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1. INTRODUCTION 

While able to benefit from technology, the army is facing a number of challenges in their 

operations today and in the future. One of the major challenges is in the power sources arena. 

Today’s soldier carries a wide array of electronic devices such as computers, communications 

equipment, weapon system and all requiring portable power. The army is aware of the 

situation and has identified problem areas of battery weight, space and power source carried 

by the soldier [1]. One area identified to further study is the electrolyte for battery system 

using polymer electrolyte. Polymer electrolyte offers reduction in size, weight and thermal 

management properties in line with the requirement of future military systems. With better 

process efficiency, the batteries can be designed to be lighter in weight hence reducing the 

operational physical load of soldiers which may contributes to longer endurance and reduce 

fatigue during operations. 

Polymer electrolytes are of immense interest due to their applicability in energy conversion 

and storage devices. They present significant advantages over liquid electrolytes such as safer 

design, simpler stacking and hermetic sealing processes, superior in density, flame-resistance 

and shape suitability in the requirements of the application [2-3]. In order to achieve high 

performance, a battery electrolyte must possess high ionic conductivity, be stable at both the 

high potential of the battery cathode and the low potential of the battery anode. Various 

approaches to enhance the ionic conductivity of polymer electrolytes have been suggested in 

the literature such as by addition of plasticizer, filler and blending polymer [4-5]. The recent 

technique developed for solid polymer electrolyte is the dispersion of nano-size inorganic 

ceramic filler particles such as Al2O3, SiO2, TiO2, SnO2, ZnO and ZrO into the polymer 

electrolytes system called composite polymer electrolytes (CPE). It has been shown that the 

addition of fillers to semicrystalline PEO-alkali metal salt complexes leads to the decrease in 

the crystallinity of the electrolyte and enhancement in ionic conductivity [6]. Also, the uses of 

fillers improve mechanical stability of the polymer electrolytes. Changes in the ionic 

conductivity of CPEs result from the Lewis acid-base interactions between the fillers and the 

polymer electrolytes components.   

From ac conductivity, further information on ionic conduction model can be determined to get 
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more insight on ion conduction mechanism. Various models reported such as small polaron 

tunneling model (SPT) overlapping large polaron tunneling model (OLPT), correlated barrier 

hopping model (CBH) and quantum mechanical tunneling model (QMT) have been reported 

to discuss the ac conduction mechanism in amorphous materials such as semiconductors and 

glasses [7]. However, there are limited researches available regarding the use of such models 

to explain the ionic conduction mechanism in polymeric materials. 

In order to obtain a balance for the compatibility of filler and polymer electrolytes, several 

investigations have been carried out such as synthesis of new polymer matrix, preparation of 

polymer single-ion conductor and doping with filler. Thus, in this research we prepared 

blended based polymer of hexanoyl chitosan and polystyrene doped with LiCF3SO3. Two 

types of TiO2 filler were used, which are untreated TiO2 and HNO3-treated TiO2. The effect of 

untreated and HNO3-treated TiO2 will be investigated on their ionic conductivity, crystalline 

fraction, dielectric constant and ionic conduction model.  

 

2. RESULTS AND DISCUSSION   

A structural study of solid polymer electrolyte was investigated by XRD. XRD analysis was 

performed to determine the degree of crystallinity and to observe the glassy nature of the 

H-chitosan/PS polymer electrolyte.  

The degree of crystallinity in the prepared samples were estimated from the ratio of integrated 

intensity of the peak at 2θ ≈ 6.86°to the total integrated of the spectrum, using the Equation 

(1) 

�� =
��

��
                                                                                                                                                     (1) 

where �� is the degree of crystallinity, �� is the 2θ ≈ 6.86°peak intensity and ��  is the total 

integrated intensity. 

Fig. 1 shows the variation in the degree of crystallinity as a function of untreated and treated 

TiO2 concentration. The crystallinity degree was estimated from the peak at 2θ ≈ 6.86° using 

the same method as discussed previously [9]. It can be observed that for both the untreated 

and treated TiO2-added electrolyte system, the degree of crystallinity decreases with addition 

of TiO2 up to 6 wt.% which is from 19.62% to 13.52 and 14.43% respectively. The reduction 
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of crystallinity will produce more amorphous phase in the system. The amorphous phase 

makes the electrolyte more flexible, resulting in increase of the segmental motion of the 

polymer [10]. At 8%, the crystallinity of H-chitosan/PS increases drastically to 22.34%. This 

indicates that 6 wt.% of TiO2 is the optimum amount and beyond this weight percentage, the 

presence of TiO2 leads to recrystallization of H-chitosan/PS. This observation will be 

supported with ionic conductivity as discussed below. 

