
 

 

NEURAL NETWORK ANALYSIS OF VIBRATION SIGNALS IN THE 

DIAGNOSTICS OF PIPELINES 

 

E. R. Saifullin1,*, S. G. Ziganshin2, Y. V. Vankov2
, V. V. Serov3 

 
1Kazan Federal University 

2Kazan State Power Engineering University 
3TAIF-NK AZS 

 

Published online: 08 August 2017 

ABSTRACT 

The article is devoted to the improvement of heat network calculation and diagnostics 

methods. Currently used instruments have many shortcomings for the diagnosis of pipelines, 

including low reliability of defect detection and subjective decision-making. The authors 

created an experimental stand, which allows to conduct the diagnostics of pipelines by a 

vibration-acoustic method. They studied steel pipes filled with water, the surface of which 

50x50 mm defect and the depth of thinning of 2 mm, 3 mm, and 5 mm. Using the vibration-

acoustic sensors fixed on an outer surface, the vibration signals generated by the water flow in 

the pipe were obtained. In order to process the large volumes of data obtained as the result of 

experiments, it is proposed to use artificial neural networks. Among all considered types of 

neural networks, the authors prefer Kohonen's networks due to the best effectiveness of a 

defect determination. The program for an acoustic signal processing and analyzing through a 

neural network was implemented in LabView 8.5 work environment. Depending on the 

accuracy of a problem being solved, and the details of a training sample, the program is able 

to produce the results of sample classification of samples for a defect-free and defective pipes 

of different depth of damage. The results of the classification by Kohonen's trained neural 

network show good abilities for the analysis of unknown samples and a high degree of their 

recognition reliability. 
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1 INTRODUCTION 

Heat and water supply pipelines are more susceptible to corrosion and cracking processes, 

since they do not contain electric-chemical protection and are not subjected to flaw detection 

during construction and operation. Thus, nowadays many settlements of Russia have outdated 

public utility network pipelines at 70-80 percent, the networks have many leaks. The 

successful solution of specific fuel consumption reduction task in the production and the 

consumption of energy resources is heat supply reliability increase, as well as heat loss 

reduction during the transportation of a heat carrier is associated with the improvement of 

calculation and diagnosing methods for heat networks based on the search for optimal 

solutions and a systematic approach. A great variety of the methods and the means of leak 

testing was developed, but from the ecological and economic point of view, it is more 

appropriate to prevent the occurrence of leaks in pipelines, and not to state the fact of their 

occurrence. There is a large number of flaw detectors for this, differing by a principle of 

operation and the way of a signal processing. Acoustic flaw detectors are the most reliable 

ones. However, they also have a number of shortcomings: difficulties concerning defect type 

and size determination, difficulties arise with the detection of local defects, less than 20 cm in 

diameter, an incorrect classification of a group of defects of the same size localized within 10 

meters [1-5,16]. 

 

2 METHODS 

All of the abovementioned deficiencies in the diagnosis of pipelines, as well as the difficulty 

of defect identification, a large volume of data sets for post-processing, a large percentage of 

erroneous classification for defective pipeline sections pose the task of a diagnostic complex 

development using advanced signal processing algorithms [6-8]. 

They studied the sections of steel pipes with the conditional diameter of 159 mm, the length 

of 1 m and the wall thickness of 4.5 mm using the test stand the scheme of which is shown on 

Fig. 1. 
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Fig.1. Experimental stand for the study of pipelines: 1 - valve; 2 - manometer; 3 - drummer; 

4, 7 - piezosensors; 5- pipeline; 6 - defect; 8 - return valve; 9 - tank; 10 - pump; 11 - ADC-

DAC; 12 - personal computer 

 

The stand for the study of pipelines works in the following way. The pump 10 is turned on, 

thus the liquid begins to circulate through the pipeline 5. According to the readings of 

pressure gauge 2, valve 1 sets the required pressure of the liquid. Using the valve 1, the liquid 

pressure in the pipeline 5 can be varied from 0 to 0.4 MPa. When the fluid current (dynamic 

pressure) makes its impact by the pipeline defect experiences the oscillations of the acoustic 

frequency range, i.e. the movement of the liquid in the pipeline under study 5 excites acoustic 

pulses that are captured by the piezoelectric sensor 4 and 7. During the experiments, the 

sensor was moved with the interval of 0.15 m along the entire length of the section under 

study along 9 points on the pipeline. The sensor was moved to obtain the information on pipe 

sections, and to avoid possible errors caused by: 1) a loose fitting of the sensor to the pipes 

due to the roughness of the pipes; 2) the appearance of local zones of flow turbulence. Then 

the signals are processed in the unit 11 by an analog-to-digital converter and recorded using a 

specially created software package on a personal computer 12 [9,11,13,14]. 

