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point boundary value problems (BVPs) have numerous applications especially in the 

modeling of most physical phenomena. In this study, the fourth order two-point BVPs were 
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lynomial spline scheme to generate its corresponding sparse linear system. Then, 

was conducted to determine the performances of the SOR itera

the spline scheme in terms of iterations number, execution time and maximum 

absolute error at different mesh sizes. In order to assess the performances of this proposed 

idea, another iterative method was also conducted which is Gauss-Seidel (GS). 
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1. INTRODUCTION 

This current study aims to solve for fourth-order two-point BVPs as given by Equation (1)  

],[  ),()()()()( 432
)3(

1
)4( baxxfyxayxayxayxay   (1) 

with its boundary condition as shown in Equation (2) as follows 

1)( ay , 1)( by        (2)                       

2)(  ay , 2)(  by  

where )(1 xa , )(2 xa , )(3 xa , )(4 xa  and )(xf  are known functions of domain ],[ ba whereas 

i  and i are constants with 2,1i .  

Equation (1) has to undergo a process lowering of order to reduce the single equation of 

fourth-order problem into two separated equations of second-order problems as below 

],[  ),()()()()()( 21 baxxGxvxaxvxaxv     (3)   with 

),()()()()()( 43 xyxaxyxaxfxG       (4) 

2)()(  ayaV  

2)( )(  bybV  

and 

  )()( xvxy                          (5)                                                              

where 

1)( ay , 1)( by        (6) 

The process was completely done by using simple mathematical differentiation and 

substitution. Then, by considering [1-5], the cubic non-polynomial spline scheme was 

implemented to discretize both equations (3) and (5) to generate two systems of linear 

equations. There are many other numerical methods which have sought wide interest among 

researchers and some of them are collocation method [6], adomian decomposition method [7], 

finite element and finite volume methods [8], finite-difference method [8], non-linear 

shooting method [9] and precise time integration method [10]. Nonetheless, BVPs were 

usually solved with three standard approaches which are shooting, finite differences and 

projections [11]. 
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To make the discretization process simpler, the solution domain 

into subintervals, m as shown in Fig. 1

Fig.1. Separation of uniform subintervals,

where the length, x  of each subinterval is given as follows

Then, Equation (3) and (5) were solved iteratively at once by using SOR iter

referring to [12-15]. In order to assess the performance of this proposed idea clearly in term of 

iterations number, execution time and maximum absolute error, GS iterative method was also 

conducted for comparison purpose. 

In response to the vast applications of

fields, it is the main focus of this present study to initiate a numerical idea in term of 

technique and algorithm, as well as to provide a reference for future research. To be precise, a 

preparation for application of spline scheme at a different degree for solving two

of high-order with different iterative methods.

 

2. METHOD OF SOLUTION 

The general function of spline which was given consideration is as follows

and the approach starts with a derivation of non

function of cubic non-polynomial spline as given by 

  ii axQ  cos

where iii cba ,,  and id are constants for 

trigonometric function in Equation 

defined into several variables as below
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To make the discretization process simpler, the solution domain ],[ ba  was divided unif

as shown in Fig. 1. 

Separation of uniform subintervals, 8m  

of each subinterval is given as follows 

h
m

ab
x 


                     

(3) and (5) were solved iteratively at once by using SOR iterative method by 

]. In order to assess the performance of this proposed idea clearly in term of 

iterations number, execution time and maximum absolute error, GS iterative method was also 

conducted for comparison purpose.  

In response to the vast applications of two-point BVPs as stated by [16-20] regardless of 

fields, it is the main focus of this present study to initiate a numerical idea in term of 

technique and algorithm, as well as to provide a reference for future research. To be precise, a 

f spline scheme at a different degree for solving two

order with different iterative methods. 

