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ABSTRACT 

In a crowd, where the density might reach one person per square meter and above, the mass of 

individuals moves in a way that may potentially induce panic amongst individuals, or hazards 

of personal injuries, from slight to fatal. A computer simulation is implemented and conducted 

in order to study and analyze the dynamics and behavior of crowds, both at micro- and 

macro-levels. The simulation is comprised of multiple arenas with different layouts, as well as 

different compositions of heterogeneous agent behavior. The simulations are observed to 

conform to established results on a localized scale, and the statistical data shows no 

significant increase in total evacuation time with increasing composition of non-interactive, 

path-finding agents amongst flocking agents.  
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1. INTRODUCTION 

Crowd dynamics refer to the interaction the macro-level patterns of movement of a large 

number of people within a high-density environment, and the micro-level interactions of 

individuals or entities within the crowd. A high-density environment, in this case, refers to 
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environments where crowds form and move above the critical density of more than one 

person per square meter [1]. At such densities, there is potential for overcrowding and 

personal injury [1]. Despite the potential hazards, crowd dynamics and psychology are 

considered a field where only a little literature references were made to outdated work from 

past decades or even centuries [2]. 

One of the reasons is that crowd behavior is difficult to observe and simulate, particularly 

under dire emergencies, which cannot be tested unless a real crisis occurs [1]. It is neither 

feasible nor ethical to expose members of the public to real emergencies in order to analyze 

their behavior and reactions [1], only to take corrective actions thereafter. 

In order to analyse the problem, computer simulations are turned to as an alternative [1]. 

Pedestrian simulation has received important attention in the context of crowd evacuation 

management and panic situation analysis [3]. Complex models have been proposed and 

compared to crowd dynamics in real life, including continuum crowd flow [4-6], cellular 

automata [7-9], and multi-agent systems [9-14]. 

Many simulations on heterogeneous crowds in the past, may conform to established results in 

pedestrian dynamics, but the behavior of heterogeneous crowds under emergency egress, 

where each member of the crowd has the same set of predetermined destinations has yet to be 

explored thoroughly. A study that combined the systemic effects of panic towards crowd 

dynamics and heterogeneous crowd composition would help alleviate the problem and shed 

some insight on the study of crowd egress under emergency situations. 

This article studies and simulates the dynamics of a crowd of people under evacuation using 

multi-agent simulation approach. The simulation tool used in this work, NetLogo 5.1.0, is a 

multi-agent programming language and modelling environment for simulating natural and 

social phenomena, designed for both research and education across a wide range of 

disciplines [15-16]. 

This work focuses on a crowd model which having two types of agent; namely tenant and 

visitor, occupying an enclosed arena. Agent tenant represents a tenant in a particular arena 

and assume to be a well-trained agent that knows the environment of the arena. Agent visitor 

represents a visitor to that particular arena, and assume to be having zero-knowledge about the 
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arena. The model is then simulated and the macro-behavior of the crowd is analyses and study 

in depth. 

 

2. AGENT BEHAVIOR MODELING FRAMEWORK  

From the previous section, it can be seen that there is only one past work that focused 

specifically on combining the study of panic evacuation of large, heterogeneous crowds [14]. 

Therefore, in order to lay down the groundwork for simulating these particular scenarios, a 

basic, simplistic approach towards modeling and simulating the crowd dynamic has been 

taken, without compromising the conformity to established results. 

In this work, agent-based modeling approach is used towards modeling the behavior of 

individuals within a heterogeneous crowd that is a composition of different types of 

homogenous agents. In agent-based modeling, the macro-level crowd dynamics emerge from 

the micro-interactions between agents, which are in turn results of the individual behaviors of 

each interacting agent. Therefore, this section is discussing on previous studies done on 

modeling behaviors of agents in a swarm. 

2.1 Flocking behavior in pedestrian crowds 

Flocking behavior is used to describe the collective behavior of a large group of mobile agents 

with a common group objective, such as safety in numbers from predator [17]. Flock behavior 

is often observed in nature, where examples of flocking agents include birds, fishes, and 

insects [18]. Reynolds [19] introduced three heuristic rules that has to the first computer 

animation of flocking, they are: 

a) Alignment rule: Attempt to match speed and heading with nearby flockmates; 

b) Cohesion rule: Attempt to stay close to nearby flockmates; 

c) Separation rule: Avoid collision with nearby flockmates. 

 However, being subjective to broad interpretation, which complicates the objective 

analysis and implementation of these rules [18]. Multiple mechanisms and models were 

reviewed by Olfati-Saber [18], including the work of Toner and Tu [20] as well as Vicsek [21]. 

The study and applications of flocking behavior were presented in multiple fields of discipline 

[22-27], including that of pedestrian crowd movement and behavior [6,26-27]. Due to the 
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simplicity of the technique [23], flocking behavior is suitable for modeling and simulating 

large number of agents in high spatial densities. 

