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ABSTRACT 

In this paper, a discrete implicit linear multistep method in block form of uniform step size for 

the solution of first-order ordinary differential equations is presented using the power series as 

a basis function. To improve the accuracy of the method, a perturbation term is added to the 

approximated solution. The method is based on collocation of the differential equation and 

interpolation of the approximate solution using power series at the grid points. The procedure 

yields four linear multistep schemes which are combined as simultaneous numerical 

integrators to form block method. The method is found to be consistent and zero-stable, and 

hence convergent. The accuracy of the method is tested with some standard stiff first order 

initial value problems. All numerical examples show that our proposed method has a better 

accuracy than some existing numerical methods reported in the literature. 
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1. INTRODUCTION 

Nowadays, the integration of ordinary differential equations could be carried out using block 

integrators. In this paper, we present a continuous block integrator for direct integration of 

stiff of the form: 

'

0 0( ) ( , ( )), ( )y x f x y x y x y                                                                                 (1)                                             
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Eq. (1) can be regarded as stiff if its exact solution contains very fast as well as very slow 

components, Dahlquist [1]. Stiff IVPs occur in many fields of engineering and physical 

sciences. Their solution is characterized by the presence of transient and steady-state 

components, which restrict the step size of many numerical methods Suleiman et al. [2]. This 

behavior makes it difficult to develop suitable methods for solving stiff problems. However, 

efforts have been made by researchers, such as Dahlquist [1], Alt [3], Cash [4], Alvarez et al. 

[5], Ibrahim et al. [6], Yatim et al. [7], Zawawi et al. [8], Abasi et al. [9], and Suleiman et al. 

[2] among others, to develop different numerical methods for stiff ODEs. Moreover, a power 

series method has been developed for solving a wide range of problems, and it is found that it 

is effective in handling both linear as well as nonlinear problems, Hirayama, [10].
 

In this paper, we have constructed a continuous  representation  of  a block  implicit multistep  

scheme via  interpolation  of  the  approximate  solution  and  collocation  of derivative 

function with power series as basis function which is a modification and extension of the 

method developed by Abualanja [11].  

 

2. THE DERIVATION OF THE PROPOSED METHOD 

In this section, we drive the discrete method to solve Eq. (1) at a sequence of nodal points 

0nx x nh   where h is the step length and defined by 
1n j n jh x x    for 0,1,2,...,j k  and 

n is the number of steps which is a positive integer. 

Let the power series solutions of the Eq. (1) be
0

( ) j

j

j

y x c x




 , then the approximate solution 

will be: 

0

( ) ,
k

j

j n n k

j

y x c x x x x 



                                                                                       (2) 

Substituting Eq. (2) in Eq. (1) we have: 

1

0

'( ) ( , )
k

j

j

j

y x jc x f x y



                                                                                                   (3) 

Now, by adding the perturbed term ( )k n jL x 
for 0,1,2,...,j k  to Eq. (3), we obtained: 

0

( ) ( , ) ( )



  
k

j j k n j

j

c x f x y L x                                                                                (4)

 

where   is a perturbed parameter (determined by the values of n kf  ) and ( )k n jL x 
 is the thk  

shifted Legendre polynomial obtained by the recursive formula: 
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0 1 1 1( ) 1, ( ) and ( 1) (2 1) 0n n nL x L x x n L n L nL                                                          (5)  

evaluated at      . Here      takes the value of x obtained after it is transformed using the 

formula:                                                                             
 

2 [ ] 



 




n j n k n

n k n

x x x
x

x x
                                                                                                         (6) 

or 1,2,3,... and 0(1) .f k j k   

From Eq. (4) we deduce that:  

2 1

1 2 32 3 ... ( , ) ( )k

k k n jc xc x c kx c f x y L x

                                (7) 

Interpolating Eq. (2) at
nx x , collocating Eq. (7) at 

n jx 
 for 0,1,2,...,j k  and substituting 

the relation n k nx x kh   , we get a system of ( 2)k   equations with ( 2)k   parameters as 

shown below. 

2 3

0 1 2 3

2 1

1 2 3

2 1

1 2 3 1 1

2 1

1 2 3

...

2 3 ... ( )

2 ( ) 3 ( ) ... ( ) ( )

. . . . . .

. . . . . .

. . . . . .

2 ( ) 3 ( ) ... ( ) ( )

k

n n n k n n

k

n n k n k n n

k

n n k n k n n

k

n n n k n k n k

c c x c x c x c x y

c c x c x kc x L x f

c c x h c x h kc x h L x f

c c x kh c x kh kc x kh L x











 



 

     

     

        

         n kf 













  (8) 

 Now, the required numerical scheme of the proposed method will be obtained, if we 

interpolate Eq. (2) at n kx  as follows. 

2

0 1 2 ... k

n k n k n k k n ky c c x c x c x                                                                 (9) 

and substitute the values of the parameters 0 1 2, , , ,...,and kc c c c
 
in Eq. (9).

