## ISSN 1112-9867

Available online at http://www.jfas.info

## SYNTHESIS OF BENZIMIDAZOLE-CYCLOHEXANONE DERIVATIVES

N. Belkheiri ${ }^{1{ }^{1, *}}$, Z. Belkacem ${ }^{1}$, M. Derdour ${ }^{1}$, F. Mechrouh ${ }^{1}$, R.M. Bachar $^{1}$, M. Fodili ${ }^{1}$, M. Amari ${ }^{1,2}$, P. Hoffmann ${ }^{3}$<br>${ }^{1}$ Laboratoire de Chimie Organique et des Substances Naturelles, Université Ziane Achour, Djelfa, Algérie<br>${ }^{2}$ Faculté de Chimie - USTHB - BP32, El-Alia, 16111 Bab Ezzouar, Alger, Algérie<br>${ }^{3}$ Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, UMR 5068, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, Cedex 4, France

Received: 08 December 2017 / Accepted: 14 April 2018 / Published online: 01 May 2018


#### Abstract

This work reports the synthesis and characterization of new benzimidazole-cyclohexanone derivatives 3a-d, 4a-d and 5a-d under different reaction conditions. The intermediates and final compounds were purified and their chemical structures were elucidated using ${ }^{1} \mathrm{H}-\mathrm{NMR}$, ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and mass spectral data.


Keywords: Benzimidazole, Cyclohexanone, NMR, Reaction intermediates

Author Correspondence, e-mail: belkheirinadji@yahoo.fr
doi: http://dx.doi.org/10.4314/jfas.v10i2.15

## 1. INTRODUCTION

Benzimidazole derivatives are of wide interest because of their diverse biological activity and clinical applications, the benzimidazole ring is present in some clinically used drugs, such as proton pump inhibitors, the antiviral enviroxime and the antihistaminic astemizole, but it may also display antimycobacterial, antimicrobial, anticonvulsant, analgesic, anti-inflammatory, anti-diabetic, antiprotozoal, antipsychotic, antioxidant and antitumoral properties[1].

Some of them like thiabendazole, mebendazole or albendazole are widely used asantihelmintic drugs [2], due to their ability to bind selectively with high affinity to the $\beta$ -
subunit of helminthmicrotubule protein [3]. Benzimidazolone derivatives also cover a broad range of biological activities, including opioid receptor antagonistic [4] or antinociceptive [5] effects, and potassium channel activation [6].
The benzimidazolone and benzimidazolothione ring structures possess a number of interesting biologically properties and constitute a constrained ring system with two nitrogen atoms linked by an ethylene bridge, as diazoles ring system $[7,8]$.
Cyclohexanone-analogous, which designed based on the curcumin corestructure, have been discovered as potential EGFR inhibitors [9], drugs for the treatment of ER-negative breast cancer [10].

## 2. RESULTS AND DISCUSSION

From this point of view, in the present study, new Benzimidazole-cyclohexanone derivatives were synthesized. We used two-step procedure with different reagents for synthesis of twelve benzimidazole derivatives.

In the first step, A similar procedure involving the addition of o-PDAs to 2acetylbutyrolactone and analogues, was recently used by our group to access benzimidazolebutyrolactone derivatives [11].
By examining a variety of reaction conditions, we have found that the process is usually most efficient using an equimolar mixture of 2- acetylcyclohexanone $\mathbf{1}$ and $o$-PDAs in ethanol at room temperature. Under these conditions all the intermediates were obtained in good yields( $60-80 \%$ ) and readily isolated by simple recrystallization (Scheme 1). The structures of all these synthons $\mathbf{2 a - d}$ have been established on the basis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR.