 

Fig.1. The variation in crystalline fraction for composite electrolyte system as a function of (a) 

untreated TiO2 and (b) HNO3-treated TiO2 concentration 

The variation of room temperature conductivity as a function of untreated and treated TiO2 

concentration is depicted in Fig. 2. The ionic conductivity of H-chitosan/PS electrolytes 

without TiO2 filler was 7.21 × 10-5 S cm-1. With addition of 2 wt.% TiO2, the ionic 

conductivity of both the untreated and treated TiO2 systems decreases to around 7.00 × 10-6 

and 5.86 × 10-6 S cm-1. Small amount of filler was not able to overcome the rate of ion 

association of LiCF3SO3. The conductivity increases with further increase in filler content, 

reaches a maximum and thereafter decreases with increasing filler content beyond the 

optimum concentration. The maximum conductivity achieved was 2.27 × 10-4 S cm-1 at 4 wt.% 

for untreated TiO2 and 1.47 × 10-4 S cm-1 at 6 wt.% for HNO3-treated TiO2. We found that 

untreated TiO2 able to improve the conductivity up to twice while treated TiO2 only half 

compared to without filler. The conductivity enhancement is due to presence of oxygen sites 

as conduction pathways from TiO2, hence help to increase in the number of mobile Li+ cation. 

However, HNO3-treated TiO2 systems produce lower ionic conductivity compared to 

untreated TiO2 systems because treated TiO2 have more acidic sites that help to increase the 
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degree of ion association. Treated TiO2 decreased the conductivity by decreasing the anionic 

contribution due to the HNO3-treated TiO2 grain surface consists of solely OH group and it 

shown that anion of salt has larger affinity towards filler surface acid site than cation as 

reported in our previous work [11]. At 10 wt.% TiO2, the ionic conductivity decreases 

significantly even below the unfilled electrolytes. This behavior is due to the recrystallization 

of polymer host as observed in XRD analysis. The conductivity variations observed also 

could be attributed to the variation in the number of free ions in the samples. This is reflected 

in the dielectric constant, εr versus frequency curves as illustrated in Fig. 4. 

 

Fig.2. Ionic conductivity of H-chitosan/PS-LiCF3SO3 polymer electrolytes as a function of 

TiO2 concentration at room temperature (a) untreated TiO2 and (b) HNO3-treated TiO2 

Fig. 3 represents the plot of ionic conductivity (log σ) versus the inverse absolute temperature 

for untreated and HNO3-treated TiO2 electrolyte system respectively. The measurement was 

carried out from 283 K to 383 K. Within the temperature range investigated, the variations of 

log σ with 1/T are linear with R2 = 0.953 and 0.985 for untreated TiO2 and HNO3-treated TiO2. 

This indicates that the conductivities of the studied electrolyte systems are thermally activated 

which indicating that this system obeyed the Arrhenius rule [12]. Therefore, as temperature 

was increased, the number of free lithium ions was also increased. Hence, it increases the 

conductivity of the electrolytes [13]. The graph shows that conductivity 4 wt.% untreated 

TiO2 is higher than 6 wt.% HNO3-treated TiO2. Activation energy, Ea for ionic conduction 

were obtained from the slope of the plots in Fig. 3 and Ea for 4 wt.% untreated TiO2 and 6 wt.% 

HNO3-treated TiO2 was 0.048 and 0.096 eV. Ea is the energy required for an ion to begin 
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migration from one donor site to another. This ion migration results in conduction. It can be 

observed that high conducting sample exhibits low value of Ea. This indicates that ions in 

high conducting sample require lower energy to begin migration.  

 

Fig.3. Temperature dependence of conductivity for H-chitosan/PS-LiCF3SO3 with a) 4 wt.% 

untreated TiO2 and b) 6 wt.% HNO3-treated TiO2 

The dielectric constant represents the stored charge in a material. Since charge is carried by 

ions, therefore it can be deduced that the increase in dielectric constant reflects the increase in 

the number of ions [14]. Fig. 4 shown frequency dependence of dielectric constant, εr for 

H-chitosan/PS-LiCF3SO3 with untreated TiO2 and HNO3-treated TiO2. The untreated TiO2 

system has higher dielectric constant value than HNO3-treated TiO2 system. This suggests that 

the untreated TiO2 system has higher number of free ions compared with HNO3-treated TiO2 

system and leading to higher conductivity. The calculated number of mole of H+ for untreated 

and HNO3-treated TiO2 are 6.11 × 10-5 and 7.40 × 10-4 mol/g respectively. The acidic H+ site 

acts as anion trapper [15]. The treated TiO2 possesses more H+ anion trapper on its surfaces 

compared to untreated TiO2. The reduce number of free anions in the system contribute to the 

decrease in the total conductivity. This explains why the conductivity achieved for the 

HNO3-treated TiO2-added system is lower than the untreated TiO2-added system.   
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Fig.4. Frequency dependence of dielectric constant, εr for H-chitosan/PS-LiCF3SO3 with a) 

untreated TiO2 and b) HNO3-treated TiO2 

The ac conductivity can be obtained from the dielectric constant, �� and loss tangent, tan � 

according to the Equation (2) 

��� = ����� ∗ tan �                                                                                                                                (2) 

where �� = 8.85 × 10-14 F cm-1. In general, the phenomena of the conductivity-frequency 

dispersion are analyzed using the Jonscher’s universal power law as stated in Equation (3) 

