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ABSTRACT 

This paper introduces a new design of a set of scripting language constructs and the 

implementation test for the algorithms development. The design of the scripting language is 

presented in form of syntactic specification and Deterministic Finite Automaton (DFA). 

Based on the several algorithms of PSO-GA hybrids that have been developed with the 

scripting language constructs, the Characters of Code (COC) are measured in order to test the 

easiness of the programming language. The results show that across all algorithms, the 

scripting language is anticipated to enable easy programming which has been presented by 

the very less number of COC compared to the JAVA programming language. Furthermore,  
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based on observation from repeated experiments, the optimization results of all the algorithms 

developed with the scripting language are shown to be very accurate within the scale of 

results generated by JAVA codes.  

Keywords: rapid algorithm; development; hybridization dynamic; parameterizations; 

scripting language. 

 

1. INTRODUCTION 

Improving Particle Swarm Optimization (PSO) with hybridization techniques has gained wide 

attention from many researchers [6, 10, 14-21]. However, implementing the hybrid algorithms 

involves some difficulties with a repetitive algorithm design and development. In most cases, 

to complete the tasks is time consuming. In order to accomplish the tasks easier and faster, the 

researchers should be provided with a software tool that provides ready-to-use design and 

implementation [3, 12].  

To date, there exist software tools for different meta-heuristics techniques [2, 4-5, 7, 11] but 

very limited tools that enable PSO-GA hybridizations. While the software tools allow users to 

combine different kinds of meta-heuristics, deep and wider knowledge in programming and 

meta-heuristics algorithms is required as the software tools not specifically designed for PSO 

and GA algorithms. 

Responding to the limitation of existing software tools, the aim of this paper is to introduce a 

set of scripting language constructs for the PSO-GA hybrids. The scripting language 

constructs were developed based on the proposed implementation frameworks that have been 

described in the previous paper [7].  

The remaining content of this paper is organized as follows. In section 2, a comparison study 

among the existing software tools for meta-heuristics is provided. Then, the designs of the 

scripting language constructs are presented in section 3, followed with the evaluations in 

section 4 before concluding remarks in section 5. 

 

2. SOFTWARE TOOLS FOR META-HEURISTICS 

As mentioned in the previous section, software tools help users to easily design, develop and 
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testing meta-heuristics. Table 1 lists some of the software tools. 

Table 1. Comparison of software tools for meta-heuristics 

Software Tools Single Hybrid 

iOpt √ X 

Hotframe √ √ 

Mallba √ √ 

JEO √ X 

HeuristicLab √ √ 

JSwarm √ X 

SwarmOps √ X 

MDF √ √ 

ParadisEO √ √ 

EASEA √ X 

EAML √ X 

PPCEA √ X 

ESDL √ X 

As single paradigm is simpler than meta-heuristics hybrids, the majority of the existing 

software tools were designed to be more applicable for the easy implementation of single 

meta-heuristics. Some of the software are JEO [2], EAML [11], iOpt [12], EASEA [3], 

JSwarm, SwarmOps and ESDL [9]. Some of these software supports more than one 

meta-heuristics, but each of them is independently executed without any sense of internal 

interactions that can enable low-level meta-heuristics hybridization. For example, iOpt 

support different meta-heuristics like Genetic Algorithm, Local Search and Simulated 

Annealing but the hybridization of these different algorithms involves extensive programming 

modifications. The software tools that support hybridization are Hotframe [5], Mallba [1], 

HeuristicLab [13], MDF [2] and ParadisEO [22]. While the existing software are flexible for 

the development of many kinds of meta-heuristics, they are not designed to be specific for 

PSO-GA hybrid, which led to major programming modifications.  
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3. THE SCRIPTING LANGUAGE DESIGN 

In this part, the syntactic specifications of the scripting language constructs are described. As 

a scripting language, the arguments are simple facilitate fast scripting for commonly-used 

components, which are optional to any chosen parameters. 

