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ABSTRACT 

This paper proposes a SAFCA for a self

algorithm caters CR and WSN

fuzzy inference technique for an energy efficient CRSN. It utilizes channel availability and 

fuzzy parameters of residual energy, communication cost and node distribution. The 

simulation measure the significant of the selected parameters. The first stage investigates the 

impact of inclusion of fuzzy inference towards the channel availability in the clustering 

algorithm, meanwhile the second stage explores the significant of the fuzzy parameters. The

performance metric of network stability 

to determine the energy efficiency of the clustering algorithm. The results show the algorithm 

outperforms SACA, SAFEC, SAFEN

energy consumption. 
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This paper proposes a SAFCA for a self-organized CH selection within a CRSN. The 

WSN constraints by exploiting the dynamic spectrum access and 

fuzzy inference technique for an energy efficient CRSN. It utilizes channel availability and 

fuzzy parameters of residual energy, communication cost and node distribution. The 

e significant of the selected parameters. The first stage investigates the 

impact of inclusion of fuzzy inference towards the channel availability in the clustering 

eanwhile the second stage explores the significant of the fuzzy parameters. The

performance metric of network stability i.e. FND and network lifetime i.e. 
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1. INTRODUCTION 

WSN technology has been operating on the industrial, scientific and medical (ISM) spectrum 

bands in accordance to the IEEE 802.15.4 standard. However, the bottleneck in the ISM bands 

has significantly degraded the WSN performance [1]. In pursuit to overcome the crowded 

spectrum band, the WSN research has begun to adopt the CR technology. A CR technology 

harvest the idle portion of licensed spectrum allocated to the licensed user known as the 

Primary Users (PU) for a secondary spectrum assignment. It offers an available spectrum for a 

medium to transmit data.  

Integration of CR and WSN forms a network of CR enabled wireless sensor nodes. The CR 

enabled wireless sensors perform an identical to WSN function such as monitoring and 

surveillance with a dynamic spectrum allocation for the data transmission. The dynamic 

spectrum allocation, from the idle PU spectrum, differentiates CRSN from the existing WSN 

technology. The added CR capabilities together with the energy and computing constrained of 

the existing WSN demands a new protocol. The current WSN protocol operates on a static 

spectrum setting [2] will not suitable for CRSN which operates on dynamic spectrum. The 

CRSN protocol has to cater for both the spectrum aware of CR and the energy and 

computation constraint of WSN. Therefore, an optimal spectrum awara energy efficient 

algorithm is crucial in extending the CRSN network lifetime.  

The CR sensor node sourced its energy from a non-rechargeable battery and consumes it 

during a sensing, computation and data transmission operations. As majority energy is 

consumed during data transmission, an efficient transmission is crucial to sustain the network 

lifetime. Clustering has been acknowledged for its energy efficiency as compared to direct 

transmission. In clustering, node relays the data to the nearest CH rather than directly to the 

base station (BS) or sink node. The node consumes less energy due to the shorter distance to 

the CH and relies on CH to finalize the data transmission to the BS. A high energy 

requirement on CH may lead to early node death to a low energy CH node. Meanwhile, an 

improper CH election may influence the rate of death and shorten the network lifetime. 

Therefore, intervention of early energy exhaustion and rate of death is crucial for a better 

CRSN network lifetime.  
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In CRSN, clustering operation is deployed for spectrum sensing detection [3-6] in addition to 

the data transmission [2, 7-9]. The existing CRSN algorithms have been designed to improve 

the network lifetime through energy efficient clustering mechanisms. The CRSN clustering 

algorithms such as CogLEACH [2], LEAUCH [3] and CogLEACH-C [4] highlight the 

dynamic frequency environment as part of the CH selection criteria. Both CogLEACH [2] and 

CogLEACH-C [4] introduce a spectrum aware clustering algorithm to improve a CRSN 

network lifetime. Inspired by LEACH [5], a popular low energy distributed clustering 

algorithm in WSN, CogLEACH addressed the dynamic channel environment by utilizing the 

channel availability in the CH election. CogLEACH-C [4] extended the work of CogLEACH 

by adding an energy parameter in CH selection for a centralized architecture. The centralized 

architecture of CogLEACH-C has a high network overhead and energy consumption as 

compared to the distributed CogLEACH in the cluster formation process. LEAUCH [3] is a 

CR clustering algorithm that controlled the size of cluster of a CH to overcome the hotspots 

problem in the multi-hop transmission. In [6], node degree and distance to BS are added to the 

channel availability parameter in the CH selection. One major observation in [2-3, 6] is the 

exclusion of energy parameter in the CH selection. This resulted to a possibility that the 

clustering algorithm may nominate a very low energy CH node causing an early energy hole. 