 

which was given consideration is as follows 

      ixxxxQxS iii ,1,0,,∈, 1  

and the approach starts with a derivation of non-polynomial spline equations from the general 

polynomial spline as given by Equation (9) 

iiiiii dxxcxxkbxxk  )()(sin)(cos   

are constants for ni ,,1,0   and k is the frequency for the 

quation (8) as 0k . Before discretized, Equation (8) was first 

defined into several variables as below. 
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was divided uniformly 

 

                    (7) 

ative method by 

]. In order to assess the performance of this proposed idea clearly in term of 

iterations number, execution time and maximum absolute error, GS iterative method was also 

] regardless of 

fields, it is the main focus of this present study to initiate a numerical idea in term of 

technique and algorithm, as well as to provide a reference for future research. To be precise, a 

f spline scheme at a different degree for solving two-point BVPs 

n,   (8)  

polynomial spline equations from the general 

    (9)  

is the frequency for the 

quation (8) was first 
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ii xQ )(

1)('  ii xQ

By assuming the value of )( xy as the exact solution, a set of non

iS  for )( ii xyy  was obtained from all the segments of 

points ),( ii Sx  and ),( 11  ii Sx  as shown in Fig. 2.

Fig.2.Illustration of non

Then, this discretization process ended with all the values of constant 

expressed in term of ,iy ,1iy D

where kh  and ...,2,1,0 Ni 

However, all the constant values must be substituted in 

)(xQ m
i where 1,0m and has to be solved 

equation can be formed as below
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iy ,  11)(   iii yxQ , iii DxQ )(' ,   

1 iD ,  iii SxQ )(" , 11)("   iii SxQ .  

as the exact solution, a set of non-polynomial spline equations,

was obtained from all the segments of )(xQi  which passing through the 

as shown in Fig. 2. 

Illustration of non-polynomial spline equations for 8m  

Then, this discretization process ended with all the values of constant iii cba ,,

,1i ,iD ,iS 1iS  in the following form 

,
)sin(

)cos(
2
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ii

i
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ha
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h
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



   

2
2


i

ii

S
hyd   

.   

values must be substituted in the continuity equation 

and has to be solved simultaneously before the general approximation 

equation can be formed as below 
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   (10) 

     

spline equations,

which passing through the 

 

 and id were 

   (11) 

the continuity equation )(1 xQ m
i =

before the general approximation 
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1 1 1 1

1 1 1
2 0

4 2 4i i i i i iy y y h S h S h S
h h h

     
                            

(12) 

where 







 

24

1

4sin

1


 , 






 







4sin

4cos4

4

1
2

 and .,..,2,1,0 Ni   

In order to eliminate all the variables S  in Equation (12), finite difference approach in 

Equation (13) composes of central finite difference, backward finite difference, and forward 

finite difference were used to replace all the variables. 

11111 '   iiiiii gyqyfS  

iiiiii gyqyfS  '        (13) 

111111 '   iiiiii gyqyfS  

where, 

,
2

' 11

h

yy
y ii

i
 

  

,
2

34
' 11

1 h

yyy
y iii

i





  

h

yyy
y iii

i 2

43
' 11

1





  

The general approximation equation was finally obtained as given by Equation (14) as follows 

,11 iiiiiii Fycybya   ni ,...,2,1,0     (14) 

where 

h

p

h

p
q

h

p
a ii

i
i

i 222

3 1
1

1
0




 





   ,  

h

p
q

h

p
b i

i
i

i
11

0

22
2     







  


1

11
0 2

3

22 i
iii

i q
h

p

h

p

h

p
c  ,  11 2   iiii ff

h
fF   

,2
1h  ,2 2

2 h   

,sin1   .cossin2    

By using computer program, Equation (14) was used to construct a system of linear equations 

in a matrix form of Equation Equation(15) as below 

Ay F


    (15)                       
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where 

 nnnn

nnn

ba

cba

cba

cba

ba

A

































111

333

222

11


 

1 2 3 1
[ ... ]T

n n
y y y y y y





,   
1 1 0 2 3 1 1

[ ... ]T
n n n n

F F a y F F F F c y
 

  


 

Then, the SOR and GS iterative methods were conducted to solve two linear systems 

Equation (15) by varying the size of the matrix (128, 256, 512, 1024, 2048), so that the 

performance of this proposed idea can be discussed evidently. 