During the experiments, the vibration spectra of a defect-free pipeline were obtained, as well 

as the spectra of pipelines with the defects of 50x50 mm and the depth of thinning of 2 mm, 3 

mm, 5 mm. 

The interpretation of vibration signals obtained after pipeline research is a complex and a 

time-consuming task. The presence of a large amount of data of pipeline amplitude-frequency 



 E. R. Saifullin et al.                     J Fundam Appl Sci. 2017, 9(2S), 1139-1151                   1142 

characteristics is necessary to ensure a high level of the study reliability, however, this makes 

it difficult to extract the necessary signals indicative of the current state of a pipeline. The use 

of artificial neural networks, in contrast to the classical methods of result processing, allows 

us to take into account not only simple linear laws, but, first of all, a complex nonlinear 

character of feedbacks in the data. 

There are several types of neural networks: a single-layer perceptron, a neural network of a 

backward propagation, Hopfield's network, Kohonen's network, etc. However, one can not 

think of one single universal artificial neural network that would be suitable for different 

types of tasks. 

In order to conduct comparative analysis and select the best network, different types of 

networks were tested on the same training set. The networks were evaluated according to the 

same criteria - the maximum percentage according to the number of coincidences of the 

winning neurons with the correct answer. In order to check all networks, the same sampling 

of values was presented, with 1000 values of waveforms. Among all neural networks we have 

considered, Kohonen's networks were preferred in the processing of experimental data due to 

the better effectiveness of a defect determination. 

A specialized Neurotracer program was developed in the LabView 8.5 working environment. 

It implements the method for the technical condition of pipeline monitoring in order to 

analyze the acoustic signals by Kohonen's network. The result of the program is the output of 

information about the probability of a defect in the controlled section of a pipeline and its size 

on a monitor screen. 

Depending on the accuracy of the problem being solved, and the details of a training sample, 

the program is able to produce the results of value classification more accurately, where the 

differences concerning the magnitude of a defect make several millimeters. This program 

performed a detailed classification of samples concerning defect-free and defective pipes, 

with the same defect spread over the surface of 50x50 mm, and with different depth of lesion: 

2 mm, 3 mm, 5 mm [10,12,15]. 

In order teach a neural network to classify pipelines by the presence of specific types of 

defects properly, a correct training sample shall be determined. The networks were presented 

with detailed samples of amplitude-frequency characteristic values for the pipelines at 9 

points of different defectiveness: the sample for a defect-free pipeline, the sample for the pipe 

with the defect of 50x50 mm and the depth of 2 mm, the sample for the pipe with the defect 

of 50x50 mm and the depth of 3 mm, the sample for the pipeline with the defect 50х50 mm 

and the depth of 5 mm. Each sample was specified by nine columns of values for each point 
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on the pipeline. Each point has 1000 values of waveforms. All signals with the amplitude of 

less than 0.01 were assumed to be zero. The threshold value of the signal 0.01 is taken in 

connection with the existing error of the measuring system, since it is not advisable to 

consider the signals below this threshold. Table 1 shows the training sample of values for a 

defect-free pipeline as an example. 

 

Table 1. Learning sample of values for a defect-free pipeline 

Mode 

№ Numbers of points on a defect free pipeline 

1 2 3 4 5 6 7 8 9 

1 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0,04348 0 0 0 

50 0 0 0,00775 0 0 0 0 0,01818 0 

100 0,0031 0 0,0155 0 0 0,02174 0 0 0 

150 0,0155 0 0,00775 0,10638 0,00287 0,01087 0,0111 0,01818 0,0196 

200 0,3707 0,0181 0,21705 0,26596 0,16954 0,41304 1 0,03636 0 

250 0 0,0272 0,0155 0,01064 0 0,01087 0,0222 0 1 

300 0 0 0 0,01064 0,00287 0,01087 0,0222 0 0 

350 0 0 0 0,02128 0 0 0 0 0,0065 

400 0 0 0 0 0 0 0 0 0 

450 0 0 0 0 0 0 0 0 0,0065 

500 0 0 0 0 0 0 0 0 0 

550 0 0 0 0 0 0 0 0 0 

600 0 0 0 0 0 0 0 0 0 

650 0 0 0 0 0 0 0 0 0 
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700 0 0 0 0 0 0 0 0 0,0065 

750 0 0 0 0 0 0 0 0 0,0065 

800 0 0 0 0 0 0 0 0 0 

850 0 0 0 0 0 0,01087 0 0 0 

900 0 0 0 0 0 0 0 0 0 

950 0 0 0 0 0 0 0 0 0 

1000 0 0 0,00775 0 0 0 0 0 0 

 

In order to implement the clustering and the visual illustration of classification results by a 

network of samples, it needs to specify the boundary conditions for each type of defect. Table 

2 shows the conditions for the occurrence of defects, where "net" means the absence of a 

defect and "da" means the presence of a defect. The averaged values for each type of defect 

are taken: v1 - for a defect-free pipeline, v12 - for a pipeline with the defect of 50х50 mm and 

the depth of thinning of 2 mm, v26 - for a pipeline with the defect of 50х50 mm and the depth 

of thinning of 3 mm, v30 - for a pipeline with the defect of 50х50 mm and the depth of 

thinning of 5 mm, with a signal value of 0.01 at least. 

