Journal of Fundamental and Applied Sciences Research Article

ISSN 1112-9867 Special Issue

Tenamiad of Fmdam engal and Applied Scisnces

Available online at http://www.jfas.info

MODIFICATION OF CRAMER’S RULE

O. Babarinsa"" and H. Kamarulhaili’

'Department of Mathematical Sciences, Federal University Lokoja, 11554 Kogi, Nigeria
*School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia

Published online: 17 October 2017

ABSTRACT

While Cramer's rule allows complete substitution of constant terms to the coefficient matrix in
the system of linear equations, the modified methods of Cramer's rule consider the constant
terms as well as the coefficients of the matrix at the same time. The methods are derived from
one of the properties of determinants. Furthermore, we prove the two methods to be
equivalent and provide MATLAB codes for the modified methods. However, the methods are
not practically suitable for higher system of linear equations because they inherit inefficiency
and instability of Cramer’s rule.
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1. INTRODUCTION

If for n linear equations in » unknowns x,,x,,x;,...,x,1s defined by

all.xl + alzxz + a13x3 + + aln.xn = Cl
aZle + azz.xz + aZ3X3 + + aznxn = C2 (1)
azx, + apx, + 33 %3 + + X, = G

: " : + - I _
anlxl + anzxz + an3x3 + + ann.xn = Cn
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Equation (1) can equivalently be written as matrix equation of the form,

Ax,=c(2)
where
ay ap 4 4y, X ¢
Ay Uy Uy o Oy, X d %)
— — an —
- “oe > — =
4 a3 dxp 4y - a3, X =1 x ¢ G
anl anZ an3 ann xn Cn

thenxn matrix 4 (coefficient matrix) is nonsingular, ¢ the constant term and the vector

x=(x,,X,,...,x,)" 1is the column vector of the variables, VA4,ce®R . Thus, the solutions of

Equation (1) can be derived from an ancient method called Cramer's rule [1].
1.1. Theorem 1 (Cramer’s Rule)

Let Ax=c be a nxn system of linear equation and A4 a nxn matrix of x such that

det(4) # 0, then the unique solution x,,x,,x,,....x, to the system in Equation (1) is given by

_ det(4,,)

= 3
g det(A4) @)

where 4;, is the matrix obtained from 4 by substituting the column vector ¢ to the ith

columnof 4,for i=12,..n.

Historically, an Italian mathematician GerolamoCardanogave a rule for solving a system of
two linear equations which called regula de modo-mother of rules. Though, his methods were
practically based on 2x2 resultants. The rule later gave what we essentially known as
Cramer’s rule [2]. It was Colin MacLaurin [3], a Scottish mathematician that gave the first
published results on resultants on solving two and three simultaneous equations in a book titled
“Treatise of Algebra”. In fact, in [4] showed that Cramer’s rule was published two years earlier
in Colin Maclaurin’s posthumous. In [5]examined a manuscript that provides conclusive
evidence that Maclaurin was teaching his students “Cramer’s rule” over 20 years before Cramer
published it. However, in [6] argued that the rule he chose to appropriate sign for each
summand was wrong, though his assertion of “opposite” coefficient was right and this was
corrected by Cramer by counting the number of transpositions, dérangements, in the

permutation. In [7]pointed that for lack of good notation, Maclaurin missed the general rule for
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solving linear equations.
Regardless of its high complexity time, Cramer's rule is historically interesting and it is of
theoretical importance for solving systems of linear equations [8]. It gives a clear

representation of an individual component unconnected to all other components. Cramer's rule

via Laplace expansion method of determinant has time complexity of O(n.n!)and O(n*) when

compared with other fast and concise methods such as K-Chio's method [9-10].

Cramer's rule has many disadvantages, it fails when the determinant of the coefficient matrix
is zero, requires many calculations of determinants (if determinant values are calculated
through minors) and is also numerically unstable [11]. Due to the disadvantages of Cramer's
rule, in[12] expressed that Cramer's rule is unsatisfactory even for 2x2 linear systems
because of round off error. However, in[13] gave counter example. Gauss elimination, Jacobi
method and Gauss-Jordan elimination are efficient iterative and numerical methods that have
succeeded Cramer's rule [14] including parallel Cramer's rule (PCR) for solving singular
linear systems [15].

There are many previous work on Cramer's rule that made use of properties of determinants,
especially cofactor in their proofs which includes Jacobi's proof [16] that led to Turdi's proof
and rediscovered in [17]. Recently, Cramer's rule has been proved via adjoint matrix and the
proof by identity matrix was adopted to solve a linear system of equation using elementary

row operations make Cramer's rule invariant [18].