2.2 Path-finding algorithms 

Given a destination and a starting location, there are multiple developed algorithms which can 

be used for a computer-generated mobile agent to find a non-colliding path in between. Some 

of the examples include the Dijkstra algorithm, the Greedy path-finding algorithm, and the A* 

algorithm [28,29]. In Dijkstra’s algorithm, all neighboring nodes or locations were assigned a 

path value, g(n), depending on the distance from the starting location, or the time required 

traveling to the patch from the starting location. Obstacles will be marked as non-traversable 

with a path value of infinity. The goal is then to find a shortest path between the starting 

location and the destination without doubling back along the way. 

In Greedy path-finding algorithm, the path is constructed by assigning a locally optimal value, 

h(n),  based on the estimated distance between the choice node and the destination node, and 

updating the path with every sweep. This heuristic approach allows quicker search time as 

compared with Dijkstra’s path-finding algorithm, but the resultant path is longer as the 

Greedy algorithm cannot predict obstacles beyond the local search range and thus may have 

to double back along the path. 

A* algorithm is a variation of Dijkstra’s algorithm, which assimilates the heuristic approach of 

Greedy algorithm [28]. When sweeping for a shortest path, A* calculates heuristic values, f(n), 

based on both Dijkstra’s cost from starting point and Greedy’s heuristic estimated cost to 

destination, ignoring explored nodes that proved to have a higher heuristic values. A* 

algorithm is a popular path-finding algorithm in applications such as video games [30], 

robotics [28] and computer simulations [29], although the algorithm suffers mainly from the 

drawback of processing time when computing paths for large number of agents across 

complex arenas [29]. 

2.3 Effects of panic towards crowd dynamics and behaviors 

Panic has been historically studied in the field of social psychology as a form of collective 

behavior under situations where resources are dwindling or already scarce to begin with 

[13,31]. Panic has been recorded to result in maladaptive behavior that spreads throughout the 
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crowd [31], such as crowd congestion and stampedes. Helbing et al. [13,32], with all 

references therein, has provided valuable insight on documentation of characteristic features 

of panic in crowds, despite the lack of quantitative theories predicting crowd dynamics with 

panic behavior. 

However, Helbing et al. [13,32] did not account for heterogeneity within the crowds, which 

may include individuals that are able to resist the effects of panic to varying degrees, or may 

even be capable of aiding neighboring individuals to achieve the same. This will be one of the 

main focal points in this work, to study if the micro-behavior of such agents may influence 

the macro-dynamics of a crowd in panic, and to analyze if such findings may reflect realistic 

scenarios of egress. 

 

3. AGENT BEHAVIOR SIMULATION SETUP 

3.1 Working arena 

Simulation has been developed using NetLogo 5.1.0, attempting to replicate the behavior of 

crowds under egress using flocking behavior and A* path-finding algorithm. 

The simulation interface is set up as shows in figure 1. The arena where the evacuation 

simulation is to be carried out, or the simulation world, is the black-colored window on the 

right. The world-wrapping option is disabled for the arenas such that agents may not cross any 

edge of the world and reappear on the opposite edge. 

 

Fig.1. User interface for crowd simulation 

The world is set as a square-shaped arena with a total length of 29 patches a side, where 
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each patch is given a set of integer planar coordinates in the xy-plane from (-14, -14) to (14, 

14). Figure 2 shows the arena for simulation; where blue patches are the exits from the arena, 

green patches refers to flat traversable terrain, and red patches are non-traversable obstacles. 

Three different types of arenas were tested in the simulation, one without any static obstacles 

(figure 2a), one with blob obstacles (figure 2b), and one with block obstacles (figure 2c).  

 

(a) Open-arena 

 

(b) Blob-arena 

 

(c) Block-arena 

Fig.2. Evacuation arena for simulation 

 

3.2 Agent behavioral design 

Two types of agent behavior were designed for simulation as depicts in Table 1. Tenant agents 

have global knowledge of the evacuation arena layout, including the nearest exits and all 

static obstacles in the arena. Visitor agent on the other hand, refers to agents that only have 

local line-of-sight; which is the area of a cone with an 80-degree arc and a radius of 3 to 5 

patches ahead of the individual agent. Visitor agents also do not know the layout of the whole 

evacuation arena. The behavioral models for both types of agents are illustrated in Appendix 

A and Appendix B respectively. 

At the beginning of the simulation, 500 agents are evenly distributed in the arena. Tenant 

agents will then find a path towards the nearest exit by applying the A* algorithm, accounting 

only for all static environmental obstacles. When encountering other agents in the path, 

Tenant agents will remain at their patch until the patch forward is cleared before moving on 

towards the exit. Due to constraints in computer processing, Tenant agents will only apply the 

A* path-finding algorithm at the start of the simulation without accounting for dynamic 

obstacles, and will not apply brute force recalculation every time an obstacle is encountered 
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along the path. 

Table 1: Agent’s knowledge design for simulating heterogeneous crowd 

Agent type Knowledge 

Tenant Knows the global layout of the arena; knows the shortest route to 
the nearest exit 

Visitor Knows only within it's vicinity (80-degree arc, 3 to 5 patches 
ahead) 

 

As for Visitor agents, they will first attempt to follow Tenant agents, using A* algorithm to 

find a path towards the location of the nearest Tenant agent. In the absence of Tenant agent in 

the line of sight, Visitor agents will apply the alignment rule of flocking behavior to head 

towards the exit, if no panic behavior is exhibited. Visitor agents that exhibit panic behavior 

will not apply flocking behavior, instead moving towards any nearby empty patch in an 

individual search for exit. 

