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ABSTRACT 

A space truss is in an unstable configuration if it can displace incrementally without an 

incremental change in its loading and its supports. The load path which follows after an 

unstable configuration can be unique (snap-through), or there can be several possible load 

paths (bifurcation). This paper presents a method to detect nearly unstable configurations of a 

truss, a method to determine the loading, displacements and reactions of the unstable 

configuration and a method to traverse the load path which follows after the unstable 

configuration. The detection of structural configurations with singular tangent stiffness matrix 

is essential because they can be unstable. The secondary paths, especially in unstable buckling, 

can play the most important role in the loss of stability and collapse of the structure. A new 

method for reliable detection and accurate computation of singular points on load paths is 

presented and applied to a space truss subjected to symmetric and asymmetric snow loads. 
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1. NONLINEAR STRUCTURAL ANALYSIS AND STABILITY ANALYSIS 

Consider a structural model consisting of nodes, elastic finite elements, loads applied at nodes 

and displacements prescribed at nodes. The free displacements of the nodes in the direction of 

the applied loads and the reactions at the supports in the direction of the prescribed 

displacements are to be determined. The behaviour of the structure is described with a node 

displacement vector d and a node force vector f. The elements of d and f are ordered so that 

the free displacements precede the prescribed displacements. Vectors d and f are related by the 

total stiffness matrix K of the structure, which is decomposed into submatrices Kim that are 

compatible with the subdivision of d and f: 

K d = f  (1) 
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d1 – free displacements;d2 – prescribed displacements; f1 – applied loads; f2 – support 

reactions. 

Consider a structure that is subjected to a load pattern and a displacement pattern so that the 

loading can be varied with a single parameter, which is called the load factor λ: 

f1 = λf1p    (3) 

f1p - pattern load; 

d2 = λd2p(4) 

d2p - prescribed displacement pattern. 

The behavior of the structure under load is described with a load path which shows the 

variation of the force norm with the displacement norm. Each point on the load path is an 

equilibrium configuration of the structure. If the displacements are large relative to the 

dimensions of the structure, the nonlinearity of the relationship between force norm and 

displacement norm must be considered as shown in Fig. 1. 

The analysis of the load path of the structure consists of four parts: nonlinear analysis of the 

primary branch, determination of the singular point (if it exists for the specific structure and 

its loading), branch switching from the primary to the secondary branch and traversal of the 

secondary branch. This paper focuses on the reliable identification and accurate computation 

of singular points. Branch switching and continuation of load paths on secondary branches are 
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treated in [1], and were also presented in [2]. 

d

f

 

Fig.1. Nonlinear load path of a structure 

It is essential to differentiate explicitly between a nonlinear analysis and a stability analysis of 

a structure. A nonlinear structural analysis starts with the reference configuration and 

computes the primary branch of the load path stepwise: It is therefore the solution of an initial 

value problem. The stability analysis also starts with the path following method at the origin. 

It goes beyond the nonlinear analysis by detecting and computing configurations (if they exist) 

in which the tangent stiffness matrix of the structure is singular. These configurations are 

mapped to the load path as singular points. 

If the load factor decreases on one of the branches that leave a singular point, the structure is 

called unstable. The essential feature of a stability analysis is not only that it detects singular 

points, but also that it follows an unstable branch of the load path (if it exists) beyond the 

singular point. In Fig. 1, a nonlinear structural analysis may follow branch “a” beyond the 

singular point, whereas a stability analysis must follow the secondary branch. It will be shown 

later in this paper that it cannot be assumed that commercial software packages for nonlinear 

structural analysis automatically perform a stability analysis. 

 

2. DETECTION OF SINGULAR POINTS 

Path following methods that compute the primary branch of the load path in Fig. 1 are treated 

in detail in the literature, for example in monographs on nonlinear analysis of continua and 

structures by some publications[3-8]. The methods of analysis differ primarily in the type of 

the stiffness matrix (tangent, secant) and the control parameters for the step length (force, 

displacement, path length). Our work [5] has shown that a method based on iterative 

improvement of the secant stiffness matrix in each load step is particularly robust and 
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accurate. The governing equations for load step s are given by: 

)()()()( ssss
s cVfVdK   

2

1

2

1

2

1

22

12

21

11

c

c

Vf

fV

dV

d

K

K

K

K

ps

s

s

s 
 


 
(5) 

)(s
sK - secant stiffness matrix for step s; )(sVd - displacement increment in step s; )( sVf - forse 

increment in step s; c(s)- unbalanced forces in state s. 