2. MODIFICATION OF CRAMER’S RULE

It may be a new proof of an old fact or it may be a new approach to several facts at the same
time. If the new proof establishes same previously unsuspected connections between two
ideas; it often leads to a generalization [19]. This paper provides two distinct approaches in
solving system of linear equation. The new methods establish same previously unsuspected
connections with Cramer’s rule and derived from one of the properties of determinant. The
formulas for the two methods make use of one to normalize it to standard Cramer’s rule. The

two methods are explained in this paper with proofs.
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2.1.Method I

It is a well-established theorem that if the ith column in matrix 4 is a sum (difference) of
the ith column of a matrix B and the ith column of a matrix C and all other rows in B

and C are equal to the corresponding rows in A that is if two determinants differ by just one

column [20-21] such that

b,te, a, a; - a, b, a, a; - a,
byte, ay, ay a4, by ay ay - @, d
an
= e > = e
4 by, #031 a3y Ay A3 B b§1 a3 Ay D
_bnl i cnl anZ an3 e ann bnl anZ an3 ann
Cp dp dgy a,
Gy Ay Ay a,
C= Gy Gy Ay 3,
_Cnl anZ an3 arm
For
A=B+C(4)
then

det(4) = det(B) £ det(C)
2.1.1. Corollary 1

Let Ax=cbe a nxnsystem of linear equation and Ais nxnmatrix of x, if det(4)#0,
then the ithentry x, of the unique solution x=x,,x,,x,,...,x, 1S given by

n

o = 4ot (s
" det(4)

where 4, is the matrix obtained from A by adding the constant terms of vector cto the i

thcolumn of 4, for i=1.2,....n.

2.1.2.Proof
We adopt the assumptions of Cramer’s rule as we let det(4) be determinant of the system for

coefficient matrix such that det(4) = 0 and equivalently extend Equation (4) to more general

form by substituting cin the ith column of matrix 4 as

AHC = A * Ai\c (6)
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where

ay  ap as ccoayEe ay 4y 43 4y

Ay Ay Gy Ay Ty, Gy Ay Ay ay;
A..=\a a a ay e, |” A=|a a a ea and
itc 31 4 Ay 3 TGy 31 dn Ay 3i

anl anZ an} ani i Cm anl anZ an3 ani

ay  dp  ay Ci

dy Ay Ay Cai
Atlc = s a4y Ay Gs;

anl anZ an3 Cni

we can deduce from Equation (6) that

det(A,) = det(4) £ det(4, ) (7)

and by considering the positive sign of the above equation according to Corollary (1) we have

det(4,

i+c

) = det(4) +det(4,,) (8)
Thus,

det(4,,) = det(4,,,) — det(4) (9)

Hence, substitute Equation (9) in Equation (3)

L o det4y)
" det(4)
_ det(4,,,)—det(A4)
N det(A4)
_det(4y)
det(A4)

The MATLAB code on single physical processor for method I is provided in Fig. 1.
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function x=MhMethodl(A . b))
Ac—input(’matrix A =" )
b=input{ " vector b ="):
n=size{M . 1):
m=asize( A, 2):

if m =m
Error (" The matrix is not square.” )z
x=[1:
else
detA —=det( A )
if det( A ) =0
x*x —wmeros{(n. 1 );
for j—1:n
if j =1 & j —=n
Ab=[MC: 1:j-1) b+A:.j) A jg+1:n)]:

elseil j=—=1
A b=[b+A0(:,.1) A(:.2:m)]:
elseil j——n
A bhb=[AC:.1:n-1) b+=AC:.u)]:z
erucl
x{(jr=(det(Ab) dets) — 1:
erncl
else
Error (" The matrix A has a zero determinant.” );
»=[1:
erncl
erncl
Fig.1. MATLAB code for Method I
2.2.Method 11

All assumptions of method 1 still hold except that the constant terms are subtracted from the

coefficients of the variables in each column. Let det(4) be determinant of the system for
coefficient matrix, provided that det(4)=0 and let det(4, .) denotes the n th-order
determinant from det(4) by subtracting the constant terms (nonhomogeneous terms

(¢,,¢y»ersc,) from the ith columnof A4, for i=1.2,.,n.
2.2.1. Corollary 2
Let Ax=cbe nxnsystem of linear equation and Ais nxn matrix of x, if det(4) =0, then

the ithentry x, of the unique solution x=x,x,,x,,....x, is given by

n

det(A)
where 4,_, is the matrix obtained from A by subtracting the constant terms of vector c¢from

the ith columnof 4, for i=12,..,n.