3.1. Syntactic Specification 

In this part, the syntactic specifications of the scripting language constructs are described. As 

a scripting language, the arguments are simple facilitate fast scripting for commonly-used 

components, which are optional to any chosen parameters. 

3.1.1. General Components of PSO-GA Hybridization 

The scripting language specifications for the general algorithm components are defined as 

following Fig. 1. 

SGMutation |SGCrossover | SGCrossMutation | SinglePSO 

[Name ^AlgoName] [ENum ^ExperimentNum] 

[Name ^AlgoName] [ENum ^ExperimentNum] 

 

SEARCHSPACE [particle ^particle] [Dim ^particle dimension] 

 

PROBLEM [^ProbName | userdefined] [min  ^Min] 

Fig.1. General components specifications 

The general components are comprised of the predefined framework [7] that has been used as 

a keyword for identifying the type of hybridizations. It can be either SGMutation, 

SGCrossover or SGCrossMutation to implement a single PSO algorithm, the keyword used to 

represent the algorithm is single PSO. The relevant parameters for the general specifications 

are the algorithm name that uses the keyword Name, experiment number with keyword ENum, 

iteration number as ITER and population size as PSize. These parameters are governed by 

string variable ^AlgoName, integer variable ^ExperimentNum, integer variable 

^IterationNum and integer variable ^PopulationSize respectively.  

Other related components are the search space and problem. The search space definition uses 

SEARCHSPACE keyword that consists of solutions representation governed by a boolean 
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variable ^particle (default particle=true). Each particle has the dimension size Dim governed 

by integer variable ^particledimension. The Problem specifications begin with PROBLEM 

keyword with the parameters problem name governed by ^ProbName and problem objective 

by a boolean variable ^Min (default min=true). The variable ^ProbName calls the related 

predefined problem formulation available at the back-end software library. A more flexible 

option for problem definition is userdefined that permits user to insert new user-defined codes 

segment, providing programmers with the capability to incorporate new formulation of 

optimization problem. 

3.1.2. PSO Update 

The scripting language specifications for the general algorithm components are defined as 

following Fig. 2. 

UPDATE [basic | constriction | inertia] 

[c1 ^c1value] [c2 ^c2value] 

[MaxP ^maxp] [MinP ^minp] [MaxV ^maxv][MinV ^minv] 

 

constriction [^constrictionvalue] | [random #random] | [time-vary #time_vary] | [adaptive #adaptive] 

 

Inertia [const  ^value] |  [random #random]  | [adaptive #adaptive] 

Fig.2. PSO update specifications 

The scripting language is designed for three common types of PSO update namely basic, 

constriction and inertia. The personal and global learning rates are governed by c1value and 

c2value respectively. The maximum and minimum position (MaxP and MinP) specify the 

bounded areas each particle can be positioned, while maximum and minimum velocity (MaxV 

and MinV) determines the limitation change for one particle can accelerate for each iteration. 

All these parameter values are governed by its specific real variable (^maxp, ^minp, ^maxv, 

^minv). 

Besides predefine value for constriction and inertia rates, formulation of dynamic 

parameterizations can also be used. As described in [7], the dynamic parameterizations can be 

calculated through #random, #time-vary and #adaptive functions. 
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3.1.3. GA Crossover 

As given in Fig. 3, the crossover component has three related configurations which are 

crossover rate defined in Crate specification, crossover operation C_operation manipulated 

from #c_operation function and selection operation S_operation from #selection function.  

Crossover [Crate ^value] [C_operation #c_operation] [S_operation #selection]  

 

Crate[const ^value] | [random #random] [time-vary #time_vary] | [adaptive #adaptive] 

Fig.3. Crossover specifications 

3.1.4. GA Mutation 

Two important specifications in mutation are mutation rate Mrate and mutation operation 

M_operation where value for mutation rate is optional to different constant and dynamic 

parameterizations. Formulation of mutation operation is governed by #m_operation function. 