Scheme 1. Synthesis of aminophenylaminoethylidenecyclohexanones 2a-d

Table 1. Conditions of formation and physical data of 2a-d in ethanol at $25^{\circ} \mathrm{C}$

| Compounds | $\mathbf{R}^{\mathbf{1}}$ | $\mathbf{R}^{\mathbf{2}}$ | Time(h) | Yield (\%) | $\mathbf{m p}\left({ }^{\circ} \mathbf{C}\right)$ | Nature and color |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 a}$ | H | H | 24 | 60 | $191-193$ | Brown powder |
| $\mathbf{2 b}$ | $\mathrm{CH}_{3}$ | H | 24 | 65 | $195-197$ | Yellow powder |
| $\mathbf{2 c}$ | Cl | H | 24 | 73 | $204-206$ | White powder |
| $\mathbf{2 d}$ | H | $\mathrm{NO}_{2}$ | 24 | 80 | $207-209$ | Yellow powder |

The next step consisted in the preparation of the benzimidazole ring by treating the isolated (Z)-2-(1-aminoethylidene)cyclohexanones 2a-d either with $N, N$-dimethylformamide, dimethylacetal (DMF-DMA) in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of catalytic amounts of $\mathrm{NEt}_{3}$ lasting from 10 to 15 h , triphosgene in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and allowed to stir for 3 h starting from $0^{\circ} \mathrm{C}$ up to room temperature, carbon disulfide in DMSO at room temperature of $\mathrm{NEt}_{3}$, respectively, benzimidazole 3a-d, benzimidazolone 4a-d, or benzimidazole-2-thione 5a-d attached to a cyclohexanone moiety via a 1-aminoethylidene moiety(Scheme 2)[11].


Scheme 2. Synthesis of benzimidazoles 3a-d, benzimidazolones 4a-d and benzimidazolothiones 5a-d

All compounds 3-5 were characterized by the various spectroscopic methods.
Their physical properties are summarized in table 2.

Table 2. Conditions of formation and physical data of 3-5

| Compounds | $\mathbf{R}^{\mathbf{1}}$ | $\mathbf{R}^{\mathbf{2}}$ | Temperature | Solvent | Time(h) | Yield (\%) | $\mathbf{m p}\left({ }^{\circ} \mathbf{C}\right)$ | Nature <br> and <br> color |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3 a}$ | H | H | reflux | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 10 | 85 | $173-175$ | Yellow <br> powder |
| $\mathbf{3 b}$ | $\mathrm{CH}_{3}$ | H | reflux | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 12 | 90 | $202-204$ | Yellow <br> powder |
| $\mathbf{3 c}$ | Cl | H | reflux | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 15 | 75 | $207-209$ | Off white <br> powder |
| $\mathbf{3 d}$ | H | $\mathrm{NO}_{2}$ | reflux | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 12 | 65 | $213-215$ | Yellow <br> powder |
| $\mathbf{4 a}$ | H | H | $0^{\circ} \mathrm{C}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 3 h | 90 | $223-225$ | Grey <br> powder |
| $\mathbf{4 b}$ | $\mathrm{CH}_{3}$ | H | $0^{\circ} \mathrm{C}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 3 h | 70 | $229-230$ | Brown <br> powder |
| $\mathbf{4 c}$ | Cl | H | $0^{\circ} \mathrm{C}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 3 h | 88 | $235-236$ | Yellow <br> powder |
| $\mathbf{4 d}$ | H | $\mathrm{NO}_{2}$ | $0^{\circ} \mathrm{C}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 3 h | 90 | $242-243$ | White <br> powder |
| $\mathbf{5 a}$ | H | H | rt | $\mathrm{DMSO}_{2}$ | 48 h | 95 | $225-226$ | Orange <br> powder |
| $\mathbf{5 b}$ | CH | H | rt | $\mathrm{DMSO}_{3}$ | 48 h | 85 | $234-235$ | Yellow <br> powder |
| $\mathbf{5 c}$ | Cl | H | rt | DMSO | 48 h | 50 | $231-232$ | Brown <br> powder |
| $\mathbf{5 d}$ | H | $\mathrm{NO}_{2}$ | rt | $\mathrm{DMSO}_{2}$ | 48 h | 60 | $242-244$ | White <br> powder |

## 3. EXPERIMENTAL

All chemicals were obtained from Aldrich. Melting points were taken on a Thomas Hoover apparatus and are uncorrected. Nuclear magnetic resonance spectra were obtained with a Bruker AC 300 at $300 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ or $75 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$. The chemical shifts are reported in $\operatorname{ppm}(\delta$-scale) relative to internal TMS and coupling constants are reported in Hertz (Hz). High-resolution mass spectrometry HRMS spectra were obtained with a GC TOF Waters and Waters Q / TOF Ultima.