 

Table 2. Categorical input variables, characterized by belonging to classes 

Mode 

№ Categorical input variables 

Bezdef 
Defect 2 

mm 

Defect 3 

mm 

Defect 5 

mm 

1 2 3 4 5 

1 net net net net 

2 net net net net 

3 net net net net 

4 net net net net 

5 net net net net 

6 net net da net 

7 net net da net 

8 net net da net 

9 net net net net 

10 net net net net 
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50 net net net net 

100 net da da da 

150 da da da da 

200 da net da da 

250 net da da net 

300 net net da da 

350 net net da net 

400 net net net net 

450 net net net net 

500 net net net net 

550 net net net net 

600 net net net net 

650 net net net net 

700 net net net net 

750 net net net net 

800 net net net net 

850 net net net net 

900 net net net net 

950 net net net net 

1000 net da net net 

 

Each type of defects has an individual index: for a defect-free one - "1", for a pipe with the 

defect of 50х50 mm and the depth of 2 mm - "2", for a pipe with the defect of 50х50 mm and 

the depth of 3 mm - "3", for a pipe with the defect of 50х50 mm and the depth of 5 mm - "5", 

the absence of belonging to any class - "0" (Table 3). 

 

Table 3. Weighing of categorical output variable indices 

Result Formula Index 

Bezdef (1)=(v1>=0,01) 1 

Defect 2 mm (2)=(v12>=0,01) 2 

Defect 3 mm (3)=(v26>=0,01) 3 

Defect 5 mm (5)=(v30>=0,01) 5 
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The network operates according to the following principle: "the winner takes everything". In 

accordance with Table 2 "da" characterizes the presence of a defective signal and a 

corresponding index, "net" characterizes the absence (Table 4). 

 

Table 4. Indices of categorical input variable classification 

Mode 

№ Identifiers of categorical input variables 

Bezdef 
Defect 2 

mm 

Defect 3 

mm 

Defect 5 

mm 

1 0 0 0 0 

2 0 0 0 0 

3 0 0 0 0 

4 0 0 0 0 

5 0 0 0 0 

6 0 0 3 0 

7 0 0 3 0 

8 0 0 3 0 

9 0 0 0 0 

10 0 0 0 0 

50 0 0 0 0 

100 0 2 3 5 

150 1 2 3 5 

200 1 0 3 5 

250 0 2 3 0 

300 0 0 3 5 

350 0 0 3 0 

400 0 0 0 0 

450 0 0 0 0 

500 0 0 0 0 

550 0 0 0 0 

600 0 0 0 0 

650 0 0 0 0 

700 0 0 0 0 
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750 0 0 0 0 

800 0 0 0 0 

850 0 0 0 0 

900 0 0 0 0 

950 0 0 0 0 

1000 0 2 0 0 

 

3 RESULTS 

If the network is trained properly trained, then it is capable to classify new and unknown 

samples. In order to test this possibility, the fragments of a control sample of values that are 

not included in the training sample of four samples of pipelines of different states were 

introduced into the program: 1) defect-free; 2) with the defect of 50x50 mm and the depth of 

2 mm; 3) with the defect of 50x50 mm and the depth of 3 mm; 4) with the defect of 50x50 

mm and the depth of 5 mm. 

Each of the samples is a cluster. Thus, there are 4 clusters for classification. The belonging of 

a control sample to some cluster is determined by the frequencies of its winning when the 

values in a same mode coincide with a training sample. The process of a control sample 

classification was carried out in four epochs. An epoch is one iteration in the learning process, 

including the presentation of all the examples from a training set and the check of training 

quality using a control set. As an example Table 5 shows the classification results according 

to a control sample of 50x50 mm defect and the depth of 2 mm. The table illustrates the 

winning frequencies within a given control sample according to nine points for each of four 

samples.  
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Table 5. Classification results according to the control sample of 50х50 mm defect and the 

depth of 2 mm 

  