The scripting language specifications for the mutation components are defined as following 

Fig. 4. 

Mutation [Mrate ^value] [M_operation 

 

Mrate[const ^value] | [random #random] [time-vary #time_vary] | [adaptive #adaptive] 

Fig.4. Crossover specifications 

3.1.5. Dynamic Parameterizations 

There are variation formulations have been used for the dynamic parameterizations that uses 

time-vary and adaptive approaches. The formulations of each approaches are controlled by 

input parameters. The language specifications for the time-vary and adaptive 

parameterizations are written as the following Fig. 5. 
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time-vary [LD] | [NLD] | [LI] | [NLI] 

adaptive [ISA] | [Speed] | [Ratio] | [Rank] 

 

LD [^min   ^max] | NLD[^min  ^max  ^ n-value] | 

LI [^min   ^max] | NLI[^min  ^max  ^ n-value] 

 

ISA [^e_value   ^a_value] | Speed[^a_value  ^b_value] | 

Ratio [] | Rank [^min ^max] 

Fig.5. Dynamic parameters specifications 

The time-vary formulations are linear increasing (LI), linear decreasing (LD), nonlinear 

increasing (NLI) and nonlinear decreasing (NLD). All time-vary parameterizations requires 

minimum and maximum value in relation to specific parameter. The parameter n is used in 

variation of non-linear time-vary (NLD, NLI) where n is a nonlinear modulation index in the 

range of between [min: max]. The adaptive parameterizations are developed based on finesses 

performance, which is optional to Individual Search Ability (ISA), Speed, Ratio or Rank 

formulation. ISA involves e and a parameters, Speed requires a and b parameters, while Rank 

formulation employs minimum and maximum similar to time-vary schemes. The e, a and b 

are a constant value close to zero.  

3.2. Deterministic Finite Automaton (DFA) 

The following Fig. 6 is the Deterministic Finite Automaton (DFA) of the proposed scripting 

language. Generally, DFA consists of five tuples  fIQ ,,,,  , where each element in Q 

indicates one state, including the initial state I and the final state f. Besides, there exists 

different types of states that are classified according to  where s1..s15 are 

representing the states of the single PSO components, c1..c5 are representing crossover states 

and m1..m4 for the mutation states.   denotes the finite set of input symbols in the language 

and   is the transaction function QQ : from one state to another, which is 

represented in an arrow. 
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Fig.6. DFA of the scripting language 

 

4. THE IMPLEMENTATION 

An intermediate compiler is required to translate the scripting language into JAVA codes for 

the execution. The compiler software for the scripting language is an enhancement from the 

existing scripting language named JACIE (Java-based Authoring language for Collaborative 

Interactive Environments) version II. JACIE provides scripting language that is used to 

support rapid programming environment for distributive and collaborative applications. Since 

JACIE is a language based platform, the inclusions of new components as well as a new 

algorithm are always permitted. Hence, the compiler can be extended to translate new 

scripting language constructs for different domain applications.  

Different algorithms have been developed with the scripting language, which were presented 

in [8]. As an example, the following Fig. 7 shows the codes for PSO-GA hybrids with both 

mutation and crossover. 

The program begins with JACIE keyword to indicate the compiler is under JACIE 

architecture. To denote that the algorithm used both crossover and mutation, the 

SGCrossMutation keyword is used. At line 6, the crossover rate is determined through a linear 

decreasing parameterization. 
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1 JACIE{ 

2 SGCrossMutation(Name TCMR, ENum 40,ITER 3000, PSize 40); 

3 SEARCHSPACE(particle, dim 30); 

4 PROBEM(Sphere, min); 

5 UPDATE (inertia[const 0.4],c1[const 2],c2[const2],MaxP 10.0, MinP -5, MaxV 10, MinV 

5); 