 

3. ALGORITHM 

Particularly, the derivation of the SOR iterative method starts with decomposition of the 

coefficient matrix, A in Equation (15) into diagonal, lower triangular and upper triangular 

matrices as follow 

ULDA  (16)                                         

By imposing Equation (16) into Equation (15), it yields to the SOR iteration equation in the 

following form 







  ) (-)()-1(

~

)(

~

1-)(

~

)1(

~
FyULDyy kkk       (17)          

with the optimum value of the parameter ω  obtained through several iterations in range of 

21  . The selection of the ω  valueis best on the smallest number of iterations it produces 

when used to solve for the problems.  

Since the single fourth-order two-point BVPs were reduced to two separated equations of 

second-order problems, therefore, there are two systems of linear equations must be solved 

simultaneously. To do this, the first system was first iterated to get the value of function G(x) 

which then passed to the second system in order to solve it. Even though these two linear 

systems were solved differently, but both still using the same general approximation Equation 

(14). The algorithm of the SOR iteration when solving the two systems of linear equations are 

presented in Table 1. 
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Table 1. Algorithm of SOR iterative method 

i. Initialize  

ii. Assign the optimal value of ω 

iii. Solve the system by calculating  using 

( 1) ( ) ( )1

~~ ~ ~
(1 ) ( ) ( )k k kS S D L U S F         

iv. Check the convergence test,  

.  

If yes, go to step (v). Otherwise go back to step (iii). 

v.  Display the approximate solutions. 

 

4. NUMERICAL EXPERIMENT 

The numerical experiments were conducted to solve for three examples of fourth-order 

two-point BVPs. These three examples together with its exact solution are as follow 

Example 1 [21] 

  )),(exp(8)()(2)(4 xxyxyxy   

 ,0)1()0(  yy  

 ,0)0(y   

e4)1(y   

with its exact solution 

xexxxy )1()(   

Example 2 [21] 

  ,0))(2)(4  yxxyxy  

1)0()0(  yy  

eyyu  )1()1(  

with its exact solution 

.)( xexy   

  100 10,0  iU

 1k
iU

    101 10  k
i

k
i UU
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Example 3 [21] 

" 4(2 ( ) 3 ( )y y xcos x sin x    

0y(1)y )0(  

0(0)y   

"y (1) 2sin(1) 4cos(1)   

with its exact solution 

).(()( 2 x1)sinxxy   

 

5. RESULTS AND DISCUSSION 

Based on the numerical experiments, the performance results of all examples in terms of 

iterations number (K), execution time (t) in seconds, maximum absolute error (  ) were 

successfully tabulated in Table 2, 3 and 4 respectively. It can be seen that as the mesh sizes 

increasing, the iterations number also increasing due to the accumulated round-off error 

occurred at every iteration. However, the main aim is to compare which method will give the 

best performance, thus focus should be given on the performance comparison between these 

two iterative methods. 

Table 2. Result of performances for Example 1 

 

Size 

GS SOR 

K t   K t   

128 26789 1.72 1.1323e-05 

 

546 1.33 1.1471e-05 

 = 1.9574 

256 98198 6.62 2.2716e-06 

 

1024 1.61 2.8723e-06 

 = 1.9772 

512 356894 31.0 1.8931e-06 

 

1948 3.43 7.2508e-07 

 = 1.9875 

1024 1283254 167.5 1.0200e-05 

 

3963 6.97 1.8881e-07 

 = 1.9943 

2048 4551026 1004.2 4.1816e-05 7682 13.94 6.3598e-08 

 = 1.9969 
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Table 3. Result of performances for Example 2 

 

Size 

GS SOR 

K t   K t   

128 24843 1.59 2.1023e-06 

 

513 1.11 1.8742e-06 

 = 1.8911 

256 90990 6.13 1.8885e-06 

 

382 1.30 1.4840e-06 

 = 1.9439 

512 330472 28.9 2.5537e-06 

 

844 1.48 2.0185e-06 

 = 1.9709 

1024 1188037 154.9 9.6770e-06 

 

1438 1.9 6.0855e-07 

 = 1.9858 

2048 4216978 938.8 3.8595e-05 2850 3.54 1.4989e-07 

 = 1.9931 

Table 4. Result of performances for Example 3 

 

Size 

GS SOR 

K t   K t   

128 29891 1.97 4.9993e-06 

 

512 1.13 4.8161e-06 

 = 1.9551 

256 109207 7.29 1.9401e-06 

 

