
 

 

SYNTHESIS AND CHARACTERIZATION OF PEROVSKITE OXIDES LaFe1-XCuXO3 

(0 ≤ X ≤ 0.4) OBTAINED BY SOL-GEL METHOD 

 

A. Benaicha*, M. Omari 

 

Laboratory of Molecular Chemistry and Environment, University of Biskra, BP 145, 07000 

Biskra, Algeria 

   

Received: 14 March 2017 / Accepted: 31 December 2017 / Published online: 01 January 2018 

 

ABSTRACT 

LaFe1-xCuxO3 (where x ranged from 0 to 0.4) powders are successfully synthesized by the sol-

gel method employing metal nitrate salts as cations precursors and methanol as solvent. 

Thermogravimetric and differential thermal analysis (TGA/DTA) results exhibit that 

decomposition of the precursor to the oxide completed at about 750°C. XRD patterns exhibit 

that the materials belong to a cubic system. All samples show two IR active vibrational 

modes, one at 560 cm-1 assigned to Fe-O stretching vibration and another one at 1385 cm-1 

assigned to the stretching of metal carbonates. SEM images of the samples show that the 

particle size is from 63 to 158 nm and the specific  surface  areas are relatively low. The 

electrochemical measurements exhibit that the catalytic activity is influenced by copper 

doping. The highest electrode performance is achieved with the oxide LaFe0.7Cu0.3O3. 

Keywords: perovskite oxide, sol-gel, thermogravimetric analysis, powder diffraction, 

electrochemical properties. 
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1. INTRODUCTION  

Many fields of modern chemical industry are based on the mixed metal oxides [1] including 

perovskite-type oxides (PTOs) [2] because of their high stability, excellent oxidation activity, 

their low price [3].They have various applications [4-7] thanks to their catalytic, optical, 
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magnetic, electronic and ferroelectric properties [8]. Perovskite-type oxides (PTOs) have the 

general formula ABO3 [2] where A can be an alkali, alkaline earth, or lanthanide metal, B 

may be a 3d-transition metal [9]. The metal ions at A and/or B site can be partially substituted 

by other metal ions [10]. 

LaFeO3 considered one of the important perovskite-type oxides (PTOs) [11] due to its various 

applications including environmental catalyst [12], fuel cells [13], chemical sensors [14], 

magnetic materials [15], and oxygen permeable membranes [6]. For the synthesizing of 

LaFeO3, the literature mentions several synthesis methods, among those; solid-state oxide 

reaction method. It requires a high temperature, a long period, and unfortunately it produces 

uncontrolled particle size [11]. For better results, some alternative routes are proposed such as 

sol-gel method [9], sol-gel auto combustion [16], co-precipitation [17], microemulsion [18], 

hydrothermal method [19] and electrospinning method [12].    

LaFeO3 can be modified by the substitution of A and/or B sites which may affect strongly 

their physical properties. It  was  found  that catalytic  activities  of  LaFe1-xMxO3  (M= Mn, 

Al, Co) complex  oxides  were  much higher than  that  of LaFeO3  sample  because of  the 

increase  of  the valence of B-site  cations  and  lattice  oxygen  content  [9]. In recent years, 

some studies of the system LaFe1-xCuxO3were conducted. First, Caronna et al. [20] have 

synthesized LaFe1-xCuxO3 oxides, where x ranged from 0 to 0.4 by citrate auto-combustion 

method and studied their structural characterization. They have obtained a solid solution in 

the composition range (0 ≤ x ≤ 0.2). Later, Prasad et al. [21] have prepared the orthorhombic 

LaFe1-xCuxO3 (0 ≤ x ≤ 0.3) perovskites by the sol-gel route and studied their dielectric and 

structural properties. Li et al. [22] have studied the effect of substitution of iron by copper (0 

≤ x ≤ 0.3) at T ≤ 500 °C on the visible-light photocatalytic hydrogen evolution of LaFeO3 

oxide. The obtained XRD spectrum shows that there are two or three phases in all studied 

composition range. Recently, Parrino et al. [23] have prepared using the citrate 

autocombustion synthesis method, studied the photocatalytic activity in gas-solid regime 

beneath simulated solar light irradiation of Cu-doped LaFeO3 in the composition range (0 ≤ x 