 

Now in this paper, we will drive the proposed block implicit linear multistep method only for

1,2,3,4k  . 

2.1 Derivation of the method for k = 1 

Using Eq. (5) the Legendre polynomial is 1( )L x x and applying Eq. (6), we get:

       1 1 1 1 11 1 and 1 1.n nL x L L x L       

Now Eq. (8) becomes:  
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0 1

1

1 1

n n

n

n

c c x y

c f

c f



 

 


 
  

                                                                              (10) 

The resulting system, Eq. (10) is solved for 0 1, ,c c and   and substituted in Eq. (9) to get:

1 1( )
2

n n n n

h
y y f f                                                                                         (11) 

Therefore, Eq. (11) is the numerical scheme when 1k  , which is the well-known trapezoidal 

rule. 

2.2 Derivation of the method for k = 2 

Using Eq. (5) the Legendre polynomial for 2k   is 
2

2

1
( ) (3 1)

2
L x x  and applying Eq. (6) 

we get:
 

2 2 2 1 2 2 2 2

1
( ) ( 1) 1, ( ) (0) , and ( ) (1) 1

2
n n nL x L L x L L x L          

Now Eq. (8) becomes:  

2

0 1 2

1 2

1 2 1 1

1 2 2 2

2

1
2

2

2

n n n

n n

n n

n n

c c x c x y

c c x f

c c x f

c c x f







 

 

   


  


  


  

                                                                  (12) 

The resulting system, Eq. (12) is solved for 0 1 2, ,c c c , and , and substituted in Eq. (9) to get: 

2 1 2( 4 )
3

n n n n n

h
y y f f f                                                                                    (13)

 

Therefore, Eq. (13) is the implicit scheme for 2k  . 

2.3 The proposed block method 

In a similar procedure as in sections 2.1 and 2.2, we can get the formulas for 3ny  and 4ny   

when k = 3 and k = 4 respectively. So the proposed block procedure with the implicit linear 

multistep method is given by:
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1 1

2 1 2

3 1 2 3

4 1 2 3 4

( )
2

( 4 )
3

(3 9 9 3 )
8

(14 64 24 64 14 )
45

n n n n

n n n n n

n n n n n n

n n n n n n n

h
y y f f

h
y y f f f

h
y y f f f f

h
y y f f f f f

 

  

   

    


  


    


     


      


         (14)
 

 

3. ANALYSIS OF THE METHOD 

3.1. Order and error constant 

According to Lambert [12] the general k -Step method for Eq. (1) is written in the form: 

0 0

k k

j n j j n j

j j

y h f  

 

                                                                                               (15) 

where 
j  and 

j are coefficients of the method to be uniquely determined, h  is a constant 

step size and k  is the step number.  

It is convenient at this point to introduce the so called characteristic polynomials:  

0 0

( ) and ( )
k k

j j

j j

j j

z z z z   
 

    

for the linear multistep methods given in Eq. (15) by using the substitutions 

andj j

n j n jy z f z   where z is a variable and 0,1,2,..., .j k  

Moreover, following Henrici [13], the approach adopted in Fatunla [14], Lambert [12] and 

Suli and Mayers [15], we define the local truncation error associated with Eq. (14) by the 

difference operator: 

 
0

0

1
( ) : ( ) ( )

k

j n j nk
j

j

j

L y x h y x jh h f x jh

h

 

 



 
      

 



       (16) 

where ( )y x is the exact solution.  

Assuming ( )y x is smooth and expanding Eq. (16) in Taylor series give us:

2 1 1

0 1 2 1

1
[ ( ) : ] [ ( ) ( ) ( ) ... ( ) ]

(1)

p p

n n n p nL y x h c y x c hy x c h y x c h y x
h

 


                 (17) 

and 

2 1

0 1 2

0 1 0 1 1 1 1

, , ,
2! ! ( 1)!

p pk k k k k k k

j j j j j p j j

j j j j j j j

j j j
c c j c j c

p p
      



      

      


       (18) 
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According to Lambert [12], Eq. (14) is of order p if 
0 1 ... 0pc c c    and

1 0pc   . In this 

case, the number
1

(1)

pc




 is called the error constant of the method. Thus, the order of Eq. (14) is 

(2 4 4 6)T  with error constant 
1 1 1 8

12 180 80 945

T

 
    
 

.
 