## General procedure for synthesis of 2a-d

In 20 mL ethanol, a 2 -acetylcyclohexanone ( $1 \mathrm{~mL}, 0.01 \mathrm{~mol}$ ) was reacted with ophenylenediamines $(1.08 \mathrm{~g}, 0.01 \mathrm{~mol})$. The mixture was stirred at room temperature 24 hours under magneticstirring, the compounds precipitate in the reaction media. After filtration under reduced pressure, the corresponding compounds 2a-d were purified by recrystallization from ethanol.

## General procedure for synthesis of 3a-d

An equimolar amount of (Z)-2-(2 Aminophenylamino) ethylidene) cyclohexanones 2a-d ( 1.8 mmol ) and DMF DMA ( 1.8 mmol ) was allowed to stir under refluxing dichloromethane ( 20 mL ) for 10 to 15 h (the reactions are monitored by TLC) in the presence of few drops of triethylamine. The precipitating products were removed by evaporation and treatment with diethyl ether. The pure compounds 3a-d were recrystallized from ethanol.

## General procedure for synthesis of 4a-d

A mixture of (Z)-2-(2 Aminophenylamino) ethylidene) cyclohexanones 2a-d ( 0.02 mol ) and trimethylamine $(0.04 \mathrm{~mol})$ in dichloromethane $(40 \mathrm{~mL})$ was placed in an ice/water bath under constant magnetic stirring. Triphosgene ( 6.6 mmol ) was gradually added over a period of 3 h . The reaction was quenched in ice/water and the product was extracted using dichloromethane ( 3 x 40 mL ). The organic fraction was dried over anhydrous sodium sulfate. Solid products of $\mathbf{4 a - d}$ were obtained upon evaporation of the dichloromethane solution.

## General procedure for synthesis of 5a-d

A mixture of (Z)-2-(2 Aminophenylamino) ethylidene) cyclohexanones 2a-d (2 mmol) and thiosulfide ( 2 mmol ) in DMSO ( 30 mL ) was stirred at room temperature for 48 h in the presence of a few drops of $\mathrm{NEt}_{3}$. The reaction mixture was then slowly versed in ice/water under stirring. Compounds 5a-d were precipitated, collected by filtration and washed with water.