Therefore, energy parameter should be included in the clustering algorithm to prevent such 

event for occurring. The consideration of channel availability as part of a clustering parameter 

in [2, 6-8] is unfounded in WSN due to its static spectrum allocation. The channel availability 

is importance in CR because a high number of idle channel offers flexibility for channel 

switching and minimizes re-clustering due to changes in channel states [7]. The channel 

availability parameter has not only been applied in the clustering algorithm but also in solving 

the channel sensing order [8-9] and spectrum assignment [10].  

In a dynamic channel environment, both CH and CM require a common idle channel to 

communicate and form a cluster. Two nodes cannot link when they do not shared a common 

idle channel even though they are closely located to each other. There are two types common 

channel constraints in CRSN i.e. pairwise and groupwise requirements. A pairwise channel 

constraint requires a common idle channel between a CH and a particular CM only. In 
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contrast, a groupwise channel constraint demands an identical idle between a CH and all its 

CM nodes, a more strict requirement than a pairwise channel constraint. A higher number of 

common idle channels provides stability to the cluster as more channels available for node to 

link with the CH. DSAC [11] is a distributed spectrum-aware clustering, deployed the 

K-means clustering and groupwise channel constraint for CRSN clustering. In DSAC, all 

nodes exchange its intracluster distance before it can merge with adjacent nodes. Repetitive 

information is exchanged until the BS notifies an optimal cluster number has been achieved. 

Then, a node with a maximum energy is elected as CH in the cluster. The extensive exchange 

of information and reliance of BS lead to higher network overhead renders DSAC unfeasible 

for a large-scale network. Another CR clustering algorithm, BECHR [12] also employed a 

groupwise channel constraint and adopt an energy threshold to enhance a CRSN network 

lifetime. The BS receives constant energy updates from nodes and selects a new CH when a 

current CH energy fell below a threshold value. The BECHR nodes consume high energy 

from the frequent and direct update to the BS. The frequent communication generates high 

network overhead and high interference to the nearby PU. Although energy parameter is used 

in CH selection, DSAC and BECHR shares high energy requirement from the high network 

overhead. A weighted approach, the Cluster Head Determination Factor (CHDF) [7] proposed 

a channel availability and 1-hop neighbour for clustering in the cognitive ad-hoc network 

(CRAHN). The CHDF has a higher network overhead. Furthermore, the infinite energy model 

of CRAHN is not practical for CRSN. Reinforcement learning algorithm and pairwise 

channel constraint is introduced to cluster a CRSN [13]. The optimal policy is used to 

maximize spectrum holes detection and minimize energy consumption in data transmission. A 

candidate CH is predetermine using probability method using channel availability, residual 

energy and percentage of clusters as parameters. The agent used machine learning technique 

and learn from neighbouring CH for optimal clusterhead selection. The algorithm converges 

after sufficient exploration and exploitation of its state-action pairs. Subsequently, final 

clusters are decided by the BS. The BS communication has a high energy requirement and 

should be constraint only for data transmission only.  

In [14], the researchers presented a fuzzy logic algorithm to CRSN clustering to minimize 
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energy consumption and extend the network lifetime. A two fuzzy input parameters i.e. energy 

and distance to BS, are used in the CH selection. Fuzzy logic is one of the prominent 

algorithm in WSN clustering dated back as early as 2005 based on the work in [8] and still 

observe by other WSN researchers till now. Fuzzy logic is capable of reducing the 

computational overhead which is suitable for energy constrained system of WSN and CRSN. 

Fuzzy logic has the advantage of using imprecise data, fuzzy sets and inference rules unlike 

the mathematical equations [9]. As a consequence, the fuzzy algorithm is capable of handling 

uncertainties of real time application more accurate than the probabilistic model [10]. 

However, the fuzzy algorithm in [14] does not take advantage of the dynamic CR radio 

environment unlike the clustering algorithms in [2, 6-8] in reducing the energy consumption. 

Fuzzy logic algorithm is not only been employed in clustering the CRSN but also deployed in 

channel sensing order [8], spectrum assignment [10] and cooperative sensing [15].  

