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ABSTRACT 

In the last few years, repeatedly increased the role of simulation systems for solution of 

physical problems, particularly in the microwave and electronics. This article focuses on the 

promising methods for setting an initial approximation for the numerical solution of the 

Laplace equation. We investigate Dirichlet problem for a case of two-dimensional area with 

lime border, numerical scheme for solving this equation is widely knowns it finite difference 

method. One of the major stages in the algorithm for that numerical solution is choosing of 

start approximation, usually as the initial values of the unknown function are assumed to be 

zero, which may serve as a lead to a large number of iterations in finding the numerical 

solution. It is shown that there is a way to set a start approximation, which can significantly 

reduce the number of iterations in the solution of the Laplace equation. 

Keywords: Laplace equation; approximation; net; Dirichlet problem; finite difference 

method. 
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1. INTRODUCTION 

The description of physical processes in many systems and devices, and devices is associated 

with a numerical solution of the Laplace equation. As Richard Feynman noted – physical 

phenomena that vary continuously in space and time are described by partial differential 

equations (PDE). The most important of these is Laplace's equation, which defines 

gravitational and electrostatic potentials as well as stationary flow of heat and ideal fluid [1].  

Also, this equation can be used to describe the propagation of waves [2] the distribution of 

space charge in microwave technology [3- 6, 9] and other processes. There are many elegant 

analytical solutions to Laplace’s equation in special geometries but nowadays real problems 

are usually solved numerically [7], and much more are methods of numerical solution of 

Laplace equation will list the main ones: 

• The finite difference method 

• Relaxation methods 

• The finite element method 

The finite difference method (FDM) is conceptually simple. The problems to which the 

method applies are specified by a PDE, a solution region (geometry), and boundary 

conditions. For more detailed derivations the reader may consult [10]. The finite difference 

method entails three basic steps:  

• Divide the solution region into a grid of nodes. Grid points are typically arranged in a 

rectangular array of nodes. 

• Approximate the PDE and boundary conditions by a set of linear algebraic equations (the 

finite difference equations) on grid points within the solution region.  

• Solve this set of linear algebraic equations.  

 This method is good because it can be very easily implemented, but requires a large number 

of iterations to obtain the final solution [11]. 

Relaxation methods is a modification of the finite difference method the main idea is based on 

next sentence a relaxation step replaces the fun of every inner element by a better 

approximation based on the previous function value of the element and the value of its 

neighbors. This method strongly depends on the choice of the relaxation step and works well 

only on grid of small dimension [12, 13]. 
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The finite element method (FEM) is a numerical technique for solving PDEs. FEM was 

originally applied to problems in structural mechanics. Unlike FDM, FEM is better suited for 

solution regions having irregularly shaped boundaries. The finite element analysis involves 

four basic steps:  

• Divide the solution region into a finite number of elements. The most common elements 

have triangular or quadrilateral shapes. The collection of all elements should resemble the 

original region as closely as possible.  

• Derive governing equations for a typical element. This step will determine the element 

coefficient matrix. Assemble all elements in the solution region to obtain the global 

coefficient matrix. 

• Solve the resulting system of equations. 

This method is great for large-scale grids, but it is very difficult to implement, and requires 

many resources. [14]. 

In [15] authors have proposed an original method for start approximation calculation in 

numerical solving of Laplace equation for space charge in charged electrical beam. The main 

idea based on a formula where the value of each inner node calculated the mean of the 

solution of one-dimensional Laplace equations, both along horizontal and vertical lines, and 

along diagonals intersecting at a given node. 

This article shows a method to Laplace equation solution that removes the several 

shortcomings of these methods. 

 

1.2 MATERIALS AND METHODS OF RESEARCH 

 Consider the two-dimensional Laplace equation for the area in Figure. 1 with known values 

of the function on the boundary of the domain: 
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where U – unknown function. U can be found with relation to the known “cross” formula [11] 
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We use FDM with modification.  
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 Algorithm of the solution can entail next steps:  

• Calculation of the boundaries. 

• Using start approximation, 

• Calculation of unknown function. 

Usually value of the inner node of the grid assumed to be zero.  

The essence of the proposed method of specifying the start approximation is as follows: at the 

beginning of the forward stroke at the stage defined by the initial values of the function at the 

nodes of the upper layer boundary cells (Fig. 2) according to the formula: 

)(
3

1
CBAD UUUU          (3) 

Then we found values are searched for the values of the function of the cells of the second 

layer, and so on for subsequent layers. Then, at the stage of the reverse motion, the values of 

the function at the nodes of the boundary cells of the fourth layer (Number 4 in Fig. 2b) are 

determined similarly, and so on up to the upper layer. As a result, the value of the function 

used as the initial approximation is calculated as the average value obtained by forward and 

reverse for each node. 

 
Fig.1. Area with border and inner nodes of the grid. 
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Fig.2. The proposed method of setting the initial approximation. 

 A) The forward motion of the start approximation; B) The reverse motion of the start 
approximation. 

 

2. RESULTS AND DISCUSSION   

The analysis was conducted to the scheme in Fig. 1, for area contains 100000 cells. We use 

are following boundary conditions: 

0,0,, ,,
2
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The solution of equation (1) with the boundary conditions (3) is shown in Fig. 3. In Fig. 4 

shows the cross-sections of the final solution and the initial approximations given in different 

ways. 
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Fig.3. The final solution of Laplace equation. 

 

Fig.4. Cross section Solid line is the solution of Laplace equation. Dash dot Line is the initial 

approximation based on classic method after 1000 iterations. Dash line is the proposed initial 

approximation 
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Table 1. Comparison between methods 

Area 

dimension 

Classic 

FDM(value 

of inner 

node is 

zero) 

Relaxation 

methods 

Proposed 

method 

10x10 30 28 28 
50x50 361 318 342 

100x100 1146 1001 1029 
500x500 1407 1204 1316 

1000x1000 3601 2008 1764 
5000x5000 9601 11175 4840 

10000x10000 21140 13186 10560 
20000x20000 43840 23871 22711 
30000x30000 57440 66381 27400 
40000x40000 77221 100733 39761 
50000x50000 100400 120879 60240 
60000x60000 124476 140066 68761 

100000x100000 3546807 7645807 1808871 

 

 

3. CONCLUSION  

As we can see, from the data in Table 1, and the graphs in Fig. 4, the proposed method has a 

gain, by the number of iterations. It should also be noted that the proposed method is more 

economical with respect to the cost of RAM (by 20% – 30%), in comparison with the 

classical.  

In addition, it is necessary to note that on the grids of small dimension the proposed method 

loses the method of relaxations, however, on the grid of large dimension significantly exceed 

it. 

In comparison with the method of finite differences, the proposed method wins on time 

execution of the algorithm, for example for a 1000000x1000000 grid, the execution time of 

the algorithm was 246 seconds versus 729, but on a grid of complex configuration with large 

differences in the values of the unknown function, the gain was 2 seconds. 

The proposed method can be recommended in a wide range of physics tasks. 
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