Frequencies of winnings during the processing of sampling signals with the 

defect of 50x50 mm and the depth of 2 mm 
D

ef
ec

t f
re

e 
pi

pe
 

Epoch  Number of points on a defect-free pipe 

numbers 1 2 3 4 5 6 7 8 9 

1 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

2 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

3 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

4 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

50
x5

0 
m

m
 a

nd
 th

e 
de

pt
h 

of
 2

 

m
m

 

Epoch  

Number of points on the pipe with the defect of 50x50 mm and the 

depth of 2 mm 

numbers 1 2 3 4 5 6 7 8 9 

1 0,00 0,00 0,00 0,00 0,00 0,00 0,00 752,000 0,00 

2 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,000 0,00 

3 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,000 0,00 

4 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,000 0,00 

50
x5

0 
m

m
 a

nd
 th

e 
de

pt
h 

of
 3

 

m
m

 

Epoch  

Number of points on the pipe with the defect of 50x50 mm and the 

depth of 3 mm 

numbers 1 2 3 4 5 6 7 8 9 

1 0,00 0,000 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

2 0,00 247,000 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

3 0,00 0,000 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

4 0,00 0,000 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

50
x5

0 
m

m
 a

nd
 th

e 
de

pt
h 

of
 5

 

m
m

 

Epoch  

Number of points on the pipe with the defect of 50x50 mm and the 

depth of 5 mm 

numbers 1 2 3 4 5 6 7 8 9 

1 0,00 0,00 0,00 0,00 1,000 0,00 0,00 0,00 0,00 

2 0,00 0,00 0,00 0,00 0,000 0,00 0,00 0,00 0,00 

3 0,00 0,00 0,00 0,00 0,000 0,00 0,00 0,00 0,00 

4 0,00 0,00 0,00 0,00 0,000 0,00 0,00 0,00 0,00 
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4 DISCUSSION 

The following is observed from the classification results shown in Table 5: the frequency of 

the winnings makes 752 at the 1st epoch of the 8th point of the pipeline with the defect of 

50x50 mm and the depth of 2 mm, 247 at the 2nd epoch of the pipeline 2nd point with the 

defect of 50x50 mm and the depth of 3 mm, 1 in the 1st epoch of the 5th point of the pipeline 

with the defect of 50x50 mm and the depth of 5 mm. The winning frequencies are zero ones 

for the rest samples. 

1) Similar results were obtained for the remaining fragments of the control sample: 

2) Concerning the control sample of a defect-free pipeline, the winning frequency makes 800 

at the 2nd epoch for the 2nd point of a defect-free pipeline, 115 on the 4th epoch for the 2nd 

point of a defect-free pipeline, and 82 on the 2nd epoch for the 5th point of a defect-free 

pipeline. For the rest samples the winning frequencies are zero ones. 

3) according to the control sample of the pipeline with the defect of 50x50 mm and the depth 

of 3 mm, the winning frequency makes 74 at the 1st epoch of the the pipeline 7th point with 

the defect of 50x50 mm and the depth of 3 mm, 312 on the 2nd epoch of the 8th point of the 

pipeline with the defect of 50x50 mm and the depth of 3 mm, 606 on the 4th epoch of the 9th 

point of the pipeline with the defect of 50x50 mm and the depth of 3 mm, 1 on the 3rd epoch 

of the pipeline 5th point with the defect of 50x50 mm and the depth of 5 mm. For the rest of 

the samples, the winning frequencies are zero ones. 

According to the control sample of the pipeline with the defect of 50x50 mm and the depth of 

5 mm, the frequency of the winnings makes 16 at the 1st epoch of the pipeline 3rd point with 

the defect of 50x50 mm and the depth of 5 mm, 171 at the 4th epoch of the pipeline 4th point 

with the defect of 50x50 mm and the depth of 5 mm, 702 on the 2nd epoch of the pipeline 6th 

point with the defect of 50x50 mm and the depth of 5 mm, 110 at the 2nd epoch of the 

pipeline 9th point with the defect of 50x50 mm and the depth of 5 mm, one on the 2nd epoch 

of the pipeline 4th point with the defect of 50x50 mm and the depth of 3 mm. For the 

remaining samples, the winning frequencies are zero ones [16]. 

 

5 CONCLUSIONS 

The created Kohonen's neural network presented the following correctness percentage for the 

classification of control samples and the processing of received signal data array: 

• Defect-free sampling - 100% 

• The sampling of the pipeline with the defect of 50x50 mm and the depth of 2 mm - 67% 

• The sampling of the pipeline with the defect of 50x50 mm and the depth of 3 mm - 99% 
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• The sampling of the pipeline with the defect of 50x50 mm and the depth of 5 mm - 99%. 

 

6 . SUMMARY 

The results of the classification by Kohonen's trained neural network show good ability for 

the analysis of unknown samples and a high degree of their recognition reliability. 
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