2.2.2. Proof

By considering the minus sign of Equation (7) based on Corollary (2), we have
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det(4, ) = det(4) —det(4, ) (11)
Thus,
det(4,,) = det(4) —det(4_) (12)

Substituting Equation (12) in Equation (3), we have

det(4,,)
X =
" det(4)
_ det(A)—det(4, ,)
- det(A4)
_,_det(4.,)
det(A)

The MATLAB code for method II on single physical processor is provided in Fig. 2.

function x=MMecthodZ2{ A _b)
Aa—input{’ matrix A ="):
b=input{’vector b =");
n=—size(M_.1):
m=sizei{ A.2):

if m =m
Error (" The matrix is not sgquare.” )2
x=L]:
else
detA =det({ A
if det(AM ) =0
x=zcros{n.1);

for j=1::n
ifj=14&j=n
Ab=[A(:.1:j-1) AC.j)»b Al j+1n)]:
elseif j——1
Ab=[A(:.1)-b A(:.2:n)]:
elseifl j==n
Ab=—[A(C.I:n-1) A(C.n)-b]:
e
X(jr)r— 1 -(det(ADb)/detA):;
ernd
else
Error ( " The matrix A has a zero determinant.” );
==[1:
ermnd
erucd

Fig.2.MATLAB code for Method II
2.2.3. Proposition 1
Given a nxnsystem of linear equation, Ax =c, where A4 is nxn matrix of xsuch that

— det(AHc) _

det(4) = 0 for the distinct solution of x, and cthe column vector. If x, det(A) 1 when
e
. . det(4._)
the column vector cis added to the column of matrix 4and x, :I—T(’A; when the
e

column vector cis subtracted from the column of matrix 4, then
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det(4,,) _,_,_det(4,,)

det(4) det(A)
2.2.4. Proof
We consider Equation (5) of Corollary (1) to proof this proposition by substituting Equation
(8) in it to have
‘- det(A) +det(4,,) 1
' det(A4)

_ det(Al\c)

5 det(4) (13)

Now, substitute Equation (12) in Equation (13) to get
_ det(4) —det(4,_,)
' det(A)

_,_det(4.)
det(A)

Similarly, Equation (10) in Corollary (2) can be used to proof Equation (5).

2.3.Numerical Example
Without loss of generality, we provide a numerical example in the given system of linear
equations:

2x, +5x, —9x; +3x, =151
5x, +6x, —4x,+2x, =103
3x, —4x, +2x,+7x, =16
11x, +7x, +4x;, —8x, =32

2.3.1. Method I

The method adds the constant terms to each of the column in coefficient matrix. Thus,

2+151 5 -9 3
5+103 6 -4 2
3+16 -4 2 7

x:11+(—32) 74 -8 :—9492_1:3
: 2 5 -9 3 —2373

5 6 -4 2

3 -4 2 7

11 7 4 -8
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2 5+151 -9 3
5 6+103 -4 2
3 —-4+16 2 7
11 7+(-32) 4 -8 —14238
X, = 1= -1

2 2 5 -9 3 2373
5 6 -4 2
3 -4 2 7

11 7 4 =8

2 5 -9+151 3
5 6 —4+103 2
3 -4 2416 7
M7 4e3n) -8 23730
2 5 -9 3 ~2373
5 6 -4 2
3 -4 2 7

11 7 4 -8

2 5 -9 3+151

5.6 -4 2+103

3 -4 2 7+16

:11 7 4 —-8+(-32) _1:—18984_

2 5 -9 3 —2373
5 6 -4 2
3 -4 2 7
11 7 4 -8

1=7

2.3.2. Method 11
This method subtracts the constant terms from the column being substituted to. Hence, the
solutions are:

2-151 5 -9 3

5-103 6 -4 2
3-16 -4 2 7

. :1_11—(—32) 7 4 -8 i 4746 _
! 2 5 -9 3 —2373
5 6 -4 2
3 -4 2 7

1 7 4 =8



O. Babarinsa et al. J Fundam Appl Sci. 2017, 9(5S), 556-567 565

2 5-151 -9 3
5 6-103 -4 2
3 —-4-16 2 7
11 7-(-32) 4 —8_1_ 9492

I S S I YO
5 6 -4 2
3 -4 2 7
117 4 -3
2 5 —9-151 3
5 6 —4-103 2
3 -4 2-16 7
7 a3 -8 2846
} 2 5 -9 3 —-2373
5 6 -4 2
3 -4 2 7
17 4 -3
2 5 -9 3-151
5 6 -4 2-103
3 -4 2 7-16
11 7 4 -8-(-32) 14238
x,=1- =1- =7
2 5 -9 3 —373
5 6 -4 2
3 -4 2 7
11 7 4 -8
3. CONCLUSION

The two methods show the flexibility of computing Cramer's rule and ensure that there is no
loss of generality in the coefficient matrix. The methods are also show how property of
determinant led to the modification of Cramer's rule. The presence of one in the formulae is to
normalize the modified methods to classical Cramer's rule. These methods are more of
theoretical and are impracticable nor efficient in numerical world because Cramer’s rule is
also not efficient for larger system of linear equations. However, they do better in handling
relative residual error for small ill-conditioned system than Cramer’s rule. Further

modification on the methods may increase their efficiency and stability.
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