## (Z)-2-[1-(2-Aminophenylamino)ethylidene)]cyclohexanone 2a

${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO-d ${ }^{6}$ ): $\delta 1.60-1.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.26$ and 2.36 ( $2 \mathrm{t}, J 3.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}$ ), $3.75\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.80-7.30\left(\mathrm{~m}, 4 \mathrm{H}\right.$, Harom), $9.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz, DMSO-d ${ }^{6}$ ): $\delta 17.5\left(\mathrm{CH}_{3}\right), 22.8,26.5,27.4$ and $41.0\left(4 \mathrm{x} \mathrm{CH}_{2}\right)$, $99.5(\mathrm{CO}-$ $\mathbf{C}=\mathrm{C}), 119.3,124.5,126.5,127.6,128.4$ and $142.8(\mathrm{Carom}), 155.1\left[=C\left(\mathrm{CH}_{3}\right)-\mathrm{NH}\right], 202.4$ (C=O); HRMS (ESI ${ }^{\dagger}$ ): m/z calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}+\mathrm{Na}\right]^{+}: 253.1330$; found: 253.1215.
(Z)-2-[1-(2-Amino-4-methylphenylamino)ethylidene]cyclohexanone 2b
${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO-d ${ }^{6}$ ): $\delta 1.64-1.76\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.15$ and $1.72\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.20$ and $2.26\left(2 \mathrm{t}, J 3.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.10-7.80(\mathrm{~m}, 3 \mathrm{H}$, Harom), $8.80(\mathrm{~s}, 1 \mathrm{H}$, NH); ${ }^{13} \mathrm{C}$ NMR ( 75 MHz, DMSO-d ${ }^{6}$ ): $\delta 17.6$ and $24.2\left(2 \mathrm{x} \mathrm{CH}_{3}\right), 22.5,26.4,27.4$ and $40.0(4$ $\mathrm{x} \mathrm{CH} 2), 100.1(\mathrm{CO}-\mathbf{C}=\mathrm{C}), 116.5,119.2,122.4,128.7,139.1$ and 143.4 (Carom), 156.3 [ $\left.=C\left(\mathrm{CH}_{3}\right)-\mathrm{NH}\right], 200.8(\mathrm{C}=\mathrm{O})$; HRMS (ESI'): m/z calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}+\mathrm{Na}\right]^{+}: 267.1550$; found: 267.1346.
(Z)-2-[1-(2-Amino-4-chlorophenylamino)ethylidene]cyclohexanone 2c
${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO-d ${ }^{6}$ ): $\delta 1.60-1.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), \delta 1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.25$ and 2.37 $\left(2 \mathrm{t}, J 4.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.98\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.60-7.10\left(\mathrm{~m}, 3 \mathrm{H}\right.$, Harom), $9.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}{ }^{6}$ ): $\delta 17.3\left(\mathrm{CH}_{3}\right), 22.5,26.6,27.5$ and $41.2\left(4 \mathrm{x} \mathrm{CH}_{2}\right)$, $201.4(\mathrm{CO}-$ $\mathbf{C}=\mathrm{C}$ ), 115.6, 118.5, 123.4, 129.8, 134.1 and 145.7 (Carom), $157.3\left[=C\left(\mathrm{CH}_{3}\right)-\mathrm{NH}\right], 201.8$ (C=O); HRMS (ESI'): m/z calcd for [ $\left.\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}+\mathrm{Na}^{+}\right]^{+}$: 287.0908; found: 287.0917.

