
 

Journal of Fundamental and Applied Sciences
License. Libraries Resource Directory

 

 

 

GENERALIZED PROJECTIVE SERIES SYNCHRONIZATION BETWEEN 

CHAOTIC SYSTEMS AND ITS APPLICATION

N. A. A. Fataf

1Centre for Defence Foundation Studies, UniversitiPertahananNasional Malaysi

2Institute Mathematical Research, Universiti P

Published online: 10 September 2017

 

ABSTRACT 

The existence of generalized projective series synchronization scheme between different 

chaotic systems is investigated. The synchronization scheme consists of three 3D systems and 

one 4D system to show the generalized projective series synchronization. Th

can be well implemented with non

synchronization are also derived according to Lyapunov stabilization theory. Numerical 

simulations show the effectiveness of the analytical result. The a

projective series synchronization scheme is implemented to image encryption. The correlation 

between adjacent pixels in original image and encrypted image is 

effectiveness of the synchronization scheme.

Keywords: generalized projective; synchronization; image encryption.

 

Author Correspondence, e-mail: 

doi: http://dx.doi.org/10.4314/jfas.v9i3s.24

 

 

Journal of Fundamental and Applied Sciences

ISSN 1112-9867 

Available online at       http://www.jfas.info

 

Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0 International 
Libraries Resource Directory. We are listed under Research Associations category.

 

GENERALIZED PROJECTIVE SERIES SYNCHRONIZATION BETWEEN 

CHAOTIC SYSTEMS AND ITS APPLICATION 

 

N. A. A. Fataf1,2,* and M. R. M. Said2  

 

Centre for Defence Foundation Studies, UniversitiPertahananNasional Malaysi

Kuala Lumpur, Malaysia 

ematical Research, Universiti Putra Malaysia, 43400 Serdang, 

Malaysia 

 

Published online: 10 September 2017 

The existence of generalized projective series synchronization scheme between different 

chaotic systems is investigated. The synchronization scheme consists of three 3D systems and 

one 4D system to show the generalized projective series synchronization. Th

can be well implemented with non-linear adaptive coupling. Sufficient conditions for 

synchronization are also derived according to Lyapunov stabilization theory. Numerical 

simulations show the effectiveness of the analytical result. The application of generalized 

projective series synchronization scheme is implemented to image encryption. The correlation 

between adjacent pixels in original image and encrypted image is analyzed

effectiveness of the synchronization scheme. 

generalized projective; synchronization; image encryption. 

mail: n.aisyah@upnm.edu.my 

http://dx.doi.org/10.4314/jfas.v9i3s.24    

Journal of Fundamental and Applied Sciences 

http://www.jfas.info 

NonCommercial 4.0 International 
category. 

GENERALIZED PROJECTIVE SERIES SYNCHRONIZATION BETWEEN 

 

Centre for Defence Foundation Studies, UniversitiPertahananNasional Malaysia, 57000 

utra Malaysia, 43400 Serdang, Selangor, 

The existence of generalized projective series synchronization scheme between different 

chaotic systems is investigated. The synchronization scheme consists of three 3D systems and 

one 4D system to show the generalized projective series synchronization. The synchronization 

linear adaptive coupling. Sufficient conditions for 

synchronization are also derived according to Lyapunov stabilization theory. Numerical 

pplication of generalized 

projective series synchronization scheme is implemented to image encryption. The correlation 

analyzed to show the 

Research Article 

Special Issue 



N. A. A. Fataf et al.           J Fundam Appl Sci. 2017, 9(3S), 294-307            295 
 

 

1. INTRODUCTION 

Synchronization occurs when a drive chaotic system transmits one or more of its driving 

signal to the response system which can be either identical or non-identical to the drive 

system. If the drive system does not synchronize with the response system, it is possible to 

design a controller at the response system which enforces synchronization to occur. Once the 

drive-response system synchronizes, it is possible to design a communication model based on 

the principles of chaotic synchronization. Since chaotic dynamical system is a deterministic 

system, its-random behaviour can be very helpful. A small perturbation eventually causes a 

large change in the state of system. Chaotic synchronization communication scheme is the 

scheme that transmit a signal carried from the transmitter to the receiver by a chaotic signal 

through an analog channel [1] 

Synchronization attracted with much attention in many fields such as in biological [2], 

chemical [3], physical [5] and social systems [5]. Synchronization and similar concepts also 

abound in technical sciences and engineering, including computer science [6], control theory 