In this paper, a spectrum aware fuzzy clustering algorithm (SAFCA) is proposed. The goal is 

to reduce the total energy consumption and maximize the CRSN lifetime. Despite the fuzzy 

logic algorithm has been explored in [14], the proposed algorithm will apply both spectrum 

aware and fuzzy logic in energy efficient clustering CRSN which is not explored by [14]. 

Multiple parameters are carefully selected as single parameter CH does not provide sufficient 

energy efficiency [11]. The proposed SAFCA has three fuzzy parameters contrary to the two 

parameters used in [14]. The parameters are the residual energy, communication cost and 

node distribution with the addition of channel availability. The issue of network overhead can 

be addressed by the deployment of fuzzy logic as it can offset the overhead of collecting and 

calculating energy and location of each node in the network [16]. Node distribution is locally 

determined which minimizes the BS communication unlike a node density. A node density 

requires regular updates of nodes’ status to BS and BS updates on the node population to all 

nodes. Hence, it has high network overhead and high energy consumption than node 

distribution Furthermore, node distribution describes the distribution of neighbouring nodes. 

A closer neighbouring nodes can lead to a smaller intra-cluster communication cost and less 

energy being consumed by CM.  

This paper is structured as follows: In section II, the related work associated to clustering 
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techniques is presented. In section III, the CR network model and the fuzzy inference system 

(FIS) is described in detail. In section IV, the simulation results of the proposed algorithm are 

discussed. Lastly, a number of conclusions is presented in section V. 

 

2. METHODOLOGY 

This section describes the system model and algorithm for an energy-efficient spectrum aware 

fuzzy logic clustering scheme. 

2.1. CRSN Network Model 

The network consists of N CR sensor nodes coexist among M PU operating on a set of 

non-overlapping orthogonal C channels. Both CR sensor nodes and PU are randomly 

deployed and non-mobile. The CR sensor nodes are homogeneous where all sensor nodes has 

the same energy level of 0.5J and communication range. The unlicensed band are used as 

common control channel (CCC) to facilitate the exchange of control information between CR 

sensor nodes as mentioned in [21]. The CRSN is model as an undirected graph represented by 

G (V, E), where V and E are a set of nodes and communication links in the CRSN 

respectively.  

The CR sensor node will use the channel unoccupied by a PU and is refrained from accessing 

a PU occupied channel within a distance of 20m to prevent from interfering the PU [6]. The 

proposed clustering mechanism is independent of any PU activity model. A two state Markov 

process as depicted in Fig. 1 is selected to model the channel busy and idle states. The steady 

state probability of a channel c in idle state is determined using the Equation (1) in [2]: 

c

c

c c

q
P =

p + q
idle                                                                  (1) 

where qc is the transition probability of channel c will be idle in the next time slot when it is 

busy in the current time slot and pc is the transition probability of channel c will be busy in the 

next time slot when it is idle in the  current time slot. The pc and qc reflects the intensity of 

PU activity in the CRSN network. It is assumed that the transition probabilities are accurately 

estimated to determine the 
c

Pidle . 
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Fig.1. Two State Markov model for the channel c (1≤ c ≤C) 

The limited energy of the CR sensor node is consumed for transmission, reception and 

aggregation activities. Based on the radio energy model in [5], the respective energy 

consumption are determined using Equation (2)-(4) respectively. 
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iRX elecE E l                                                                

(3) 

iDA elecE E l                                                                 (4) 

where d is the path of energy flows from the source node to the BS. l denotes the size of data 

in bits and is fixed throughout the whole simulation. elecE , fs  and mp are the energy 

consume by the CR sensor circuitry and RF amplifier respectively. The signal path is model 

as a freespace or multipath propagation depending on the threshold value od defined by 

Equation (5).   

o fs mpd / 86.7m                                                            (5) 

The energy consumed as CH node is expected to be higher from the many tasks it carried out 

which includes the reception, aggregation and transmission. In contrast, a CM node only 

consumes energy for transmission only. 

2.2. Clustering Algorithm 

The CR sensor nodes configure the CH distributively and form a cluster in every round to 

cater the spatial variations in the dynamic radio environment and prevent early energy hole. 