## (Z)-2-[1-(2-Amino-5-nitrophenylamino)ethylidene]cyclohexanone 2d

${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO-d ${ }^{6}$ ): $\delta 1.64-1.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.24$ and 2.37 $\left(2 \mathrm{t}, J 3.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.00\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.80-7.70\left(\mathrm{~m}, 3 \mathrm{H}\right.$, Harom), $9.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}^{6}$ ): $\delta 17.8\left(\mathrm{CH}_{3}\right), 23.0,26.2$, 27.6 and $39.8\left(4 \times \mathrm{CH}_{2}\right), 99.0(\mathrm{CO}-$ $\mathbf{C}=\mathrm{C}), 114.2,126.1,125.5,125.6,136.1$ and $152.6(\mathrm{Carom}), 156.4\left[=C\left(\mathrm{CH}_{3}\right)-\mathrm{NH}\right], 200.5$ (C=O); HRMS (ESI $)$ : $\mathrm{m} / \mathrm{z}$ calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}+\mathrm{Na}^{+}\right]^{+}$298.1210; found: 298.1140.
(Z)-2-[1-(1H-Benzo[d]imidazol-1-yl)ethylidene]cyclohexanone 3a
${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO-d ${ }^{6}$ ): $\delta 1.69-1.74\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.39$ and 2.40 ( $2 \mathrm{t}, J 3.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}$ ), 6.60-7.30 (m, 4H, Harom), $9.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}-\mathrm{N})$ ) ${ }^{13} \mathrm{C}$ NMR ( 75 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}^{6}\right): \delta 17.5\left(\mathrm{CH}_{3}\right), 22.7,26.4,27.3$ and $41.2\left(4 \mathrm{x} \mathrm{CH}_{2}\right), 100.6(\mathrm{CO}-\mathrm{C}=\mathrm{C})$, $115.5,119.1,124.4,126.6,128.2$ and 142.8 (Carom), $153.5(\mathrm{~N}=\mathrm{CH}-\mathrm{N}), 157.0\left[=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\right.$ $\mathrm{N}<$ ], $198.9(\mathrm{C}=\mathrm{O})$; HRMS ( $\mathrm{ESI}^{\dagger}$ ): $\mathrm{m} / \mathrm{z}$ calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}+\mathrm{Na}\right]^{+}$: 263.1214; found: 263.1109.
(Z)-2-[1-(5-Methyl-1 $\boldsymbol{H}$-benzo[d] imidazol-1-yl)ethylidene]cyclohexanone 3b
${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO-d ${ }^{6}$ ): $\delta 1.20$ and $1.83\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.68-1.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.41$ and $2.43\left(2 t, J 3.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 6.55-7.20(\mathrm{~m}, 3 \mathrm{H}, \operatorname{Harom}), 9.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}-\mathrm{N}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz, DMSO-d ${ }^{6}$ ): $\delta 17.2$ and $23.6\left(2 \times \mathrm{CH}_{3}\right), 22.5,26.3,27.1$ and $40.6\left(4 \mathrm{XCH}_{2}\right)$, 99.7 (CO-C=C), 115.8, 119.2, 124.5, 126.5, 129.0 and 143.0 (Carom), 153.4 ( $\mathrm{N}=\mathrm{CH}-\mathrm{N}$ ), $156.5\left[=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{N}<\right], 199.8(\mathrm{C}=\mathrm{O})$; HRMS $\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}$ calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}+\mathrm{Na}^{+}\right.$: 277.1302; found: 277.1256.
(Z)-2-[1-(5-Chloro-1H-benzo[d] imidazol-1-yl)ethylidene]cyclohexanone 3c
${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO-d ${ }^{6}$ ): $\delta 1.66-1.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.40$ and 2.42 ( $2 \mathrm{t}, J 3.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}$ ), 6.52-6.98 (m, 3H, Harom), $9.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}-\mathrm{N}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz, DMSO-d ${ }^{6}$ ): $\delta 17.6\left(\mathrm{CH}_{3}\right), 22.6,26.5,27.2$ and $41.4\left(4 \mathrm{x} \mathrm{CH}_{2}\right), 99.6(\mathrm{CO}-\mathrm{C}=\mathrm{C}), 116.6$, 119.6, 123.1, 129.8, 134.7 and 145.2 (Carom), 153.3 ( $\mathrm{N}=\mathrm{CH}-\mathrm{N}$ ), $156.9\left[=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{N}<\right], 199.7$ (C=O); HRMS (ESI ${ }^{\dagger}$ : $\mathrm{m} / \mathrm{z}$ calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}+\mathrm{Na}^{+}\right]^{+}$: 297.0856; found: 297.0804.