[7] and communications [8]. Over the past decades, several new types of synchronization 

have been investigated such as generalized synchronization [9], phase synchronization [10], 

lag synchronization [11], etc. Many works have been done for generalized synchronization 

where there exists an essential difference between the coupled systems [12]. Generalized 

projective synchronization of chaotic systems can synchronize up to a constant scaling matrix 

[13-14]. Some examples of generalized projective synchronization are hybrid synchronization 

[15], complete synchronization [16], projective synchronization [17], fuzzy generalized 

projective synchronization [18] and anti-synchronization [19]. Secure communication [20-21] 

and secure data encryption [22-24] are the examples of the applications of the generalized 

projective synchronization in the field of communication. 

A single pair of one way coupled oscillations cannot be applied for multiuser communication 

systems. Multiplexing technique is very important issue for high capacity communications 

[25]. Dual synchronization of chaotic maps has been investigated by [26]. Dual 

synchronization is coupled synchronization of two drive systems with two response systems 

where the systems can be either identical or non-identical. Dual synchronization of the Lorenz 
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and Rossler systems is studied by [27], which the output signal from the drive systems is a 

scalar signal. Here, extended of a series synchronization by using various drive and response 

chaotic systems where the systems can be identical or non-identical is proposed. Recently, a 

novel scheme of dual combination synchronization is investigated for six chaotic systems 

using adaptive control [28]. The theoretical and the numerical simulations in this research 

proof that the effectiveness and correctness of the dual combination synchronization. In [29] 

also investigated the existence of the dual synchronization behaviour between a pair of 

chaotic and hyperchaotic systems via nonlinear controller. 

The generalized projective synchronization between identical and non-identical ordinary 

differential equation systems is studied. We consider a series of different order chaotic and 

hyperchaotic systems. The synchronization can be well implemented with nonlinear coupling, 

which can be derived using Lyapunov stability theory. Then, the synchronization implemented 

with the image encryption. The correlation of two adjacent pixels’ analysis shows that the 

synchronization is well implemented to the image encryption. Consider the systems [30] as 

follows: 

��̇ = ����
�̇� = �� − ��
�̇� = � − ����

(1) 

��̇ = ����
�̇� = �� − ��
�̇� = � − ����

 (2) 

��̇ = ����
�̇� = �� − ��
�̇� = � − ����

(3) 

where��,��,�� as the state variables and � as the parameter for the system (1), ��,��,�� as 

the state variables and � as the parameter for the system (2) and ��,��,�� as the state 

variables and � as the parameter for the system (3). We also consider the Lorenz-stenflo 

system [31-32] as follows: 

��̇ = �(�� − ��)+ ���

�̇� = ��(� − ��)− ��
�̇� = ���� − ���

(4) 

��̇ = − �� − ��� 

where��,��,��,�� are the state variables and �,�,�,� as the parameters. Fig. 1 shows the 
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chaotic attractors for system (1)-(4) respectively. The system (1) is chaotic for � = 1, while 

the system (2) is chaotic when � = 0.5. When � = 0.3 we can see the chaotic attractor for 

the system (3) and hyperchaotic attractor when � = 1,� = 1.5,� = 26,� = 0.7 for the 

system (4). 

 

Fig.1. Phase space diagrams of the chaotic attractor for the system (1)-(4) 

 

2. METHODOLOGY   

In this section, the asymmetric synchronization behavior between a series of chaotic systems 

is studied. The scheme is illustrated in the Fig. 2. 
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Fig.2.Asymmetric synchronization scheme for a series of systems 

From Fig. 2, we can see that the driving and response systems are not identical. D2 is coupled 

with R3 using controller ��,��,��. Similarly, D4 with R2 by the controller��,��,��,���. We 

consider the drive systems as: 

��:(��̇�,��̇�,��̇�)= (������,��� − ���,� − ������)

��:(��̇�,��̇�,��̇�)= (��� + ���,− ��� + ���,���
� − ���)

��:(��̇�,��̇�,��̇�)= (������ − ���,��� − ���,��� + ��� + ����)
(5) 

��:(��̇�,��̇�,��̇�,��̇�)= (�(��� − ���)+ ����,���(� − ���)− ���,������,− ��� − ����) 

and the same set with different combinations for the response as follows: 

��:(�̇��,�̇��,�̇��)= (������ + ��,+ ��� − ���,� − ������ + ��)

��:(�̇��,�̇��,�̇��)= (��� + ��� + ��,− ��� + ���� + ��,���
� − ��� + ��)

��:(�̇��,�̇��,�̇��)= (��� + ��� − ��� + ��,��� − ��� + ��,��� + ���� + ��)

(6) 

��:(�̇��,�̇��,�̇��,�̇��)= �
�(��� − ���)+ ���� + ���,���(� − ���)− ��� + ���,

������ + ���,− ��� − ���� + ���
� 

where� = (��,��,…,���)
� is the active control function to be determined. We need to 

determine the controller � which is required for system (6) to synchronize with system (5). 