The clusters is resolved after data has reached the BS through a CH. A round is defined as the 

interval between two successive cluster formations. The proposed SAFCA algorithm is 

described in Algorithm 1. The proposed algorithm employed probabilistic model in LEACH 

[5] for node to self-elect itself as a candidate CH. Then, the algorithm employs channel 
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availability and fuzzy logic on the residual energy, communication cost and node distribution 

parameters for node to compete with neighbouring candidate and finalize itself as a CH. 

Algorithm 1. Spectrum Aware Fuzzy Clustering Algorithm (SAFCA) 

/*each clustering round*/ 

Input: nodes local and locally sourced information 

Output:Cluster head CHs and Clusters  

 

Begin 

Input: SA, RE, CC, ND,  

For all nodes 

Generate Random Number, RN 

If(RN< P(ni)) 

nodei Candidate CH  

Endif 

Endfor 

 

/*calculate channel availability and chance  

For all Candidate CHs 

Calculate Chance FIS{RE,CC,ND} 

    nodei (SA){C1,C2,...Cn}/size(Channels) 

    nodei (SAF) nodei(SA) x nodei (F)   

       Broadcast (SAF) to all neighbours 

Endfor 

 

/*compete with neighboring candidate CH 

For every Candidate CH,advertise SAF parameter 

If candidate nodei (SAF) > Neighboring candidate node (SAF) 

CHinodei 

Neighbor node join CHi if (
i jn CHC C ) 
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      else 

nodei join Neighbor node if (
i jn CHC C ) 

Endif 

Endfor 

 

Broadcast Node ID of CHi 

/*form cluster 

For Remaining Nodes 

node join nearest CH if (
i jn CHC C ) 

Endfor 

End 

In each round, node ni determines its likelihood of becoming a candidate CH using the  

probability in [5]: 

i

i

, if n
1

1 ( mod )P(n )

0 ,else

p
G

p r
p


   




                                            (6) 

where p is the ratio of candidate CH in the network, r is the current round and G represent a 

node that have not been a CH for the last 
1

p
. The probability model in Equation (6) prevents 

any previous round CH being re-elected in a subsequent round to avoid the early node death 

incident. However, the probability cannot avoid a low energy CH node from nominating itself 

as a candidate CH. Therefore, the SAF parameter comes in to remove a low energy candidate 

from being a CH.  

A candidate CH node calculates a SAF parameter, a composition of channel availability and 

chance from a fuzzy logic. The channel availability value (SA) is determined in Equation (7) 

[2]. 

ic
SA=

m
                                                                    (7) 

where ci is the number of idle channels observed by candidate CH and m is the total number 

of channels. A candidate CH node with higher number of idle channels has better opportunity 

to link with adjacent CM nodes resulting a stable cluster. Therefore, a node with a high SA is 
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a better CH candidate. However, sole dependency on channel availability does not guarantee 

an optimal solution [9] in a CH election. 

Chance (F) is calculated using the fuzzy rule based on three parameters, i.e. the residual 

energy (RE), the communication cost (CC) and node distribution (ND). Selection of fuzzy 

parameter are carefully nominated to minimize direct interaction with BS. A direct 

communication can be originated from sending updates to BS, i.e. node status or receiving 

updates from BS, i.e. statistic of alive nodes. These updates require high energy due to the 

long distance to BS and interference from the transmission. Hence, selection of parameter of 

the proposed SAFCA is constraint to node own information and locally sourced data as to 

minimize interference to PU and reduce energy consumption to network overhead. The first 

fuzzy parameter is node residual energy (RE), the remaining energy of a candidate CH. It is a 

significant parameter to a CH from the high energy requirement of CH. The second parameter 

is the communication cost (CC), defined as the distance between a candidate CH and BS. It is 

calculated using the received signal strength. Since the node is static, the CC value remained 

fixed throughout the node lifetime and is also derived from the node itself. CC illustrates the 

magnitude of energy consumed by a CH to relay the data to the final destination. A CH closer 

to BS is more favourable because it has low CC value compared to a faraway CH. The third 

fuzzy variable is the node distribution (ND) within the perimeter, R of a candidate CH. Node 

distribution may effect the energy consumption of a node [17]. The variable of R describes 

the average radius of a preferred cluster dimension defines by Equation (8) [18]  

R=
π

x y

np


                                                                  (8) 

where x and y is dimension of network area and n is the total nodes. Node distribution 

describes the closeness of the nearby nodes. It is the ratio of the sum of distances of all 

neighbours node and the maximum distance of the neigbours node i.e. if all the neighbours 

located at the boundary R can be calculated.   