≤ 0.4). They have concluded that the solubility limit is reached at x = 0.2  

The purpose of our present work is to study the substitution effect of iron by copper on 

electrochemical, structural and morphological properties of LaFe1-xCuxO3 oxides (0 ≤ x ≤ 0.4) 

synthesized via sol-gel method. 
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2. EXPERIMENTAL  

A series of the LaFe1-xCuxO3 perovskites (x=0-0.4) is synthesized using sol-gel method as 

reported earlier using starting materials La(NO3)3.6H2O, Fe(NO3)3.9H2O, Cu(NO3)2.6H2O 

and citric acid (C6H8O7.H2O). First, these starting materials are dissolved in methanol with the 

desired Fe/Cu ratio, the solution is slowly stirred, heated at 70 °C for about 2h up to the 

formation of a gel compound. Then, it is dried overnight at 100°C to obtain the dry precursors 

by evaporating the solvent. The precursors obtained have been ground into powders, then 

calcined with different calcination temperatures from 450°C to 850°C in air for 6h at heating 

rate of 5°C min-1. Thermogravimetric (TG) and differential thermal analysis (DTA) have been 

carried out from room temperature to 1000°C in air at a heating rate of 10°C min-1 using a 

LINSEIS STA PT1600. The samples phase purity has been checked by recording X-ray data 

in the 2 theta range 10°-80° using a Brucker D8_Advance X-ray diffractometer. IR spectra are 

recorded by using FTIR_Shimadzu 8400S spectrometer. The BET surface areas of the powder 

calcined with different calcination temperatures have been realized by using Quantachrome 

Instruments (version.2.13). SEM photographs are taken in order to examine the particle 

morphology of the perovskite by using a QUANTA FEG 450 scanning electron microscope. 

The electrochemical experiments for O2 evolution and methanol oxidation are performed by 

using a Volta Lab 40 potentiostat/galvanostat. The measurements have been carried out in a 

three-comportment cell. Potassium hydroxide electrolyte solution (1M) has been prepared by 

dissolving a required amount of KOH (Merck) in bidistilled water. The working electrodes 

(1cm2) have been obtained by painting with an oxide suspension. The counter has been 

Hg/HgO/1M KOH. All potentials in the text have been referred to this reference electrode. 

 

3. RESULTS AND DISCUSSIONS  

3.1. TG/DTA analysis of the precursor  

A typical TG/DTA curve of LaFe0.8Cu0.2O3 precursor gel with heating rate of a 10°C min-1 

from 25°C to 1000°C is shown in Fig.1 According to major changes observed on the TG 

graph, we can divide the decomposition process into three steps (25-250°C, 250-550°C, 550-

820°C). 
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Fig.1. TG and DTA curves of LaFe0.8Cu0.2O3 precursor heated in air at 10°C min-1 

The mass loss of LaFe0.8Cu0.2O3 precursor gel powder corresponding to the first step until 

250°C is associated with a water desorption and organic substances decomposition (methanol, 

citric acid), also reflected by two exothermic peaks at 190 and 220°C in DTA curve [24]. The 

second mass loss between 250-550°C associated to a broad and weak endothermic peak 

appearing in the same range of temperature in DTA curve, may be regarded as a result of the 

burning of the remaining organic materials accompanied by evolution of CO2 and H2O gases 

and the formation of a metal carbonate [25]. The mass loss in the third step between 720-

820°C probably attributed to the formation of LaFe0.8Cu0.2O3 oxide is associated with two 

exothermic peaks at 745°C and 806°C as seen in DTA curve [26], confirmed by XRD results 

discussed below.  

3.2. IR analysis of the calcined samples  

FT-IR analysis of the calcined samples is important both for the properties of the obtained 

materials and control the process of the reaction. Fig.2 shows the infrared spectra of 

LaFe0.8Cu0.2O3 sample heated at different temperatures from 450 to 850 °C. The spectra of the 

sample LaFe0.8Cu0.2O3 are similar. The strong absorption band observed at 560 cm-1 is 

attributed to Fe-O stretching vibration [27], which confirms the formation of the perovskite. 

