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ABSTRACT

This study is part of the search for a sediment management methodology and the basic

material that is designed for the manufacture of fired brick, in which we tackle the problem

of choosing  the mud samples  from dredging  the Algerian dams in particular

(Bouhanifia dam western Algeria) and the choice of clay that comes from different deposits.

We propose an approach for sampling using a computer optimization model that allows

solving and optimizing a characterization to retain the best adapted sample (chemically) using

the genetic algorithm.

Keywords: Sludge- Dredging- Sample- Chemical Characterization- Brick-Optimization

Methods- Genetic Algorithm.
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1. CONTEXT AND PROBLEMATIC

The problem of siltation of dam reservoirs still has to be borne by the managers. At the same

time, previous research conducted in the context of managing the fallout from dredging
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operations has given promising prospects [1-14].

Procedures of study are summarized in characterization of the material, manufacture and at

the end of the durability tests. Each researcher opted for a study that allowed him some

satisfaction with the results obtained.

In this context, our study targets the Bou Hanifia dam, which is of great economic importance

for the region of Mascara (Western Algeria), and which has a high rate of siltation. A

reflection for a rational use of these sediments has been conducted in building materials and in

particular in fired brick. During the chemical characterization of the sample taken, the sample

must meet the recommended thresholds for the basic material used in the manufacture of the

brick. While relying on an optimization method which is the genetic algorithm which consists

in exploring domains with very many solutions. This model allows us to identify the best

sample taken with percentages of oxides that meet the recommended thresholds and

constraints.

1.1. The Principle of the Genetic Algorithm

Genetic algorithms have the distinction of being inspired by the evolution of species in their

natural setting. Species adapt to their living environment that can evolve, individuals of each

species reproduce, creating new individuals, some undergo modifications of their DNA, some

disappear....

A genetic algorithm will reproduce this model of evolution in order to find solutions for a

given problem [15]. The genetic algorithm of our example is as follows:

• A population will be a set of dredged silt samples

• An individual will be a solution to a given problem

• A gene will be part of a solution, so an individual

• A generation is an iteration of our algorithm

Figure 1 illustrates the operation of the genetic algorithm.
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Fig.1. The Steps of the Genetic Algorithm [16-17]

2. PARAMETERS OF THE GENETIC ALGORITHM

2.1. Fitness

Fitness in genetic sense measures the quality of the individual expressed as a number or a

vector. Plus a value i is close to the solution plus she is the best.

In our work we have to propose two methods to calculate fitness.

 
1

1
n

Fitness Value oxides x weight See table 1.

The different values of the oxides given in table 1 are extracted from the recommended

thresholds of clay designed for the manufacture of a fired brick.

Table1. The recommended thresholds of clay

Oxides Val Min (%) Val Max(%) Weight
SiO2 35 85 0.45
Al2O3 9 25 0.2
Fe2O3 3 9 0.1
CaO 0 25 0.11
MgO 0 5 0.01
SO3 0 3 0.002

K2O+Na2O 1 5 0.03
TiO2 0.3 2 0.01

Fire loss 0 13 0.088
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With respect to the weights given for each oxide, the latter reflects the importance of each

oxide value in the chemical characterization of clay.

The weights are inspired by a synthesized reading of the various tested chemical analyzes.

The sum of the different weights given equal to 1.

Fitness2 SiO2 /Al2O3.  (Silica and Alumina are the two main constructive components of

clay).

2.2. Selection Rate

The selection rate indicates the rate of individuals selected from the initial population, if the

selection rate is 100% then the entire population is selected, and if it is 0% the new generation

is the exact copy of the individuals from the old population, in our example it is fixed at 0.8

because the optimal rate varies between 0.8 and 0.9 [17].

2.3. Crossing Rate

The crossing rate indicates the rate of participation in breeding, the proportion of the

population that breeds by crossing. If the crossing rate is 100%, then the whole population

participates in the crossing. On the other hand, if it is 0%, the new generation in full is the

exact copy of the individuals of the old population, in our example it is fixed at 0.7 because

the optimal rate varies between 0.25 and 0.7  [17].

For an efficient use of a material for the construction of vase-based brick, we use the model of

genetic algorithm which is heuristic metas; which aims to solve an optimization problem as it

can determine the different percentages of oxides during a chemical analysis). Our

contribution is to propose a model for optimization.