#neighbour
2 2

i CH i CH
i=1

(x -x ) +(y -y )

Node distribution=
#neighbour*R


                                       (9) 

where (xi, yi) is the coordinate of ni. The node is aware of the number of alive nodes within 

the R through a local information exchange. Therefore, update from BS is unnecessary and 

reduce energy consumption from long and direct communication with BS. At the same time, 

it reduces the interference towards the PU as communication is limited to its neighbouring 

nodes. The lower the ND value, the lower the energy consumed for the intra-cluster 
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communication by CH and CM nodes. Both CC and ND values are applicable to any network 

size. 

Table 1 lists the three fuzzy parameter and their membership function, respectively. All fuzzy 

inputs has been set with identical membership function of low, medium and high. Higher 

membership value of 3 is assigned to the most favourable membership function while lower 

membership value of 1 to the least favourable membership. In term of residual energy, a high 

RE value is a favourable condition, hence the high membership function is assigned a value of 

3. In communication cost, a medium CC value is defined as the most favourable node position 

to be elected as a CH. Therefore, a medium CC value is assigned the highest membership 

value. Since a low ND value translates to a low energy consumption of CH and CM, it is 

assigned the highest membership value. Consequently, the most favourable CH should be 

having a high membership function of residual energy, a medium membership function of 

communication cost and a low membership function of node distribution. The membership 

value will be used to determine the output membership function in Table 2. 

Table 1. Input membership function 

Input Membership Function 

Residual Energy (RE) Low (1), Medium (2), High (3) 

Communication Cost (CC) Low (2), Medium (3), High (1) 

Node distribution (ND) Low (3), Medium (2), High (1) 

Fig. 3-5 shows the fuzzy sets of the three fuzzy parameters i.e. residual energy, 

communication cost and node distribution respectively. Both low and high membership 

functions are characterized by a trapezoidal shape and the medium membership function 

using a triangular shape. 

 

Fig.2. Degree of membership versus residual energy 
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Fig.3. Degree of membership versus intercluster communication cost 

 

Fig.4. Degree of membership versus node distribution 

The chance generated by the fuzzy output is defined according to nine membership functions, 

as listed in Table 2. Again, the trapezoidal shape is selected for the lowest and highest 

membership function i.e. very weak and very high. For the rest of the membership, the 

triangular shape is chosen to describe the degree of membership and the values of the 

individual levels. The degree of the chance membership function is shown in Fig. 5. 

Table 2. Chance membership function 

Output Membership Function (MF) 

Chance (F) 
Very Weak (1), Weak (2), Relatively Weak (3), Low Medium (4), Medium (5), 

High Medium (6), Relative High (7), High (8), Very High (9) 
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Fig.5. Degree of membership versus chance value 

The twenty-seven rules are used by the fuzzy inference as listed in Table 3 is defined by 

Equation (9): 

MF = 2RE + CC + ND - 3                                                      (9) 

where it is based on a best fit consideration for a node being selected as a CH. All the fuzzy 

parameters is added to show that the combination of the three parameters makes up a good 

property for a node to elect as a CH. In Equation (9), residual energy is assigned a high 

multiplier to indicate that node energy has a higher priority than communication cost and 

node distribution to take on the CH role. Table 3 shows that the lowest chance node to be 

elected as CH has a low degree membership function of residual energy and high membership 

function of communication cost and node distribution. While, the highest chance node to be 

elected as CH has a high membership function of residue energy and medium membership 

function of communication cost and low membership function of node distribution. 

Table 3. Fuzzy if-then rules 

Residual Energy Communication Cost Node Distribution Chance 

Low High High V.Weak 

Low High Medium Weak 

Low High Low R.Weak 

Low Medium High R.Weak 

Low Medium Medium L.Med 

Low Medium Low Med 
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Low Low High Weak 