The absorption band at 1385 cm-1 owing to the splitting of v3 asymmetric stretching of metal 

carbonates [1] is gradually decreasing with increasing temperature until it disappeared in the 

sample heated at 850°C.For the sample heated at 450 °C, a broad absorption band is observed 
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at about 3405 cm-1 which is assigned to O-H stretching [28], whereas the band at 560 cm-1has 

weakly appeared, which indicates a partial formation of the oxide at this temperature. 

 

Fig.2. Infrared spectra of LaFe0.8Cu0.2O3 powder sample calcined at different temperatures 

 

Fig.3. Infrared spectra of the LaFe1-xCuxO3 perovskites (0 ≤ x ≤ 0.4) samples calcined at 

different calcination temperatures 
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The infrared spectra of LaFe1-xCuxO3 (0 ≤ x ≤ 0.4) samples heated at 750-850 °C Fig.3. In 

each case, the band of Fe-O stretching vibration at 560 cm-1 is observed which confirms 

clearly the formation of the perovskite structure. 

3.3. XRD analysis  

Fig.4 shows the XRD patterns of the calcined powders LaFe1-xCuxO3 (0 ≤ x ≤ 0.4) obtained 

by sol-gel route after 6h of calcination at 750-850 °C. The results reveal that all LaFe1-xCuxO3 

samples have a perovskite-type structure with no detectable secondary phase; therefore, all the 

main diffraction peaks could be indexed in the cubic system (JCPDS card 75-0541). These 

results indicate also that the structure of the perovskite is well maintained after substitution of 

iron by copper and the solubility limit is reached at x=0.4. 

Fig.5 shows the XRD patterns of LaFe0.8Cu0.2O3 powders calcined at different calcination 

temperatures (450-850 °C) for 6h. An amorphous system is obtained for the sample heated at 

450 °C. The XRD patterns of the LaFe0.8Cu0.2O3powders heated at 550 and 650°C reveal that 

the presence of three crystalline phases. A cubic phase (JCPDS card 75-0541) with poor 

crystallinity, La2O3 (JCPDS card 074-1144) and Fe3O4 (JCPDS card 075-0449) phases. Peak 

diffractions of the last two phases decreased at 650°C, disappeared completely in the XRD 

patterns at 750 and 850°C and only a single cubic phase (JCPDS card 75-0541) remains 

present with good crystallinity. 

 

Fig.4. X-ray diffraction patterns of perovskite samples LaFe1-xCuxO3 (0≤x≤0.4) 
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Fig.5. X-ray diffraction patterns of the LaFe0.8Cu0.2O3 powder calcined with different 

temperatures: (a) La2O3; (b) Fe3O4; (c) cubic phase 

 
The lattice parameters of the perovskites LaFe1-xCuxO3 have been calculated for each x value 

from the XRD patterns using Celref programme Fig.6. We can observe that the volume 

decreases when Cu content increases in the sample (due to the substitution of the larger Fe 

ions by the smaller Cu ions). The straight line means that a solid solution was formed in the 

composition range (0 ≤ x ≤ 0.4).  

 

Fig.6. Lattice volume dependence on copper content (x) for LaFe1-xCuxO3 
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3.4. Specific surface area analysis (BET) 

 Table.1 represents the BET-surface area, pore diameter, and particle size results of 

the calcined powders LaFe1-xCuxO3 (0 ≤ x ≤ 0.4). The smallest particle size (63.4 

nm) gives the best specific  surface  area (6.7 m2 g-1) and the bigger gives the lower 

specific  surface  areas. It is known that the particle size and surface area are related 

to each other inversely [29] and our results are in agreement with this concept. In 

general, our results  show  that  the  specific  surface  areas  of  the  prepared 

powders were  low  and that is may be because of the high calcination temperature   

(from 750°C to 850°C). It is very well known that the specific surface  area of  

perovskite is affected by the calcination temperature [2].  