2.4. Mutation Rate

The mutation rate indicates the rate that each gene of each individual a mutation during a

reproductive phase. If the mutation rate is 0%, the individuals that are produced just after

crossing do not change. On the other hand, if the probability of mutation is 100%, the whole

chromosome of the individual is changed: In our example we set it to 0.1 because the rate

varies between 0.01 and 0.1 to prevent the algorithm from converging to a local minimum.

2.5. Number of Iterations

It is a number that limits the number of evolutions of the population generated by the
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algorithm. The search is thus stopped after a certain number of generations: In our example it

is fixed at 100 iterations. Because the optimal number of iterations must be between 10 and

500 iterations.

Fig.2. The Proposed Model

Following the steps of the genetic algorithm and optimizing the chemical analyzes of the

samples, three constraints were posing:

 First is to give a minimum threshold for fitness 2 which is 2.7, (the classic value of

bentonites [18-19] and a maximum value of 5 which is an approximate value.

 Second constraint is to minimize the Alumina content to 15%.

 Third constraint consists of applying the total sum of the oxides during the 100%

chemical analysis with a tolerance interval of ± 2%.

The creation of the initial population see table 2.
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Table 2. The Generation of the Initial Population

In the table 3 we note the selection of initial population with the first fitness

Dam
Marine Recommended

(Threshold)

Initial Population Fitness  Evaluation

N° SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O+N2 O3 TiO2 L F

4 45.92 16.271 6.88 17.128 2.983 1.229 2.668 0.4424 7.31

7 47.774 15.127 7.713 9.784 2.874 0.336 2.281 1.255 12.12

14 48.401 16.827 5.147 14.412 3.481 0.678 3.219 0.919 7.847

17 55.895 16.409 8.327 2.411 3.801 1.064 1.665 1.136 10.226

22 50.87 16.383 4.41 9.129 1.84 2.824 3.355 0.833 9.821

26 57.616 15.656 3.018 9.799 0.892 1.273 3.374 1.786 6.858

29 65.907 18.371 6.757 0.116 2.696 1.987 3.914 0.455 0.683

31 52.544 15.62 6.417 14.174 3.862 2.471 1.425 1.661 2.683

33 49.93 15.693 7.232 12.716 3.382 1.414 4.038 1.504 4.996

34 59.518 15.057 6.647 1.399 1.112 2.508 3.051 1.531 10.176

35 56.92 16.046 4.75 4.319 2.790 1.955 1.919 0.826 10.507

40 47.044 16.413 3.292 14.803 4.96 1.263 3.029 1.766 6.655
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Table3. The Generation of the Initial Population with the First Fitness

2.6. Best Individual

The best people are a collection of the best people who have almost the same percentages of

oxides (see table 4)

Table 4. Best Individual

Selection
Crossing Transfer Best individual Better Composition

N° SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O+N2 O3 TiO2 L F Fitness

32 48.8378 15.889 7.451 16.524 4.547 1.238 1.071 1.467 2.261 0.0

27 55.895 16.409 8.327 2.411 3.801 1.064 1.665 1.136 10.226 0.0

80 49.93 16.3125 7.232 12.716 3.382 1.414 4.038 1.504 4.996 28.465

85 45.92 16.271 6.88 17.128 2.983 1.229 2.668 0.424 7.31 28.792

156 62.786 17.08 6.968 4.304 3.365 1.09 2.614 1.319 0.798 31.563

158 57.995 16.3176 4.61 6.738 3.862 1.586 2.852 1.751 3.621 31.697

22 52.544 15.62 6.417 14.147 3.862 2.471 1.425 1.661 2.683 0.0
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2.7. Better Composition

The better composition is the optimal solution. See table 5

Table 5. Better Composition

The variation of the fitness in figure 3

Selection
Crossing Transfer Best individual Better Composition

N° SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O+N2 O3 TiO2 L F Fitness

39 46.137 16.413 3.292 14.803 4.96 1.263 3.029 1.766 6.655 26.748

57 46.101 16.848 3.292 14.803 4.96 1.263 3.029 1.766 6.655 26.819

44 46.279 16.413 3.292 14.803 4.96 1.263 3.029 1.766 6.655 26.820

34 44.979 16.271 6.88 17.128 2.983 1.229 2.668 0.424 7.31 26.827

20 45.101 16.271 6.88 17.128 2.983 1.229 2.688 0.424 7.31 26.881

94 45.142 16.271 6.88 17.128 2.983 1.229 2.688 0.424 7.31 26.900

Crossing Transfer Best individual Better Composition

SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O+N2 O3 TiO2 L F Fitness

46.137 16.413 3.292 14.803 4.96 1.263 3.029 1.766 6.655 26.748
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Fig.3. variation of the first Fitness