Low Low Medium R.Weak 

Low Low Low L.Med 

Medium High High R.Weak 

Medium High Medium L.Med 

Medium High Low Med 

Medium Medium High Med 

Medium Medium Medium H.Med 

Medium Medium Low R.High 

Medium Low High L.Med 

Medium Low Medium Med 

Medium Low Low H.Med 

High High High Med 

High High Medium H.Med 

High High Low R.High 

High Medium High R.High 

High Medium Medium High 

High Medium Low V.High 

High Low High H.Med 

High Low Medium R.High 

High Low Low High 

The chance crisp value is calculated using the centroid defuzzification method and the 

membership function in Fig. 5. Both channel availability (SA) and chance (F) values are 

multiplied and advertised as a SAF parameter to its surrounding. If the advertisement received 

by another node CH of a higher SAF parameter, the lower SAF node will reset it status to a 

normal node. This process eliminates redundant CH existence within the radius, R. The 

normal nodes then will form cluster with the nearest CH through a pair wise constraint. 
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3. RESULTS AND DISCUSSION  

In this section, the results of the simulations of the proposed algorithm, SAFCA are presented. 

The performance of SAFCA is evaluated via MATLAB. The simulation parameters 

considered in the evaluation are given in Table 4.  

Table 4. Simulation parameters 

Parameter Value 

Network Size 200m x 200m 

Base Station Location 100,100 

Number of CR nodes 100 

Number of PU 7 

Number of Channel 5 

Data Packet Size 4000 bits 

elecE  50nJ/bit 

fs  10pJ/bit/m2 

mp  0.0013pJ/bit/m4 

DAE  5nJ/bit/signal 

Initial Energy 0.5 J 

The CRSN nodes are deployed randomly within the defined network area and employ single 

hop transmission in relaying data to the BS. A desired ratio of CH, p is set to 0.2 for all 

simulations as it produces the most optimal result for SAFCA. The simulations are conducted 

in two parts. The first stage is to compare the performance of SAFCA with a spectrum aware 

clustering algorithm (SACA). SACA has a similarity in term of the random probability and 

channel availability parameter to the proposed SAFCA. While the second stage is to evaluate 

the impact of the fuzzy parameter of SAFCA against SAFEC, SAFEN and SAFCN.  

The performance metric considered are First Node Dies (FND), Half Nodes alive (HNA) and 

Last Node Dead (LND). These performance metrics are commonly found in the energy 

efficient studies in CRSN and WSN. FND represents the number of rounds that a network has 

operated until a first node dies and HNA denotes an event when half of the total nodes 

deployed has died. The FND or death of single node is vital in sparsely deployed WSN [19] 

and indicates the stability period of a WSN [20]. Meanwhile, HNA metric is widely used as a 

measure of network lifetime in WSN [21]. LND is represented by the number of rounds when 

the final node dies.  Eventhough, LND is sometimes used to measure the network lifetime, 
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the network is usually render useless after a HNA. Therefore, HNA metric will be used rather 

than LND to indicate the network lifetime in this simulations. Lastly, the network energy is 

measured to determine the energy consumption of the CRSN.  

3.1. Performance SAFCA against SACA  

3.1.1. Node Lifetime and Stability Period 

Table 5 shows the performance of the SAFCA and SACA with respect to FND, HNA and 

LND. The proposed SAFCA performed 12% better than SACA in the FND metric. The 

proposed SAFCA outperformed SACA by 11% with respect to the HNA metric. Lastly, in the 

LND metric of SAFCA is 17% higher than SACA. The higher FND of SAFCA proves that 

the stability period of SAFCA is higher than SACA. Overall, the FND, HNA and LND 

studies proved that the SAFCA has longer node lifetime than SACA. This shows that the 

adoption of spectrum aware and fuzzy logic in the proposed SAFCA clustering algorithm has 

enhanced the network stability and lifetime of the CRSN as compared to spectrum aware in 

the SACA algorithm. 

Table 5. Node lifetime 

FND HNA LND 

SACA 813 1069 1150 

SAFCA 923 1204 1331 

 

3.1.2. Distribution of Alive Nodes 

Fig. 8 shows the statistic of alive node observed in each round of the proposed SAFCA and 

SACA until the last node died. It is observed that the number of alive node in SACA drops 

much earlier than the proposed SAFCA. This indicates that the SAFCA has a better network 

stability than SACA. It also shows that the number of alive nodes of SAFCA remains higher 

than SACA at each round. The rate of decrement of alive nodes for both SAFCA and SACA 

is almost identical, eventhough the number of alive nodes in SACA has started to decrease 

much earlier. This indicates that the spectrum aware fuzzy clustering, which cater both CR 

and WSN [22] parameters improves the node lifetime than the CR parameter only. 
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Fig.6. Number of alive nodes versus number of rounds 

3.1.3. Network Energy Consumption 

Fig. 7 shows the level of network energy at each round up to 1600. Fig. 7 shows that at all 

round, the network energy for the SAFCA clustering algorithm is constantly higher than 

SACA. This indicates that the energy consumption of SAFCA is lower than SACA. The rate 

of decrement of network energy of SACA is higher than the proposed algorithm. This resulted 

in the network energy of the proposed SAFCA to be consistently higher than SACA at each 

round. This shows that the CH elected in the SAFCA algorithm is more optimize its distance 

with its CM nodes and is reflected with small energy being consumed for the intracluster 

communication. Hence, the network energy is higher at each round. 