 
Table 1. BET surface area, average pore diameter and average particle size of LaFe1-xCuxO3 

The 
samples 

BET-surface 
area (m2 g-1) 

Average Pore 
diameter (Å) 

Average Particle size  
(nm) 

X=0 2.9 87.8 97.0 
X=0.1 4.6 96.2 78.5 
X=0.2 6.7 156.4 63.4 
X=0.3 1.7 59.1 126.9 
X=0.4 0.5 113 158 

 

3.5. SEM analysis 

The SEM micrographs of the calcined powders LaFe1-xCuxO3 (0 ≤ x ≤ 0.4) are presented in 

Fig.7. The powders are observed to be compact and few volatile grains which leave pores in 

material due to escaping gases from the decomposition of organic compounds and the strong 

redox reaction during the formation of perovskites [16]. pores are seen clearly in SEM images 

of the powders (x=0, 0.1, and 0.2) with decreasing of particle size (from 97 to 63 nm) 

respectively, which explain the  high specific  surface  areas for these compositions. By 

seeing SEM micrographs of the samples (x=0.3, and x=0.4) where the formation of the big 

grains with decreasing of pores, we can understand why they give low specific  surface  areas.  
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Fig.7. SEM micrographs of LaFe1-xCuxO3: a x=0, b x=0.1, c x=0.2, d x=0.3 and e x=0.4 

3.6 Electrochemical Properties 

The electrochemical activity for oxygen evolution reaction was investigated on LaFe1-xCuxO3 

coated nickel substrate according to: 

O2 + 2H2O + 4e- ↔ 4OH- 

 Polarization studies under potentiostatic conditions were carried out. Fig.8 shows the 

cathodic and anodic current–potential curves of air electrode with different substitutions of 

copper in KOH(1M). The voltammograms exhibit two redox peaks, an anodic (Epa =544 mV) 

and a corresponding cathodic (Epc =402 mV) peak, prior to the onset of the O2 evolution 

reaction, revealing a pseudocapacitance because of the Ni(III)/Ni(II) surface redox couple [30, 

31].  

Compounds with large copper content show higher anodic currents than those with smaller x. 

Compared to all compositions, the LaFe0.7Cu0.3O3 one seems to be the most active. Copper, a 

divalent cation increases the catalytic activity and provides a catalyst with high structural 

stability due to the essential role of the transition metal ion in developing highly active 

catalysts. At the same voltage, the highest electrode performance is achieved for oxygen 

evolution with x=0.3, (ia=14.3 µA.cm-2 at Epa =544 mV). 
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Fig.9 shows the anodic current–potential curves of air electrode with different substitutions of 

copper in KOH(1M)+CH3OH(1M). The voltammograms exhibit an anodic peak (Epa =876 

mV), but no cathodic peak in this medium. The voltammetric profile is rather featureless, 

showing a wide plateau region. It is clear that the coated perovskite electrodes present a wide 

range of electrochemical stability and a composition dependency of the current intensity 

Compounds with large copper content show higher anodic currents than those with smaller x. 

Compared to all compositions, the LaFe0.7Cu0.3O3 one seems to be the most active, (ia=32.6 

µA.cm-2 at Epa =876 mV). 

 

 

Fig.8. Cathodic and anodic polarization curves for LaFe1-xCuxO3 electrodes in 1 M KOH 
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Fig.9. Cathodic and anodic polarization curves for LaFe1-xCuxO3 electrodes in 

KOH(1M)+CH3OH(1M) 

 

4. CONCLUSIONS  

Perovskite-type LaFe1-xCuxO3 (0 ≤ x ≤ 0.4) oxides are successfully synthesized by sol-gel 

route employing metal nitrate salts as cations precursors. Structural characterization showed 

that the structure had a single phase of cubic perovskite, formed in a heating at about 750°C in 

air for 6h. The microstructure and morphology of the compounds exhibited that the copper 

content affects the surface area that leads the material compact with decreasing of pores. 

Compared to all studied compositions, LaFe0.7Cu0.3O3 electrode exhibits significantly greater 

electroactivity, indicating that this material is among the analyzed series the best 

electrocatalyst for oxygen evolution. 
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