(Z)-2-[1-(5-Nitro-1H-benzo[d]imidazol-1-yl)ethylidene]cyclohexanone 3d ${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO-d ${ }^{6}$ ): $\delta 1.70-1.76\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.42$ and 2.43 $\left(2 \mathrm{t}, J 3.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 6.52-7.03\left(\mathrm{~m}, 3 \mathrm{H}\right.$, Harom), $9.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}-\mathrm{N}) ;{ }^{13} \mathrm{C}$ NMR ( 75 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}^{6}\right): ~ \delta 15.2\left(\mathrm{CH}_{3}\right), 22.9,26.7,27.5$ and $40.5\left(4 \mathrm{xCH}_{2}\right), 99.8(\mathrm{CO}-\mathbf{C}=\mathrm{C}), 113.7$, 123.5, 125.1, 125.7, 135.3 and 152.5 (Carom), $153.3(\mathrm{~N}=\mathrm{CHN}) .156 .2\left[=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{N}\right], 200.4$ $(\mathrm{C}=\mathrm{O})$; HRMS (ESI ${ }^{+}$): $\mathrm{m} / \mathrm{z}$ calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}+\mathrm{Na}^{+}\right]^{+}$308.1055; found: 308.0908.
(Z)-1-[1-(2-oxocyclohexylidene)ethyl]-1H-benzo[d]imidazol-2(3H)-one 4a
${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO-d ${ }^{6}$ ): $\delta 1.66-1.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.28$ and 2.44 ( $2 \mathrm{t}, J 3.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}$ ), 7.10-7.62 (m, 4H, Harom), $9.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , DMSO-d $\left.{ }^{6}\right): \delta 19.2\left(\mathrm{CH}_{3}\right), 22.5,26.3,27.4$ and $40.7\left(4 \mathrm{x} \mathrm{CH}_{2}\right), 102.8(\mathrm{CO}-\mathrm{C}=\mathrm{C}), 108.7,109.5$, 121.0, 121.3, 128.4 and 129.2 (Carom), $138.1\left[=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{N}\right], 149.8$ and $198.9(2 \times \mathrm{C}=\mathrm{O})$; HRMS (ESI ${ }^{\dagger}$ ): m/z calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}: 279.1127$; found: 279.1093.
(Z)-5-Methyl-1-[1-(2-oxocyclohexylidene)ethyl]-1H-benzo[d]imidazol-2(3H)-one 4b ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , DMSO-d ${ }^{6}$ ): $\delta 1.19$ and $2.35\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.62-1.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.30$ and $2.46\left(2 \mathrm{t}, J 3.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 6.80-7.77\left(\mathrm{~m}, 3 \mathrm{H}\right.$, Harom), $9.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz, DMSO-d ${ }^{6}$ ): $\delta 18.7$ and $19.2\left(2 \mathrm{x} \mathrm{CH}_{3}\right), 22.5,26.2$, 27.4 and $40.9\left(4 \mathrm{xCH}_{2}\right), 100.8(\mathrm{CO}-$ $\mathbf{C}=\mathbf{C}), 109.0,109.3,120.5,121.4,128.8$ and 129.7 (Carom), $138.9\left[=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{N}\right], 148.2$ and 203.3 ( $2 \mathrm{x} \mathrm{C=O}$ ); HRMS (ESI'): m/z calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}$: 293.1304; found: 293.1264.
(Z)-5-Chloro-1-[1-(2-oxocyclohexylidene)ethyl]-1H-benzo[d]imidazol-2(3H)-one 4c ${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO-d ${ }^{6}$ ): $\delta 1.64-1.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.28$ and 2.41 ( $2 \mathrm{t}, J 3.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}$ ), 7.20-7.82 (m, 3H, Harom), $9.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , DMSO-d $\left.{ }^{6}\right): ~ \delta 19.6\left(\mathrm{CH}_{3}\right), 22.5,26.2,27.5$ and $41.0\left(4 \mathrm{x} \mathrm{CH}_{2}\right), 99.6(\mathrm{CO}-\mathrm{C}=\mathrm{C}), 108.2,110.2$, 120.2, 122.0, 128.3 and 129.8 (Carom), $142.3\left[=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{N}\right], 151.8$ and $198.8(2 \times \mathrm{C}=\mathrm{O})$; HRMS (ESI ${ }^{\dagger}$ : $\mathrm{m} / \mathrm{z}$ calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}: 313.0708$; found: 313.0680.