For this purpose, let the error dynamics between (5) and (6) be 

�� = ��� − ℎ���,�� = ��� − ℎ���,�� = ��� − ℎ��� 

�� = ��� − ℎ���,�� = ��� − ℎ���,�� = ��� − ℎ��� 

�� = ��� − ℎ���,�� = ��� − ℎ���,�� = ��� − ℎ���(7) 

��� = ��� − ℎ���,��� = ��� − ℎ���,��� = ��� − ℎ��� 

��� = ��� − ℎ��� 

Here, ℎ is a desired scaling factor. Thus, the error system can be given by: 
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��̇ = ������ − ℎ(������ + ��)
��̇ = ��� − ��� − ℎ(��� − ��� + ��)

��̇ = � − ������ − ℎ(� − ������ + ��)
 

��̇ = ��� + ��� − ℎ(��� − ��� + ��)

��̇ = ��� + ���� − ℎ(��� − ��� + ��)

��̇ = ���
� − ��� − ℎ(��� + ���� + ��)

 

��̇ = ������ − ��� − ℎ(�(��� − ���)+ ���� + ���)(8)

��̇ = ��� − ��� − ℎ(���(� − ���)+ ��� + ���)

��̇ = ��� + ���� − ℎ(������ − ���� + ���)
 

��̇� = �(��� − ���)+ ���� − ℎ(− ��� − ���� + ���)

��̇� = ���(� − ���)+ ��� − ℎ(��� + ��� + ��)
��̇� = ������ − ���� − ℎ(− ��� − ���� + ��)

 

��̇� = − ��� − ���� − ℎ(���
� − ��� + ��) 

Re-define the active control function � = (��,��,…,���)
� as 

�� =
1

ℎ
(������ −

������
ℎ

+
�����
ℎ

+
�����
ℎ

+
����
ℎ

+ ��)

�� =
��
ℎ

�� =
1

ℎ
(� − ������ − ℎ� −

������
ℎ

+
�����
ℎ

+
�����
ℎ

+
����
ℎ

+ ��)

 

�� =
1

ℎ
(���� − ������ − ��� − ��� + ��� − ��� + ��� + ���)

�� =
1

ℎ
(������ − ���� + ��� − ��� − ���� + 2����)

�� =
1

ℎ
(− ��� − ���� −

���
�

ℎ
+
2������

ℎ
−
���

�

ℎ
+ ���)

 

�� =
1

ℎ
(��� + 2��� −

������
ℎ

+
�����
ℎ

+
�����
ℎ

+
����
ℎ

− �� + ��)

�� =
1

ℎ
(−2��� + ���� + ��� + ��)

�� =
1

ℎ
(���

� − ��� − ��� + �� − ���� + 2���)

 

��� =
1

ℎ
(������ − ��� − ���� + ��� + ���� − ���� + ����)

��� =
1

ℎ
(��� − ���� + ���� +

������
ℎ

−
�����
ℎ

−
�����
ℎ

+
����
ℎ

)

��� =
1

ℎ
(��� + ���� −

������
ℎ

+
�����
ℎ

+
�����
ℎ

−
����
ℎ

− ����)

 

��� =
1

ℎ
(���� + ���� + ��� − ��)(9) 

Substituting (9) in (8) gives 
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��̇ = − ��,��̇ = − ��,��̇ = − ��,��̇ = − ��,��̇ = − ��,
��̇ = − ��,��̇ = − ��,��̇ = − ��,��̇ = − ��,��̇� = − ���,

��̇� = − ���,��̇� = − ���,��̇� = − ���

(10) 

For the asymptotic stability of the errors, consider a positive Lyapunov functional in the form 

� =
1

2
���

�

��

���

(11) 

According to Lyapunov stabilization, we need to find the sufficient condition for �� → 0 as 

� → ∞ where � = 1,2,…,13so that its derivative along trajectories of (1)-(4), �̇ < 0. These 

choices ensures that the error states (7) exponentially converge to zero as time � → ∞. By 

Lyapunov stabilization theory, the sufficient condition for generalized projective series 

synchronization are � > 0,� > 0,� > 0,� > 0. Therefore, when (10) is stabilized by the 

feedback control input function �, the error will converge to zero as � → ∞ which implies 

that the systems (5) and (6) are globally synchronized. 