Table 6. The Generation of the Initial Population with the Second Fitness

Selection
Crossing Transfer Best individual Better Composition

N° SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O+N2 O3 TiO2 L F Fitness

43 59.682 17.701 4.064 9.251 0.889 0.232 2.515 1.337 3.508 0.00

50 51.713 18.356 7.519 3.025 4.826 2.25 1.696 1.432 10.533 2.817

191 61.526 16.589 6.844 3.889 3.461 1.347 1.321 1.795 3.12 3.708

202 58.604 15.437 4.61 6.738 3.862 1.922 2.852 1.751 3.621 3.796

160 53.172 15.062 4.306 16.513 2.729 0.073 1.633 1.007 5.966 3.611

138 60.154 17.12 6.233 1.781 3.022 1.725 2.173 1.542 5.966 3.514

103 52.544 16.0328 6.417 14.174 3.862 2.471 1.425 0.427 2.597 3.158

Table7. Best Individual
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Table8. Better Composition

Fig.4. Variation of second Fitness

Selection
Crossing Transfer Best individual Better Composition

N° SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O+N2 O3 TiO2 L F Fitness

145 57.128 21.131 4.079 11.677 1.048 0.766 2.801 0.382 1.151 2.703

115 45.92 16.978 6.88 17.128 2.983 1.229 2.668 0.424 7.31 2.704

177 57.455 21.238 4.079 11.677 1.048 0.766 2.801 0.382 1.151 2.705

100 46.742 17.265 3.292 14.803 4.96 1.263 3.029 1.766 6.655 2.707

132 47.044 17.356 3.292 14.803 4.96 1.263 3.029 1.766 6.655 2.710

113 57.310 21.131 4.079 11.677 1.048 0.766 2.801 0.382 1.151 2.712

Crossing Transfer Best individual Better Composition

SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O+N2 O3 TiO2 L F Fitness

57.128 21.131 4.079 11.677 1.048 0.766 2.801 0.382 1.151 2.703
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3. DISCUSSION

Along the iterations the first fitness varies timidly but unstable, against the second fitness

appears with more sensitive wave variation and tends to stabilize.

The wave stability allows us to define an optimal approach, so the second function or the

fitness 2 is more accurate than the fitness1

3.1. Comparison with Clays used in Neighborhood Brickworks

Table9. The Generation of the Initial Population Brickworks in the West of Algeria

Selection
Crossing Transfer Best individual Better Composition

N° SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O+N2

O3+ P2O5

TiO2 L F

1 54.09 12.24 4.94 9.93 2.56 0.11 2.62 0.66 12.86

2 48.12 15.5 5.49 9.97 3.01 0.52 3.23 0.75 13.41

3 47.86 12.67 5.34 12.26 3.15 0.37 2.73 0.68 14.96

4 48.17 14.46 5.78 10.49 3.01 0.03 3.21 0.71 14.31

5 47.83 16.83 6.1 9.04 2.68 0.07 3.38 0.79 13.19

6 47.71 15.81 5.91 9.94 2.88 0.46 3.09 0.78 13.41

7 47.91 14.4 5.94 10.4 2.73 0.4 3.00 0.78 14.44

8 62.33 11.04 5.58 7.32 1.51 0.01 1.70 0.58 9.93

9 53.88 10.75 5.39 11.94 1.79 0.02 1.92 0.57 13.74

10 52 9.99 4.96 13.49 2.02 0.06 1.97 0.53 14.97
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Table10. Better Composition with the first Fitness

Fig.5. Variation of first Fitness of Brickworks

Table11. Better Composition with the second Fitness

Crossing Transfer Best individual Better Composition

SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O+N2 O3 TiO2 L F Fitness

47.71 15.81 5.91 9.94 2.88 0.46 3.09 0.78 13.41 26.501

Crossing Transfer Best individual Better Composition

SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O+N2

O3+P2O5

TiO2 L F Fitness

47.83 16.83 6.1 9.04 2.68 0.07 3.38 0.79 13.19 2.841
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Fig.6. Variation of second Fitness of Brickworks

3.2.Comparison with the chemical composition of the Bouhanifia sludge In table 12

Table12. Comparison between Dam Sludge and Brickworks Clay

4. CONCLUSIONS AND PERSPECTIVES

In conclusion, this paper presented the steps of an optimization approach to a set of samples

that meet the recommended thresholds for the chemical analysis of clay used for the