6 Crossover (Crate[time-vary LD 0.6 1.0], C_ooperation[pbest], S_operation[roulettwheel]); 

7 Mutation(Mrate const 0.1, M_operation[Gaussian]); 

8 } 

Fig.7. An example of the scripting language codes 

 

5. THE EVALUATION 

Several codes of the algorithms have been successfully executed with the scripting language 

constructs. The optimization results are observed as to test the validity of the algorithms 

developed with the scripting language. Firstly, the results of all different PSO-GA hybrids 

named Time-vary Crossover Rate (TCR), Time-vary Mutation Rate (TMR), Time-vary 

Crossover Rate (TMR) with different time-vary parameterizations (linear increasing (LI), 

linear decreasing (LD), non-linear increasing (NLI), non-linear decreasing (NLD)) that are 

developed with the scripting language constructs and JAVA can be compared from the Fig. 8. 

The results show that all the LLH of PSO-GA with time-vary parameterization developed 

with the scripting language construct are able to produce very low mean best fitness within 

the scale of results generated by the JAVA codes. A very slightly different can be seen from 

TCR for f1(Sphere) and f3(Rastrigin), from TMR for f1(Sphere), f2(Rosenbrock) and 

f5(Griewank) as well as from TCMR for f4(Levy) and f7(Alpine). Furthermore, the 

comparison of mean best fitness for all the PSO-GA hybrids with Adaptive Crossover Rate 

(ACR), Adaptive Mutation Rate (AMR) and Adaptive Crossover and Mutation Rate (ACMR) 

with four adaptive approaches (SPEED, RATIO, RANK, ISA) is presented in the following 

Fig. 9. 

Similarly, the results generated by all the PSO-GA hybrids developed with the two 
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development approaches do not show extreme distinctions in adaptive parameterizations. 

Most of them are able to generate results within the range of results produced by the JAVA 

codes. From ACR, very slight difference can be seen on f2(Rosenbrock), f4(Levy) and 

f7(Alpine) while from TMR, no difference output has been observed. From ACMR, f1(Sphere) 

faces a small different of results between the two approaches. 

 
Fig.8. Comparison of mean best fitness between the scripting language and JAVA language 

development approaches for the LLH of PSO-GA with time-vary parameterization 

 
Fig.9. Comparison of mean best fitness between the scripting language and JAVA language 

development approaches for the LLH of PSO-GA with adaptive parameterization 



S. Masrom et al.            J Fundam Appl Sci. 2018, 10(1S), 869-883             879 
 

 

The easiness test is valuable to indicate the effort in creating and reading the programs or 

algorithm descriptions. It uses volumetric measures which identify the lines of code characters 

of code (COC) in the programs. The COC of scripting language codes is compared with the 

relevant JAVA source codes that were manually developed in the extended JSwarm software 

framework. Only codes that an end user would need to write is included while compilers and 

predefined operators, comments as well as begin and end symbols () are not assessed. Besides, 

other codes used in the previous version of JACIE codes, which are not related to this work is 

also eliminated from this assessment. Table 2 shows the COC in each description.   

Table 2. COC of different PSO-GA hybrids developed with the scripting language and JAVA 

PSO-GA Hybrids Scripting Language Main JAVA 

TMR 244 3163 

TCR 269 2995 

TCMR 323 3362 

TIW 198 2662 

AMR 245 3239 

ACR 270 3410 

ACMR 324 3575 

AIW 199 2936 

The algorithms are named as TMR to represent time-vary mutation rate, TCR for time-vary 

crossover rate, TCMR for time-vary crossover mutation rate, TIW for time-vary inertia weight, 

AMR for adaptive mutation rate, ACR for adaptive crossover rate, ACMR for adaptive 

crossover mutation rate and AIW for adaptive inertia weight. The TIW and AIW are the single 

PSO algorithm with time-vary and adaptive inertia weight respectively.  

The results in Table 2 show that the scripting language programs consistently have shown less 

code than the main JAVA codes. This implies that to use the scripting language requires less 

effort to create and read the programs. 