Fig.7. Network energy depletion versus number of rounds 

A closer look on the network energy at each network lifetime (HNA) for both the proposed 

SAFCA and SACA, as listed in Table 6. The result shows that at the SACA network lifetime, 
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the network energy of SAFCA has an efficiency of 73 % and at SAFCA network lifetime, the 

network energy recorded an efficiency of 96%. This proves that SAFCA improved the 

network energy consumption compared to SACA. The high network energy efficiency 

recorded by SAFCA shows it capability of selecting the optimal CH which translates to low 

energy being consumed in data transmission at each round. This leads to higher node lifetime 

and produces a longer network stability and lifetime to CRSN. 

Table 6. Network energy at each network lifetime 

Energy (J) 

HNA of SACA 

Energy (J) 

HNA of SAFCA 

SACA 1.73 0.086 

SAFCA 6. 35 2.73 

Overall, the first study shows that the deployment of spectrum aware and fuzzy inference 

technique in SAFCA increases the CRSN node lifetime with respect to FND, HNA and LND 

compared to spectrum aware only i.e. SACA. The extended node lifetime is attributed to the 

optimal self-elected CH that reduce the energy consumption for data transmission. The higher 

FND of SAFCA proves that the network stability of SAFCA is higher than SACA. The 

SAFCA algorithm enables the optimal node in term of channel availability, residual energy, 

communication cost and node distribution to be self-elected as a CH. 

3.2. Performance of SAFCA against SAFEC, SAFEN, SAFCN 

The second stage of the evaluation is to investigate the influence of the fuzzy parameters in 

the spectrum aware fuzzy clustering algorithm. The SAFCA is evaluated against fuzzy 

algorithms harvested from the same parameters of SAFCA. Table 7 lists the fuzzy algorithms 

with its corresponding parameters and the proposed SAFCA. This study is performed to 

observe the significant of the fuzzy parameter i.e. residual energy, communication cost and 

node distribution to the network stability and lifetime of the CRSN. 
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Table 7. Fuzzy input parameters 

 Channel  

Availability 

Residual  

Energy (RE) 

Communication  

Cost (CC) 

Node  

Distribution (ND) 

SAFCA x x x x 

SAFEC x x x  

SAFEN x x  x 

SAFCN x  x x 

3.2.1. Node Lifetime and Stability Period 

Table 8 shows the simulation results of FND, HNA and LND using the respective input 

combination defined in Table VII.  The results show that the FND of the proposed SAFCA 

outperforms the SAFEC by 3%, SAFEN by 2% and SAFCN by 10%. Compared to SAFCN, 

the FND result indicates that the combination of energy and the communication cost or node 

distribution has prevent an early node death by lengthening the stability period i.e. FND of the 

CRSN. Based on the FND of SAFCA, it is observed that consolidating the three parameters 

i.e. energy, communication cost and node distribution resulted in an even higher network 

stability than the same two parameters combined. 

The results of HNA show that the SAFCA performance is better than SAFEC by 11%, 

SAFEN by 10% and SAFCN by 13%. The HNA results show that the proposed SAFCA has 

the highest network lifetime than the rest of the fuzzy algorithms with an average of 11%. In 

term of LND, the result of SAFCA is higher than SAFEC by 6%, and SAFEN by 9% but 

lower by 4% with respect to SAFCN. The combination of communication cost and node 

distribution parameters in SAFCN produces a highest LND which extend the network lifetime 

of the CRSN but at a lower network stability from a lower FND and HNA.  