996 2.39 1.2057e-06 

 = 1.9772 

512 395358 34.3 3.2802e-06 

 

1951 2.85 2.9898e-07 

 = 1.9886 

1024 1415064 186.6 1.2053e-05 

 

3763 6.13 6.9839e-08 

 = 1.9943 

2048 4991340 1103.1 4.8194e-05 7406 8.55 1.6102e-08 

 = 1.9972 

By referring to all the tables as mentioned previously, it was found that SOR method 

performed better than GS method when solving Example 1, 2 and 3. This can be seen clearly 
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through the difference of iterations number, execution time and maximum absolute error at 

different mesh sizes which are 128, 256, 512, 1024 and 2048. This difference was further 

analyzed in percentage form so that the improvement can be evidently presented.  

The SOR iterative method can be said to perform better compared to GS method when 

solving the fourth-order two-point BVPs, as it required lesser iteration numbers and shorter 

time execution in order to iterate and converge to its exact solution. In fact, by looking at the 

maximum absolute error, it has higher accuracy compared to GS. As to complement the 

tabulated results of performance, Fig.1, Fig.2 and Fig.3 were presented to clarify that the 

problems are best solved by using SOR method. All the values of the percentage decrease 

were tabulated in Table 5, 6 and 7.  

Table 5. Percentage decrease for Example 1 

 

Size 

Improvement of SOR Over GS (%) 

K t   

128 97.96% 22.67% 1.31% 

256 98.96% 75.68% 26.44% 

512 99.45% 88.94% 61.69% 

1024 99.69% 95.84% 98.15% 

2048 99.83% 98.61% 99.84% 

Table 6. Percentage decrease for Example 2 

 

Size 

Improvement of SOR Over GS (%) 

K t   

128 97.94% 30.19% 10.85% 

256 99.58% 78.79% 21.46% 

512 99.74% 94.88% 20.96% 

1024 99.88% 98.77% 93.71% 

2048 99.93% 99.62% 99.61% 
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Table 7. Percentage decrease for Example 3 

 

Size 

Improvement of SOR Over GS (%) 

K t   

128 98.29%  42.64% 3.66% 

256 99.09% 67.22% 37.85% 

512 99.51% 91.69% 90.89% 

1024 99.73% 96.71% 99.42% 

2048 99.85% 99.22% 99.97% 

It should be noted that the percentage decrease was considered as an improvement of SOR 

method over GS method and was calculated by setting the performance of GS as an initial 

value, whereas SOR as the final value and the negative sign of percentage decrease was 

omitted from the graph.  

 

Fig.1. Percentage decrease for Example 1 
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Fig.2. Percentage decrease for Example 2 

 

Fig. 3. Percentage decrease for Example 3 

By observing these graphs of percentage decrease from Fig.1, Fig.2 and Fig.3, the 

performances of SOR method can be seen to have a notable improvement in terms of 

iterations number followed by the execution time and maximum absolute error. As the matrix 

size increasing, the performances of SOR method are improving over GS method for every 

increment of mesh sizes. This indicates that the non-polynomial spline scheme together with 

the SOR method can cope with the accumulated round-off error better than GS method. Thus, 
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it can be stated that SOR method gives better performance especially in term of iterations 

number. 

For future work, it is highly recommended to extend this study for solving high order 

two-point BVPs with different degree of spline such as quartic, quintic and so on by referring 

to [1-5], [14-15, 22]. 

 

6. CONCLUSION 

The cubic non-polynomial spline approximation equations were successfully derived from the 

single function of cubic non-polynomial spline general function. The performances in term of 

iterations number, execution time and maximum absolute error were analyzed by solving 

several examples of fourth-order two-point BVPs together with its exact solution by using 

SOR and GS iterative methods. Then, it was found that the SOR iterative method is superior 

compared to GS iterative method for different mesh sizes (128, 256, 512, 1024, 2048) and can 

be seen from the improvement through the percentage decrease of its respective iterations 

number, execution time and maximum absolute error. Hence, it can be concluded that the 

fourth-order two-point BVPs together with the cubic non-polynomial spline scheme are best 

solved by using SOR iterative method compared to GS iterative method. 
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