The system stiffness is computed in the usual manner by adding the element contributions in 

global space. All nonlinear terms are retained in the formulation of the element stiffness 

matrices. Displacement derivatives that make the expressions for the stiffness coefficients 

nonlinear or unsymmetric are approximated numerically by their value in the preceding cycle 

of iteration in the load step, thus making the equations linear. The load factor increment is 

determined so that the arc lengths for the load steps on the load path have the same length. For 

the solution of governing equation in [1] the system matrix is decomposed into a diagonal 

matrix D, a left triangular matrix L with diagonal coefficients 1 and the transpose of L: 

Ts
s LDLK )(                           (6) 

Since the product of the eigenvalues of stiffness matrix K equals the product of the diagonal 

coefficients of D, the diagonal coefficient of D with the smallest absolute value can be used to 

detect configurations of the structure that lie in the vicinity of singular points where at least 

one eigenvalue of K is null [5]. 

2.1. Example: Detection of a Singular Point 

The detection of a singular point is illustrated for the spherical dome in Fig. 2with spherical 

radius 29.0 m, base radius 19.5 m and height 7.531 m. All bars of the truss have an area of 

0.002398 and a modulus of elasticity of 0.70e8 (units m, kN). The dome has rigid support 

contour and is subjected to the self weight of the bars and a sheet cover as well as symmetric 

and unsymmetrical snow loads according to the code of Russian Federation. The intensity of 

the symmetric snow load at the apex in load combination C1 is 1.57. The reference intensity 

of the eccentric snow load in load combination C2 is 1.80. 
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Fig.2. Plan and elevation of a spherical dome 

Fig. 3 shows the variation of the smallest diagonal coefficient of D with the load factor for 

load combinations C1 and C2. The rate of decrease in the smallest diagonal coefficient 

increases significantly as the singular point is approached. The curves are nearly orthogonal to 

the load factor axis at the point of intersection. The smallest diagonal coefficient decreases 

more rapidly for the eccentric snow load in C2 than for the symmetric snow load in C1. The 

smallest diagonal coefficient in D is a suitable measure for vicinity of a dome configuration to 

a singular point. 

 

Fig.3. Smallest diagonal coefficient in the decomposition of the secant stiffness matrix 
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3. COMPUTATION OF A SINGULAR POINT 

The load factor, displacement state and reaction state at a singular point are derived from the 

condition that the determinant of the tangent stiffness matrix is null at this point. The diagram 

in Fig. 3 cannot be used for this purpose, since it shows the diagonal coefficients for the 

secant stiffness matrix and none of the computed coefficients is exactly equal to null. 

A structure is assumed to be in a nearly singular state if at least one of the coefficients of the 

diagonal matrix D in (6) changes sign in the next load step. Assume that a nearly singular 

state of the structure has been determined. Several methods are described in some literatures 

[4-7] which can be applied to step from a nearly singular point to a singular point. 

In section 21.1 [4] describes bracketing procedures for the computation of singular points. He 

considers the determinant of the tangent stiffness matrix, the smallest coefficient in D and the 

smallest eigenvalue of the stiffness matrix as possible test functions for singular points. The 

chosen test function is computed at a point that lies before the singular point on the load path, 

and for a point that lies beyond the singular point. The test function is interpolated with the 

load factor or the arc length as control parameter. The value of the control parameter is 

determined for which the test function is null. The interpolated state is in general not an 

equilibrium state of the structure. The interval in which the singular point lies is reduced 

further by replacing one of the two test points by the interpolated point and repeating the 

procedure. Equilibrium at the interpolated points may have to be improved by iteration. The 

rate of convergence of the method is less than quadratic. 