 

6. CONCLUSION 

For all algorithms of PSO-GA hybrids, the proposed scripting language constructs have 
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consistently shown very less code than the main JAVA codes. This implies that to use the 

scripting language constructs requires less effort. The scripting language constructs 

participated in enabling easy programming elements as the following: 

It is wordless with simple and straightforward statements to be used and comprehended by 

different kind of users, for examples researcher and student. The statements and keywords are 

thoroughly designed to be closely alike to the relevant components of PSO and GA for 

examples Crossover, Mutation, problem and so on. 

Additionally, all the scripting codes for all developed algorithms have a very less number of 

lines, words and characters than the main JAVA codes written in the software framework. It 

also has very small number of common symbols namely comma, semicolon, parenthesis and 

bracket. More importantly, the symbols and keywords are distinguishable each other in 

relation to different purposes. All the statements have consistent structure in such that it 

begins with the keyword, followed by an open parenthesis, parameter value, close parenthesis 

and ended with a semicolon. 

 

7. ACKNOWLEDGEMENTS  

The authors would like to thank Ministry of Education Malaysia and Universiti Teknologi 

MARA for their financial support to this project under FRGS Grant No. 

FRGS/1/2015/ICT01/UITM/02/1. 

 

8. REFERENCES 

[1] Alba E, Almeida F, Blesa M, Cabeza J, Cotta C, Díaz M, Dorta I, Gabarró J, León C, Luna 

J, Moreno L. MALLBA: A library of skeletons for combinatorial optimisation. In 8th 

European Parallel Processing Conference, 2002, pp. 63-73 

[2] Arenas M G, Dolin B, Merelo J J, Castillo P A, Viana I, Schoenauer M. JEO: Java 

evolving objects. In 4th Annual Conference on Genetic and Evolutionary Computation, 2002, 

pp. 991-991 

[3] Collet P, Lutton E, Schoenauer M, Louchet J. Take it EASEA. In M. Schoenauer, K. Deb, 

G. Rudolph, X. Yao, E. Lutton, J. Merelo & H. P. Schwefel (Eds.), Parallel problem solving 



S. Masrom et al.            J Fundam Appl Sci. 2018, 10(1S), 869-883             881 
 

 

from nature. Berlin: Springer-Verlag, 2000, pp. 891-901 

[4] Dower S, Woodward C J. ESDL: A simple description language for population-based 

evolutionary computation. In 13th Annual Conference on Genetic and Evolutionary 

Computation, 2011, pp. 1045-1052 

[5] Fink A, Voß S. Hotframe: A heuristic optimization framework. In S. Voß, & D. L. 

Woodruff (Eds.), Optimization software class libraries. New York: Springer, 2002, pp. 81-154 

[6] Yassin I M, Zabidi A, Ali A M, Syahirul M, Md Tahir N, Zainol Abidin H, Rizman Z I. 

Binary particle swarm optimization structure selection of nonlinear autoregressive moving 

average with exogenous inputs (NARMAX) model of a flexible robot arm. International 

Journal on Advanced Science, Engineering and Information Technology, 2016, 6(5):630-637 

[7] Masrom S, Abidin S Z Z, Omar N, Nasir K. Rapid prototyping for low-level hybridization 

of PSO-GA. In H. Fujita, A. Selamat, & H. Haron (Eds.), Frontiers in artificial intelligence 

and applications. Amsterdam: IOS Press, 2014, pp. 495-512 

[8] Masrom S, Abidin S Z Z, Omar N. Easy and concise programming for low-level 

hybridization of PSO-GA. In International Conference on Intelligent Software Methodologies, 

Tools, and Techniques, 2014, pp. 1-14 

[9] Talbi E. G. Metaheuristics: From design to implementation. New Jersey: John Wiley and 