3.2 Zero stability and region of absolute stability of the method 

According to Shampine and Watts [16], Eq. (14) forms the block formula: 

( ) ( )M n n MAY Ey hdf y hbF Y                                                             (19)
 

where 

1 3

2 2

3 1

4

3

2

1

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1
, ,

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

1
0 0 0

2

1
0 0 0

3
( ) ,

3
0 0 0

8

14
0 0 0

45

n n

n n

M n

n n

n n

n

n

n

n

n

y y

y y
AY EY

y y

y y

f

f
df y bf

f

f

 

 

 









      
      
       
      
      

      

 
 
   
   
       
   
   
 
 
 

1

2

3

4

1
0 0 0

2

4 1
0 0

3 3
( )

9 9 3
0

8 8 8

64 24 64 14

45 45 45 45

n

n

M

n

n

f

f
Y

f

f









 
 
   
   
       
   
   
 
 
 

 

Substituting the scalar test equation y y   into Eq. (19) and using h h   gives us: 

( )M n n MAY Ey h dy bY                                                                     (20) 

The stability polynomial of a Linear multistep method is given by:
 

( , ) ( ) ( ) 0z h z h z    
                                                                                                 (21) 

where .h h  

One can show that using Eq. (21) all the linear multistep formulas for k = 1, k = 2, k = 3, and 

k = 4 are zero stable but it also possible to obtain
 
stability polynomial of the block method 

given by Eq. (14) by evaluating det[( ) ( )] 0A hb z E hd    to get: 
 

34 3 2 4 2
4 37 457 1847 5 74371 5999 893

( , ) 1 1 0
360 2160 2160 360 120 432 2160

4

36

7

0

hh h h
R z h z z

h h h h   
             

   
 (22)

 

and show that it is zero stable by setting 0h  in Eq. (22) in order to get the first 

characteristic polynomial as follows: 
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4 3 0z z                                                                                                               (23) 

Solving Eq. (23) for z gives the following roots: 1 2 3 40, 0, 0, and 1.z z z z     

According to Fatunla [17], our block method equations are zero stable since 1jz  for 

1,2,3,j  and 4, and for those roots with 1jz  , the multiplicity does not exceed two. 

The boundary of the stability region of Eq. (14) is determined by substituting iz e   into Eq. 

(22). The graph of the stability region for Eq. (14) is given in figure 1. 

 

 

 

 

 

 

 

 

 

Fig.1. Absolute stability region of the block method 

 

3.4 Consistency of the method 

According to Lambert [12], a linear multistep is said to be consistent if it has order at least 

one. Owing to this definition Eq. (14) is consistent. 

3.5 Convergence of the method 

According to the theorem of Dahlquist, the necessary and sufficient condition for a linear 

multistep to be convergent is to be consistent and zero stable. Since the method satisfies the 

two conditions, hence the scheme in Eq. (14) is convergent. 

3.6 Numerical examples 

The mode of implementation of our method is by combining the schemes Eq. (14) as a block 

for solving Eq. (1). It is a simultaneous integrator without requiring the starting values. To 

assess the performance of the proposed block method, we consider two stiff first order initial 

value problems in ODEs. The maximum absolute errors (MAXAE) of the proposed method is 

compared with that of Runge Kutta order 4 (RK4) and method developed by Naghmeh Abasi et 

al., [18] namely block backward differentiation formula with 2 off-steppoints (2OBBDF). All 

calculations are carried out with the aid of MATLAB software.  
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Example 1: Consider the first order stiff ordinary differential equation, Randall [19]. 

'( ) 2100( cos( )) sin( ) (0) 1 [0,1]y x y x x y x       

The exact solution is ( ) cos( ).y x x    

 

Table 1. Maximum Absolute errors of  RK4 and the Proposed Method for problem 1  

h RK4 Proposed Method 

10
-1 

1.22516e+24
 

1.12538e-5
 

10
-2 

2.41053e+304
 

9.67880e-8
 

10
-3 

1.53563e-7
 

6.46040e-11
 

10
-4 

5.09304e-12
 

3.33844e-13 

10
-5 

1.22125e-15
 

4.10783e-15
 

 

Example 2: Consider the first order stiff ordinary differential equation, Ibrahim [20]. 

'( ) 20 20sin cos (0) 1 [0,2]y x y x x y x       

The exact solution is 20( ) sin .xy x x e   

 

Table 2. Maximum Absolute errors of 2OBBDF and the Proposed Method for problem 2. 

h 2OBBDF Proposed Method 

10
-1

 - 3.51869e-1 

10
-2

 8.05923e-2 4.89908e-3 

10
-3

 1.39480e-2 4.90696e-5 

10
-4

 1.46355e-3 4.90612e-7 

10
-5

 1.47055e-4 4.90611e-9 

 

 

 

 

 

 

 

 

 

 

 

 

                      Fig.2. The logplot of the step size h versus MAXAE for problem number 1 
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The results displayed in Tables 1 and 2 above show that the derived proposed method is better 

in terms of accuracy than RK4 and 2OBBDF respectively. 

 

4. DISCUSSION AND CONCLUSION  

This paper presented a block procedure with the implicit linear multistep method based on 

Legendre polynomials for solving first order IVPs in ODEs. A perturbed collocation approach 

along with interpolation at some grid points which produces a family block scheme with 

maximal order six has been proposed for the numerical solution of stiff problems in ODEs. 

The method is tested and found to be consistent, zero stable and convergent. We implement 

the method on two numerical examples, and the numerical evidence shows that the method is 

accurate and effective for stiff problems and therefore effective for a wide range of stiff IVPs 

in ODEs. 
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