Crossing Transfer Best individual Better Composition

SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O+N2 O3 +

P2O5

TiO2 L F Fitness

47.83 16.83 6.1 9.04 2.68 0.07 3.38 0.79 13.19 2.841

Chemical Composition of Dam’s Sludge

49.36 12.26 5.13 10.03 2.34 1.77 3.33 0.63 15.15 4.02
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manufacture of a fired brick. The model used is the genetic algorithm that gave us the optimal

chemical analysis of a sample suitable for the design of a fired brick. The intended

experimental goal through the choice of this model is the comparison between different

samples analyzed and to correct the typical chemical composition. To answer the need of our

research, we propose to continue the development of the algorithm used in complex function

algorithm. We plan to include as functions the mechanical and physical parameters that

characterize the baked brick.

REFERENCES

[1] Cappuyns et al, 2015 “Dredged sediments as a resource for brick production: Possibilities

and barriers from a consumers’ perspective” Waste Management 38 (2015) 372–380.

[2] Yang Xu et al , 2014 “The use of urban river sediments as a primary raw material in the

production of highly insulating brick” Ceramics International40(2014)8833–8840.

[3] Lafhaj Z., Construction and Building Materials 22 (2008) 755–762.

[4] Andrea Mezencevova et al, 2012 « Utilization of Savannah Harbor river sediment as the

primary raw material in production of fired brick” Journal of Environmental Management 113

(2012) 128-136

[5] Kung-Yuh Chiang et al, 2008 « Study on the characteristics of building bricks produced

from reservoir sediment” Journal of Hazardous Materials 159 (2008) 499–504

[6] Mazen Samara et al, 2009 « Valorization of stabilized river sediments in fired clay

bricks:Factory scale experiment” Journal of Hazardous Materials 163 (2009) 701–710

[7] Faycal El Fgaier et al,2013 « Use of clay bricks incorporating treated river sediments in a

demonstrative building: Case study” Construction and Building Materials 48 (2013) 160–165

[8] Y.M. Zhang et al, 2016 « Fabrication, microstructure and properties of bricks fired from

lake sediment, cinder and sewage sludge” Construction and Building Materials 121 (2016)

154–160

[9] F. Messina et al,2017 « Synergistic recycling of calcined clayey sediments and water

potabilization sludge as geopolymer precursors: Upscaling from binders to precast paving

cement-free bricks” Construction and Building Materials 133 (2017) 14–26



Marouf et al. J Fundam Appl Sci. 2018, 10(2), 321-335 335

[10]Imen Said et al,2015 « Reuse of Tunisian marine sediments in paving blocks: factory

scale experiment » Journal of Cleaner Production 102 (2015) 66e77

[11]Fayçal El Fgaier et al, 2016 « Effect ofsorptioncapacityonthermo-

mechanicalpropertiesofunfired claybricks” Journal of BuildingEngineering6(2016)86–92

[12]REMINI B. Larhyss Journal 05 (2006) 75-89.

[13]Labiod Z., Remini B., Belaredj M. (2004). Traitement de la vase du barrage de

Bouhanifia en vue de sa valorisation. Larhyss Journal 03(2004) 7-12.

[14] Martinez G., J. Envir. Manag 95 (2012) S343-S348

[15]Schwartz, P. (2005) Les algorithmes génétiques. Developpez.com. Available from:

http://khayyam.developpez.com/articles/algo/genetic/

[16]Dipama, J. (2010) Optimisation multi objectif des systèmes énergétiques, Thèse de

doctorat,

Université de Montréal, Canada.

[17] Khadidja Yachba, Shahin Gelareh, Karim Bouamrane, Transport and

Telecommunication Vol. 17, no. 4, 2016

[18] A. Qlihaa, S. Dhimni, F. Melrhaka, N. Hajjaji, A. Srhiri J. Mater. Environ. Sci. 7 (5)

(2016) 1741-1750 Qlihaa et al ISSN : 2028-2508 CODEN : JMESCN

[19] M. Gourouza, A. Zanguina, I. Natatou, A. Boos, Rev. CAMES – Sciences Struct. Mat.

Vol. 1, Déc. 2013

How to cite this article:
Marouf H, Semcha A, Mahmoudi N, Bouhamou N. Genetic programming for brick's chemical
analysis modelling. J. Fundam. Appl. Sci., 2018, 10(2), 321-335.


