively), followed by Paka River. Besides, the aggregate HQ of every metals for adult 

and child in the Kerteh River were found in the decreasing order of As > Co > Ni > Pb > Cu > 

Zn > Cd > Cr. HQ for adult and child in the Paka River were found in the decreasing order of 

As > Co > Ni > Pb > Zn > Cu > Cd > Cr.  

This value shows the level of As was very high that may cause adverse health effects and 

potential non-carcinogenic concern. The result also indicated that As posed serious health 

concerns to the local residents via oral intake for all the seasons, while other metals had no or 

little health threat. Additionally, As exclusively with the HQ for adult and child above unity 

was the largest contributor to non-carcinogenic concern. Though, it can be inferred that As 

was the most contributors in all the seasons and the oral intake was the primary pathway of 

exposure. The risk assessment indicated that As was the most important pollutant in the both 
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Paka and Kerteh River. Inorganic arsenic is acutely toxic and intake of large quantities leads 

to the symptoms of gastrointestinal, severe disturbances of the cardiovascular and central 

nervous systems and eventually death. However, for survivors, bone marrow depression, 

hemolysis, hepatomegaly, melanosis, polyneuropathy and encephalopathy may be observed. 

Ingestion of inorganic arsenic may cause peripheral vascular disease, which in its extreme 

form leads to gangrenous changes and also known as black foot disease. This disease only 

reported in Taiwan. The exposure of arsenic via drinking water towards population show 

excess risk of mortality from lung, bladder and kidney cancer. In [71] also stated that 

population exposed to arsenic via drinking water is causally related to cancer in the lungs, 

kidney, bladder and skin. There is also an increased risk of other skin lesions such as 

hyperkeratosis and pigmentation changes. The risk increasing with increasing exposure. 

However, toxicity of As depends on the speciation [72] and trivalent As (III) has the greatest 

toxicity. According to [54], mono and dimethyl arsenics have low toxicity.  

Table 5. Reference dose and hazard quotient for each element of the Paka and Kerteh River 

CDI HQ 

 Elements *RfD Adult Child Adult Child 

 (mg/kg/day) 

Kerteh River As 0.0003 1.1059 1.2175 3.6862 4.0582 

 Cd 0.0010 0.0048 0.0053 0.0048 0.0053 

 Cr 1.5000 4.1603 4.5801 0.0028 0.0031 

 Cu 0.0400 0.2163 0.2381 0.0054 0.0060 

 Pb 0.0360 0.8948 0.9851 0.0249 0.0274 

 Zn 0.3000 1.6156 1.7786 0.0054 0.0059 

 Co 0.0003 0.1233 0.1358 0.4111 0.4526 

 Ni 0.0200 1.7941 1.9752 0.0897 0.0988 

Paka River As 0.0003 0.7057 0.7769 2.3524 2.5898 

Cd 0.0010 0.0035 0.0039 0.0035 0.0039 

Cr 1.5000 2.4811 2.7315 0.0017 0.0018 

Cu 0.0400 0.1738 0.1913 0.0043 0.0048 

Pb 0.0360 0.7683 0.8458 0.0213 0.0235 

Zn 0.3000 1.5807 1.7403 0.0053 0.0058 

Co 0.0003 0.1034 0.1139 0.3448 0.3796 

Ni 0.0200 1.3210 1.4543 0.0660 0.0727 
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4. CONCLUSION 

The amount of metals at surface river water though the levels were below Malaysia standard 

maximum permissible levels for Cr, Pb, Cd, Cu, Zn, Co and Ni for all sampling point in the 

both river. In few cases, the levels of As exceeded the Malaysia standard maximum 

permissible limit. In overall, most of the sampling point in the Kerteh River gave the higher 

concentration on metal contents (Cd, Cu, Zn, Co, Ni, As, Cr, Pb) compared to the Paka River. 

In addition, PCA is successfully applied into experimental data by extracting i) two PCs for 

Kerteh River and ii) only one PC for Paka River out of the 8 original variables, which implies 

a great dimensionality reduction in order to classify water pollution based on their similar 

characteristics. Moreover, risk assessments for metals were within safe limits, except for As 

(adult and child) in the both rivers. Therefore, it suggested that the water from contaminated 

sites should not be used for drinking without proper treatment.  
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