Sons, 2009 

[10] Thangaraj R, Pant M, Abraham A, Bouvry P. Particle swarm optimization: Hybridization 

perspectives and experimental illustrations. Applied Mathematics and Computation, 2011, 

217(12):5208-5226 

[11] Veenhuis C, Köppen M. XML based modelling of soft computing methods. In J. Benötez, 

O. Cordón, F. Hoffmann, & R. Roy, (Eds.), Advances in soft computing. London: Springer, 

2003, pp. 149-158 

[12] Voudouris C, Dorne R, Lesaint D, Liret A. iOpt: A software toolkit for heuristic search 

methods. In T. Walsh (Ed.), Principles and practice of constraint programming. Berlin: 

Springer-Verlag, 2001, pp. 716-729 

[13] Wagner S, Affenzeller M. HeuristicLab: A generic and extensible optimization 

environment. In B. Ribeiro, R. F. Albrecht, A. Dobnikar, D. W. Pearson, & N. C. Steele, (Eds.), 



S. Masrom et al.            J Fundam Appl Sci. 2018, 10(1S), 869-883             882 
 

 

Adaptive and natural computing algorithms. Vienna: Springer, 2005, pp. 538-541 

[14] Masrom S, Rahman A S, Abidin S Z, Omar N, Rizman Z I. The implementation 

frameworks of meta-heuristics hybridization with dynamic parameterization. Journal of 

Fundamental and Applied Sciences, 2017, 9(6S):558-576 

[15] Mahtar S N, Masrom S, Omar N, Khairudin N, Rahim S K, Rizman Z I. Trust aware 

recommender system with distrust in different views of trusted users. Journal of Fundamental 

and Applied Sciences, 2017, 9(5S):168-182 

[16] Masrom S, Abidin S Z, Omar N, Rizman Z I. Software framework for optimization 

problems and meta-heuristics based on scripting language. Journal of Fundamental and 

Applied Sciences, 2017, 9(5S):33-48 

[17] Ibrahim R, Leng N S, Yusoff R C, Samy G N, Masrom S, Rizman Z I. E-learning 

acceptance based on technology acceptance model (TAM). Journal of Fundamental and 

Applied Sciences, 2017, 9(4S):871-889 

[18] Masrom S, Abidin S Z, Omar N, Rahman A S, Rizman Z I. Dynamic parameterizations 

of particle swarm optimization and genetic algorithm for facility layout problem. ARPN 

Journal of Engineering and Applied Sciences, 2017, 12(10):3195-3201 

[19] Ibrahim R, Masrom S, Yusoff R C, Zainuddin N M, Rizman Z I. Student acceptance of 

educational games in higher education. Journal of Fundamental and Applied Sciences, 2017, 

9(3S):809-829 

[20] Indera N I, Yassin I M, Zabidi A, Rizman Z I. Non-linear autoregressive with exogeneous 

input (NARX) Bitcoin price prediction model using PSO-optimized parameters and moving 

average technical indicators. Journal of Fundamental and Applied Sciences. 2017, 

9(3S):791-808 

[21] Zabidi A, Yassin I M, Tahir N M, Rizman Z I, Karbasi M. Comparison between binary 

particles swarm optimization (BPSO) and binary artificial bee colony (BABC) for nonlinear 

autoregressive model structure selection of chaotic data. Journal of Fundamental and Applied 

Sciences, 2017, 9(3S):730-754 

[22] Cahon S. ParadisEO: A platform for the design and deployment of parallel hybrid 

metaheuristic on clusters and grids. PhD thesis, France: University of Science and Technology 



S. Masrom et al.            J Fundam Appl Sci. 2018, 10(1S), 869-883             883 
 

 

of Lille, 2005 

 

How to cite this article: 
Masrom S, Abidin SZZ, Omar N, Rizman ZI, Rahman ASA. Scripting language design and 
the implementation test for pso-ga hybridizations. J. Fundam. Appl. Sci., 2018, 10(1S), 
869-883. 
 
 

 

 

 