Wagner [7] formulates a direct method for the determination of singular points. He assumes 

that the algebraic governing equations of the finite element method for displacements v and 

load factor are given by 

G(v,λ)=0                              (7) 

In section 8.1 of [6] this equation is expanded with the condition that the determinant of the 

tangent stiffness matrix must be null at a singular point. A further condition f is added to 

control the arc length in a load step: 
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The condition on the tangent matrix at the singular point is replaced by the special eigenvalue 

problem with eigenvalue null: 

Ktф = ωфwith ω = 0   (9) 

In section 8.4 of [6] the following governing equations arederivedfrom (8) and (9) by means 

of consistent linearization: 

Kt –P 0  Vv  0  

(Kt φ),v (Kt φ),λ Kt  Vλ = 0 (10) 

0T 0 PT  Vφ  0  

P - pattern load vector. 

The solution of equation (10) yields an approximation for the step from a nearly singular to 

the singular point. The solution is an approximation because the tangent stiffness matrix is 

computed at the nearly singular point. The method requires the determination of the 

derivatives in the second row of (10). The system of equations is not symmetric, but can be 

solved effectively with a special technique described in section 8.3 of [6].  

The authors have developed a new method for the computation of singular points which 

follows an entirely different concept than the methods proposed by Crisfield [4] and Wagner 

[7]. The method expresses the tangent stiffness matrix at the singular point in terms of the 

displacement increment and the unknown load factor increment for the step from the nearly 

singular point to the singular point. The load factor increment is found to be the eigenvalue of 

the resulting general eigenvalue problem. The method is formulated in the following 

paragraphs.      

Assume that the unbalanced forces at the nearly singular point are reduced by iteration so that 

they can be neglected in equation (5). The resulting equations are solved for the displacement 

increment in the step from the nearly singular to the singular point: 

p
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11           (11) 

The displacement increments (11) are used to compute the displacement state at the singular 

point, retaining the load factor increment as unknown. These displacements are then used to 

express the tangent stiffness matrix at the singular point in terms of the unknown load factor 

increment. The determinant of the tangent stiffness matrix is set to null: 
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detK11c= det(K0+V λ K1) = 0  (12) 

K11csubmatrix K11of tangent stiffness matrix at the singular point. 

Condition (12) is satisfied by solving the associated general eigenvalue problem. The 

eigenstate in (13) with the smallest absolute eigenvalue determines the singular point. 

K0 ϕ = –Vλ K1 ϕ(13) 

The matrices in (13) are derived for space trusses with bar elements in [2]. The element 

displacement increment is derived from the system displacement increment: 

V vo = RT
o To V d(14) 

V vo -increment of the element displacement vector in element reference space; 

Ro- element rotation matrix from global space to element reference space; 

To- element topology matrix. 

Consider a point on the axis of the bar. The displacement is interpolated linearly over the 

length of the bar. The derivatives of the coordinates of the displacement increments at the 

point with respect to the axial coordinate are: 

V vm,1 = V λ dm(15) 

with ce
T
e

T
mm dTRg

a
d 1

1
    and   }3.2,1{m  

Tg1  = –1 0 0 1 0 0  Tg 2  = 0 –1 0 0 1 0 

 

Tg 3  = 0 0 –1 0 0 1 

a- length of the bar. 

The derivatives m,1v  of the displacement coordinates at the singular point are thus: 

mmm dVVV  1,1,                      (16) 

Vm,1 - displacement derivative at the nearly singular point  

The vector products of the derivative vectors are denoted as follows: 

T
kkkk ggG : T

km
T
mkkm ggggG :  

}3,2,1{, mk  
(17) 

The tangent stiffness matrix for a bar with area A and modulus of elasticity E is shown in [2]: 
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Ke = Kc + Kg + Kd   (18) 

11G
a

AE
K c  )( 3322110 GGGc

a

AE
K c      (19) 

 2
1,3

2
1,2

2
1,11,10 2

1
VVVVC   

)( 237136125334223112 GcGcGcGcGcGc
a

AE
K d  (20) 

)2( 1,11,12 VVc  ;  2
1,23 Vc  ;  2

1,24 Vc  ; 

)1( 1,11,25 VVc  ;  )1( 1,11,36 VVc  ;  1,31,27 VVc   

Expression (16) is substituted into (19) and (20) to yield an element tangent stiffness matrix 

which is a quadratic function of the unknown load factor increment. The element matrices are 

assembled in the conventional manner to yield the system tangent stiffness matrix, which is 

also a quadratic function of the load factor increment: 

Kt = K0 + V λ Ka + V λ2Kb   (21) 

The eigenvalue problem (13) is solved in two steps. In the first step, the last term in (21) is 

neglected so that (13) is solved for the second step, the load factor increment computed in the 

first cycle is used to solve (13) with (21). The second step is repeated if the change in the load 

factor increment is not sufficiently small. 