The FND and HNA of SAFCA results illustrate that the higher efficiency of SAFCA is 

attributed to the third fuzzy input parameter. Hence, the combination of the three parameters 

i.e. residual energy, communication cost and node distribution has extended both the network 

stability and network lifetime of CRSN. 
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Table 8. Node lifetime 

 FND HNA LND 

SAFCA 923 1204 1388 

SAFEC 895 1068 1309 

SAFEN 905 1085 1257 

SAFCN 837 1052 1444 

3.2.2. Distribution of Alive Nodes 

The number of alive nodes in each round for SAFCA, SAFEC, SAFEN and SAFCN is shown 

in Fig. 8. It depicts that the number of alive nodes of SAFCA is higher at each round 

compared to SAFEC, SAFEN and SAFCN. The number of alive nodes of SAFCN decreases 

earlier than the rest of the algorithm. The number of alive node of SAFCA only starts to 

decrease after all compared algorithms has decreased. As seen in Fig. 8, SAFCA has the 

lowest rate of decrement of alive nodes. Meanwhile, SAFEC and SAFEN have almost the 

same decrement of alive nodes. SAFCN has the same decrement of alive nodes as SAFCA but 

the decrement of alive nodes has started at earlier round than SAFCA. Hence, the 

combination of energy with communication cost (SAFEC) or node distribution (SAFEN) as 

fuzzy parameter is insufficient to elect the optimal CH. In addition, omitting the energy 

parameter in the fuzzy parameter caused an energy imbalance in the network leading to early 

node death. 

3.2.3. Network Energy Consumption 

The energy consumption for all the fuzzy algorithms is recorded in Fig. 9. It depicts the 

network energy level in each round. The network energy continuously to decrease at a 

different rate. SAFCA has the lowest decrement of network energy followed by SAFCN. This 

indicates that without the energy parameter (SAFCN) is not able to optimize the node lifetime 

compared to the SAFCA, SAFEC and SAFEN which utilize the energy parameter.  

The overlap of the two lines in Fig. 9 representing the SAFEC and SAFEN shows that they 

shares almost the same decrement in network energy. They also have the highest decrement 

among all the algorithms. The lower network energy decrement of SAFCA translates to a 

higher network energy remains in SAFCA as compared to the SAFEC, SAFEN and SAFCN 

at all rounds.  

The network energy is then evaluated at round 1105, which is the average of HNA of the 

spectrum aware fuzzy algorithms as shown in Table 9. It is observed that network energy has 
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been consumed approximately 90% for SAFCA and more than 98% for SAFEC, SAFEN and 

SAFCN algorithms. The additional parameter in SAFCA has further improve the energy 

consumption of the network by selecting an optimal CH resulted in less energy consumed in 

the data transmission at each round 

 

Fig.8. Number of alive nodes versus number of rounds 

 

Fig.9. Network energy depletion versus number of rounds 

Table 9. Network energy at round 1105 

 Energy (J) at Round 1105  

SAFCA 5.22 

SAFEC 0.82 

SAFEN 0.86 

SAFCN 1.59 
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Overall, the evaluation on the fuzzy parameter for the spectrum aware fuzzy algorithm has 

highlighted three findings. Firstly, the combination of fuzzy parameters between a residual 

energy and communication cost or a residual energy and node distribution increase the 

network stability of the CRSN at the cost of the CRSN network lifetime. Secondly, the 

combination of fuzzy parameters communication cost and node distribution which relates to 

the energy consumption of the CH extend the network life time period at the expense of a 

shorter stability period. Lastly, using three fuzzy parameters system leads to a more 

energy-efficient CH than a two fuzzy parameters system. 

 

4. CONCLUSION 

A spectrum aware fuzzy clustering algorithm i.e. SAFCA is proposed and developed for 

energy efficient CRSN. Based on the simulation results, SAFCA has a considerably higher 

FND, higher HNA, higher number of alive nodes and higher network energy compared with 

SACA. This implies that the combination of CR and fuzzy parameters select an optimal CH 

than using CR only. It also points out that optimal CH selection requires handling both the CR 

and WSN [23] constraints. The investigation on the spectrum aware fuzzy parameters have 

highlighted that the energy parameter improves the FND or the network stability of the CRSN. 

Meanwhile, the communication and node distribution parameters extends the network lifetime 

through better an energy consumption in the CR nodes. Finally, a combination of the three 

parameters i.e. residual energy, communication cost and node dispersion SAFCA outperforms 

the spectrum aware fuzzy clustering algorithm of two parameters. The proposed SAFCA will 

further extended to address other CH issues in CR and WSN [24].  
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