 

3. RESULTS AND DISCUSSION 

For the purpose of numerical simulation fix as in Fig. 1 to ensure the chaotic motion. Next, 

choose the initial condition for driving systems as and the initial condition for the response 

systems are with the value of ℎ = 2. 
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Fig.3. The error dynamics corresponding to generalized projective series synchronization 

In Fig. 3, it is obvious that drive-response systems are globally synchronized after the 

controller is activated. Clearly that the system (6) traces the dynamics of the system (5). 

3.1. Application: Chaos-Based Image Encryption  

Image encryption schemes is one of the field that is most increasingly studied by researchers 

to meet the demand for real-time secure image transmission over the internet via wireless 

network. Traditional image encryption such as data encryption standard (DES) and AES are 

not suitable for encrypting images due to their high computational complexity and some other 

constrains. The algorithm of the chaos-based image cryptosystem is depicted in Fig. 4. We 

consider a generalized projective series of four chaotic systems, so that we can use the 

variables of any system as the secret keys for the encryption process. The standard procedure 

of diffusion and confusion can be performed to encrypt the image and will send it to the 

public channel. The receiver is also a generalized projective series of synchronized chaotic 
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systems, successfully generates the secret keys from their own dynamics and using the inverse 

process successfully gets back to the original image after decryption. 

 

Fig.4.Image encryption algorithm 

Pixel position is scrambled over the entire image without disturbing the value of the pixels 

and the image becomes unrecognizable. The initial conditions and control parameters of any 

systems (1)-(4) are used as the secret keys. Here, we use different chaotic systems to have 

better security. To enhance the security, the second stage of encryption is carried out aiming at 

changing the value of each pixel in the whole image. This diffusion stage is accomplished by 

any chaotic systems (1)-(4), where the initial conditions and its control parameters are used as 

the secret keys. 

Reversely for decryption process, first stage is the diffusion stage. The chaotic systems (1)-(4) 

is used to retrieve pixels’ original values. Confusion stage is carried out for the next stage of 

decryption process. The permutation of pixel position is implemented by using chaotic 

systems (1)-(4). The same initial conditions and control parameters for generating the chaos 

sequence were used in encryption and decryption process for both confusion and diffusion 

stages. Therefore, in decryption process, the same chaotic systems with the same diffusion 

key are used to get the original pixel values while the same chaotic systems with the same 
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confusion key are used to get the original position of the image. The output of decryption 

system gives the original image. 

3.2. A Simple Example 

The original image taken for the work is given in Fig 5(a). The encrypted image after the 

procedure of confusion and diffusion take part is shown in Fig. 5(b). We also analyzed the 

correlation between adjacent pixels in original image and encrypted image. The procedure is 

as follows: 

��,� =
���(�,�)

��(�)��(�)
(12) 

 

                            (a)                (b) 

Fig.5(a) The original image, (b) The encrypted image 

where� and � are the values of two adjacent pixels in the image. Fig. 6(a) is the correlation 

coefficient of the original image, while the Fig. 6(b) is the correlation coefficient of the 

encrypted image. 
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(a) 

 

(b) 

Fig.6(a). The correlation coefficient of the original image, (b)The correlation coefficient of 

the encrypted image 

 

4. CONCLUSION  

We investigate the generalized projective series synchronization between four different 

chaotic systems by using the technique of active control. The designed active controller 

ensures that stabilization of synchronization between drive and response systems. Numerical 



N. A. A. Fataf et al.           J Fundam Appl Sci. 2017, 9(3S), 294-307            305 
 

 

simulation was also important to illustrate the effectiveness of the approach. The sufficient 

conditions for synchronization is also derived. This kind of phenomenon can be well 

implemented in the image encryption and decryption algorithm. A new image encryption 

scheme was designed. The proposed algorithm shuffles the positions and changes the values 

of image pixels simultaneously with the help of sequence generated by four different chaotic 

systems. This algorithm can be carried out for encrypting gray-scale image as well as true 

colour image. In conclusion, the proposed algorithm is secure and practical. 
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