The state which is determined with the general eigenvalue problem (13) is not an exact 

singular point because expression (11) for the displacement increment is a linear 

approximation. The computed state can be treated as an improved nearly singular state for 

which the procedure to determine the singular point is repeated. Numerical experience shows 

that a single repetition leads to a singular state that is highly accurate. 

 

3.1. Example: Computation of Singular Points 

The method described in section 4 has been applied to compute the singular points of the 

dome in Fig. 2 for load combinations C1 and C2. The states of the dome near the singular 

points are: 

C1: state 42: λ = 2.101 688  
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 state 43: λ = 2.201 795 nearly singular point 

 state 44: λ = 2.193 810 improved singular point 

 state 45: λ = 2.193 861 singular point 

C2: state 27: λ = 1.599 633  

 state 28: λ = 1.741 718 nearly singular point 

 state 29: λ = 1.693 634 improved singular point 

 state 30: λ = 1.693 639 singular point 

The eigenvector for the singular state of the dome for the symmetric snow load C1 is perfectly 

symmetric. This is illustrated in Fig. 4 with the vertical components of the normalized 

eigenvector corresponding to eigenvalue null. Ring 1 lies next to the apex of the dome. 

 

Fig.4.Vertical displacements in the normalized eigenvector for the singular state of C1 

The computation of a singular point does not indicate whether the dome is unstable. In order 

to investigate the stability, the load path must be continued on the secondary branch. This 

topic is treated in [1]. It is shown that both load combinations have unstable singular points. 

The continuation also leads to the buckled shape of the dome.  

The buckling zone for C1 is centered at the apex. The displacements of neighboring nodes on 

ring 1 are shown in Fig. 5 and Fig. 6. The load factor reaches a maximum value at the singular 
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point. For one node, the displacements continue to increase on the secondary branch, whereas 

they decrease for the other node. This corresponds to the eigenvector in Fig. 4. 

 

Fig.5. Variation of load factor with displacement at node n2 on ring 1 for C1 

(a) vertical displacement component; (b) and (c) horizontal displacement components 

 
Fig.6. Variation of load factor with displacement at node n3 on ring 1 for C1 

(a) vertical displacement component; (b) and (c) horizontal displacement components 

The buckling zone for C2 is eccentric in the direction of the snow load eccentricity. The 

extent of the buckling is local. It is centered on the fourth ring from the apex. The 

displacements of two nodes in the buckled zone is shown in [1]. As for C1, the displacements 

for one node increase on the secondary path, whereas those of the neighboring node decrease. 

The load paths of the dome for load combinations C1 and C2 are shown in (11). The load 

paths almost reverse onto themselves at the singular points. 
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4. CONCLUSION  

The oil tank cap has been designed with significant resistance against buckling. The buckling 

zone for symmetric snow load is symmetric. It is close to the apex of the dome.  

The cap subjected to distributed load does not displace significantly prior to buckling. The 

displacement history is essentially linear. When the dome buckles, alternate nodes in ring 2 

displace into and out of the volume of the dome. The stationary point is a bifurcation point. 

The buckling zone for eccentric snow load lies in the half of the cap that carries the eccentric 

snow load and is centred on the axis of symmetry of the load. It is midway between the apex 

and the supports of the dome. As in the case of symmetric snow load, the dome does not 

displace significantly prior to buckling. Its displacement history is nearly linear. The 

stationary point is a snap-through point. 

The example confirms that the new theories and numerical methods described in the paper 

can be regarded as an advance in the stability analysis of slender structures for civil 

engineering practice. 
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