�(�) = ��� + ���                                                                                                                                 (3) 

where the dc conductivity, ��� is the frequency-independent component, � is a parameter 

dependent on temperature and �  is the power law exponent with values in the range 

0 < � < 1.0. �(�) is generally believed to reflect the mechanism of charge transport among 

charge carriers. The Jonscher universality is not limited to analyze the AC conductivity in 

glass but has been extended to study the ac conductivity of polymer electrolytes [16]. In order 

to understand the conduction mechanism, different models have been proposed to explain the 
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AC conductivity [17]. These models are quantum mechanical tunneling (QMT), the correlated 

barrier hopping (CBH) and overlapping large polaron tunneling (OLPT) [18-19]. In the QMT 

model, the s is independent of temperature. In the CBH model, s decreases with increasing 

temperature. While, for the OLPT model, s decreases to a minimum value and increases again 

as temperature increases. Fig. 5 and 6 depict the plot of log [σ(ω)-σdc] versus log ω at various 

temperatures for untreated TiO2 and HNO3-treated TiO2. Values of exponent s can be 

evaluated from the slope of each plots. 

 

 

Fig.5. Plot of log [σ(ω) - σdc] versus log ω for a) 4 wt.% and b) 6 wt.% HNO3-treated TiO2 at 

different temperatures 

Fig. 6 shows the variation of exponent s with temperature for both treated and untreated 

sample containing 4 and 6 wt.% TiO2. It can be observed that the power law exponent s for 4 

wt.% and 6 wt.% untreated TiO2 and HNO3-treated TiO2 decreases continuously with 

increasing temperature. Thus, the conduction mechanism for both electrolytes the systems can 

be interpreted as the correlated barrier hopping (CBH) model which means that the ions hop 

over a barrier between two complexation sites. According to [20], conduction mechanism for 
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electrolytes chitosan doped silver triflate (AgCF3SO3) also follows the CBH model below 358 

K. 

 

 

Fig.6. Variation of exponent s with temperature for a) untreated TiO2 and b) HNO3-treated 

TiO2 

 

3. EXPERIMENTAL  

H-chitosan prepared by acyl modification technique and used tetrahydrofuran (THF) as the 

media. Details of H-chitosan preparation were described in this paper [8]. LiCF3SO3 from 

Acros Organics were dried at 100°C for 24 hours prior to use. TiO2 powder with particle size 

of 30-40 nm obtained from Nanostructured and Amorphous Material Inc. were used as the 

inorganic filler. TiO2 was acid-treated by stirring in diluted HNO3 solution (0.83 v/v %) for 8 

hours at 80°C, rinsed with de-ionized water until the filtrates were neutralized and then dried 

for 12 hours at 100°C.  

Films of H-chitosan/PS blend were prepared by solution casting technique. The two polymers 
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were first dissolved separately in an appropriate amount of THF. Then, the required amounts 

of LiCF3SO3 and TiO2 were added. The resulting mixture was then stirred at room 

temperature until complete dissolution and homogenous. The solution obtained were cast in 

glass petri dishes and allowed to completely evaporate slowly at room temperature to form 

films. The films were kept in a desiccator for continuous drying.  

In order to investigate the structure of polymer electrolyte films, XRD scans was taken using 

X-Pert PRO XRD which employs Cu-Kα X-radiation of wavelength λ = 1.5418 Å between a 

2θ angle of 5° to 80°. The impedance measurement of the films was carried out using HIOKI 

3532-50 LCR Hi Tester in the frequency range of 100 Hz to 1 MHz and in the range of 

temperature from 283 to 333 K. The prepared electrolyte film was sandwiched between two 

stainless steel electrodes with diameter 2.5 cm under spring pressure. The ionic conductivity, 

σ of the sample was calculated using Equation (1). 

� =
�

���
                                                                                                                                                     (4)  

where t is the sample thickness, � is the effective contact area and Rb is the bulk resistance 

which can be obtained from the complex impedance plot. 

 

4. CONCLUSION  

The effect of treated and untreated TiO2 on the structural and electrical properties of CPE 

H-chitosan/PS-LiCF3SO3. XRD results revealed the crystallinity of the H-chitosan/PS 

decreased as both types of TiO2 added in the CPE up to maximum amount, which are 4 % for 

treated TiO2 and 6 wt.% of treated TiO2. Beyond this composition of TiO2, the crystallinity of 

H-chitosan/PS increased significantly. The variation in conductivity followed the trend of 

crystallinity fraction, which optimum ionic conductivity can be observed at 4 wt. % for 

treated TiO2 and 6 wt.% of treated TiO2 systems. The difference in conductivity with varying 

TiO2 content also be understood on the basis of free ion concentration as reflected in the 

variation in dielectric constant. The ac conductivity for H-chitosan/PS-LiCF3SO3-TiO2 and 

H-chitosan/PS-LiCF3SO3-HNO3-treated TiO2 electrolyte systems follows the Jonscher’s 

universal power law. From this law, we concluded that the conduction mechanism for these 

CPE systems can be interpreted based on the CBH model. 
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