## (Z)-6-Nitro-1-[1-(2-oxocyclohexylidene)ethyl]-1H-benzo[d]imidazol-2(3H)-one 4d

 ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}^{6}$ ): $\delta 1.63-1.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.25$ and 2.46 ( $2 \mathrm{t}, J 3.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}$ ), 7.50-8.61 (m, 3H, Harom), $9.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , DMSO-d $\left.{ }^{6}\right): ~ \delta 19.9\left(\mathrm{CH}_{3}\right), 22.6,26.5,27.1$ and $40.6\left(4 \mathrm{xCH}_{2}\right), 99.8(\mathrm{CO}-\mathrm{C}=\mathrm{C}), 108.6,109.5$, 120.6, 121.5, 128.1 and $128.8(\mathrm{Carom}), 142.4\left[=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{N}\right], 152.0$ and $198.9(2 \times \mathrm{C}=\mathrm{O})$; HRMS (ESI ${ }^{\dagger}$ ): $\mathrm{m} / \mathrm{z}$ calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}$: 324.1040; found: 324.0923.(Z)-2-[1-(2-Thioxo-2,3-dihydrobenzo[d]imidazol-1- yl) ethylidene]cyclohexanone 5a
${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO-d ${ }^{6}$ ): $\delta 1.62-1.74\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.24$ and 2.47 (2t, J $3.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}$ ), 6.68-6.98 (m, 4H, Harom), $12.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , DMSO-d $\left.{ }^{6}\right): ~ \delta 17.5\left(\mathrm{CH}_{3}\right), 22.6,26.5,27.5$ and $40.8\left(4 \mathrm{x} \mathrm{CH}_{2}\right), 100.4(\mathrm{CO}-\mathrm{C}=\mathrm{C}), 110.7,111.5$, 123.7, 127.4, 131.6 and 132.5 (Carom), $141.3\left[=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{N}\right], 165.2(\mathrm{C}=\mathrm{S}), 199.6(\mathrm{C}=\mathrm{O})$; HRMS (ESI'): $\mathrm{m} / \mathrm{z}$ calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}+\mathrm{Na}\right]^{+}: 295.0920$; found: 265.0502.
(Z)-2-[1-(5-Methyl-2-thioxo-2,3-dihydrobenzo[d]imidazol-1yl)ethylidene]cyclohexanone 5b
${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO-d ${ }^{6}$ ): $\delta 1.64-1.77\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.42$ and $2.50\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.25$ and $2.36\left(2 \mathrm{t}, J 3.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 6.60-7.52\left(\mathrm{~m}, 3 \mathrm{H}\right.$, Harom), $11.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ( 75 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}^{6}\right): \delta 16.9$ and $17.2\left(2 \mathrm{x} \mathrm{CH}_{3}\right), 22.6,26.5,27.5$ and $41.0\left(4 \mathrm{xCH}_{2}\right), 99.8(\mathrm{CO}-$ $\mathbf{C}=\mathrm{C}), 104.4,110.1,122.6,124.5,138.2$ and $143.1(\mathrm{Carom}), 141.0\left[=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{N}\right], 165.8(\mathrm{C}=\mathrm{S})$, $200.1(\mathrm{C}=\mathrm{O})$; HRMS (ESI $)$ : $\mathrm{m} / \mathrm{z}$ calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}+\mathrm{Na}\right]^{+}$: 303.1029; found: 303.0908.
(Z)-2-[1-(5-Chloro-2-thioxo-2,3-dihydrobenzo[d]imidazol-1-yl)ethylidene]cyclohexanone 5c
${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO-d ${ }^{6}$ ): $\delta 1.62-1.74\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.31$ and 2.39 ( $2 \mathrm{t}, J 3.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}$ ), 6.52-7.26 (m, 3 H , Harom), $12.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , DMSO-d $\left.{ }^{6}\right): \delta 17.7\left(\mathrm{CH}_{3}\right), 22.5,26.3,27.5$ and $41.1\left(4 \mathrm{x} \mathrm{CH}_{2}\right), 99.1(\mathrm{CO}-\mathrm{C}=\mathrm{C}), 101.8,107.5$, 119.2, 121.2, 125.3 and $131.6(\mathrm{Carom}), 142.0\left[=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{N}\right], 166.2(\mathrm{C}=\mathrm{S}) ; 200.6(\mathrm{C}=\mathrm{O})$; HRMS (ESI ${ }^{\dagger}$ ): $\mathrm{m} / \mathrm{z}$ calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{OS}+\mathrm{Na}\right]^{+}: 329.0540$; found: 329.0204.
(Z)-2-[1-(6-Nitro-2-thioxo-2,3-dihydrobenzo[d]imidazol-1-yl)ethylidene]cyclohexanone 5d
${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO-d ${ }^{6}$ ): $\delta 1.65-1.76\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.35$ and 2.47 ( $2 \mathrm{t}, \mathrm{J} 3.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}$ ), 6.90-7.14 (m, 3H, Harom), 11.35 (s, 1H, NH); ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , DMSO-d $\left.{ }^{6}\right): ~ \delta 17.6\left(\mathrm{CH}_{3}\right), 22.7,25.8,26.9$ and $39.8\left(4 \mathrm{xCH}_{2}\right), 99.6(\mathrm{CO}-\mathrm{C}=\mathrm{C}), 105.3,107.5$, 120.3, 127.2, 131.9 and 140.6 (Carom), $142.1\left[=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{N}\right], 166.8(\mathrm{C}=\mathrm{S}), 201.7(\mathrm{C}=\mathrm{O})$; HRMS (ESI'): m/z calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}+\mathrm{Na}\right]^{+}$: 340.0712; found: 340.0744.

## 4. CONCLUSION

A new series of benzimidazole-cyclohexanone $\mathbf{3 a - b}, \mathbf{4 a - b}$ and $\mathbf{5 a} \mathbf{- b}$ were synthesized by the reaction of (Z)-2-(1-aminoethylidene)cyclohexanones with different electrophilic reagents as DMF-DMA, triphosgene and carbon disulfide. All these compounds were obtained in moderate-to good yields under mild operating conditions. The determination of the structural features of these intermediates was first performed by solution ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HRMS.

## 5. ACKNOWLEDGEMENTS

The authors would like to think the Department of Organic Chemistry. Laboratoire de Chimie Organique et des Substances Naturelles, Université Ziane Achour, Djelfa, Algerie, the Faculté de Chimie - USTHB - BP32, El-Alia, 16111 Bab Ezzouar, Alger, Algerie and the laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, UMR 5068, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, Cedex 4, France

## 6. REFERENCES

[1] Yadav G.,Ganguly, S., Eur. J. Med. Chem., 2015, 97, 419443.
[2] Köhler P., Int. J. Parasitol., 2001, 31, 336-345.
[3] Martin R. J., Vet. J., 1997, 154, 5-7.
[4] De Risi C., Pollini G. P., Trapella C., Peretto I., Ronzoni S. and Giardina G. A. M., Bioorg. Med. Chem., 2001, 9, 1871-1877.
[5] Nacak S., Dogruer D. S. and Sahin M. F., Farmaco, 1999, 54, 768-772.
[6] Baragatti B., Biagi G., Calderone V., Giorgi I.,Livi O., Martinotti E. and Scartoni V., Eur. J. Med. Chem., 2000, 35, 949-955.
[7] Amari M., Fodili M., Nedjar-Kolli B., Hoffmann P., Perie J., J. Heterocyclic Chem. 2002, 1, 39, 811-816
[8] Fodili M., Nedjar-Kolli B., Garrigues B., Lherbet C., Hoffmann P., Lett. Org. Chem. 2009, 6, 354.
[9]Yun-Yun X., Yi C., Hailkuo M.,Huan-Qiu L.,Gui-Zhen A., Bioorganic \& Medicinal Chemistry, 2013, 21, 388-394
[10]Somers-Edgar T.J., Taurin S., Larsen L., Chandramouli A., Nelson M.A.,Rosengren R.J., Invest New Drugs, 2011, 29, 87-97
[11] Bouaziz O., Amari M., Bachar R., Khier N., Fodili M., Almeida Paz F.A.,Talhi O., Silva A.M.S., Tetrahedron Letters 2015, 56, 10

## How to cite this article:

Belkheiri N, Belkacem Z, Derdour M, Mechrouh F, Bachar RM, Fodili M, Amari M, Hoffmann P.Synthesis of benzimidazole-cyclohexanone derivatives. J. Fundam. Appl. Sci., 2018, 10(2), 213-221.