Even when flocking, Visitor agents will always be moving to a nearby empty patch if it is 

unable to move towards the destination due to an obstacle in front of it, which may be static, 

environmental obstacles, such as pillars and walls; or dynamic obstacles that include other 

mobile agents. When moving to a nearby empty patch, Visitor agents will prioritize empty 

patches that are right in front of them within an 80-degree arc, then empty patches within a 

180-degree arc in front of them, before considering patches behind them. 

Both types of agents have the same objective – that is, to evacuate from the arena. Therefore, 

both agents will move towards the exit, overriding all other behaviors, if the exit is within line 

of sight. The panic behavior is introduced only to Visitor agents, with random occurrence that 

increases exponentially in probability as more time passes in the simulation. 

3.3 Simulation and data collection 

For each arena, 500 agents are distributed evenly. Simulations are done by varying the 

percentage of Tenant agents existed in the arena, i.e. 0%, 25%, 50%, 75%, and 100%. For 

each set, a total of 20 simulation runs are conducted to provide a sample size large enough for 

precise analyses. The number of agents remaining in the arena over time – measured in ticks 

(simulation time) – is tabulated with records at 10-tick intervals, and the average number of 
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agents remaining over time are plotted for each simulation set. The standard deviation 

distribution for each interval is also calculated and analyze in an attempt to interpret the 

emergent crowd behavior. Finally, the results between the simulation sets are compared in 

order to discern a trend between arenas as well as ratio of heterogeneous agents. 

 

4. RESULTS AND DISCUSSION   

4.1 Emergent crowd behavior 

For Tenant agents, a discernible pattern was observed. Since Tenant agents only used the A* 

algorithm to find a path to the exit during the setup stage of the simulation, and follow the 

path to the exit, the results are that all Tenant agents of a region follow the same path towards 

the nearest exit, depending on their starting location. Such behavior is expected from a 

coordinated, organized evacuation, although further work is required to verify the 

observation. 

The overall dynamics of crowds consisted of Tenant agents are as illustrates in figure 3, where 

a Tenant agents within the same regions follow not just the same general direction, but the 

exact same Euclidean shortest path towards the exit. The result is that approximately straight 

queue lines appeared during the evacuation of multiple Tenant agents heading towards the 

same exit, resulting in non-optimized space further away from the exit, shows as empty 

patches in figure3. 

 

(a) Open-arena 

 

(b) Blob-arena 

 

(c) Block-arena 

Fig.3. Path taken by Tenant agents towards the nearest exit in simulation arenas 

For Visitor agents, the observed resultant behavior is much more chaotic. Without being 

pre-programmed to bias towards left/right side, and with the presence of random generated 
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panic effects, Visitor agents were observed to follow a dynamic path that is altered by 

neighboring agents as well as any obstacles in the path ahead. When faced with an obstacle 

ahead, a Visitor agent, without any external influence, is liable to take any path with the 

line-of-sight to avoid the obstacle. 

When taking an alternative path to avoid the obstacle directly in front of them, Visitor agents 

face the adjacent path before moving towards it, and it is observed that such a turning before 

moving is capable of influencing the heading of neighboring agents. As shows in figure 4, the 

single Visitor agent turned right as a consequence of random choices when it reached the 

obstacle (red wall) in front of it, despite the fact that it will lead to another obstacle in the 

form of a corner. 

 

(a) 

 

(b) 

Fig.4. One of many examples of direction taken by a single Visitor agent: (a) before reaching 

the horizontal wall; (b) after reaching the horizontal wall 

 

The herding behavior programmed into Visitor agents does allow individual agents to follow 

the flow of the crowd, merging into one group with a new heading. Shows in figure 5a, one 

group of Visitor agents, circled in black with their headings in the direction of the black arrow, 

met a second group circled in red, and the resultant merged crowd reoriented towards the 

direction of the blue arrows in figure 5b.  

 

(a) 

 

(b) 

Fig.5. One of many examples of direction taken by groups of Visitor agents: (a) before 

merging with different headings; (b) after merging into a single crowd with the same heading 
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But, two groups of Visitor agents of similar sizes may significantly alter each other’s 

original headings. Futhermore, due to the limited area-of-sight for Visitor agents, the emergent 

crowd dynamics are localized, and during the simulations, there were no observed global 

crowd patterns where the majority of the agents are Visitor. 

4.2 Analysis of evacuation time 

A total of 20 simulation runs for each set were carried out and sampled as stated previously. 

The average evacuation time [tick], and standard deviation σ of the time taken to facilitate 

complete evacuation are calculated and tabulated in Table 2. The results of the parametric 

sweep are sorted by the ratio of Tenant agents, and by the layout of the simulation arena in 

figure 6. In figure 6, the average number and standard deviation of agents that had yet 

evacuated are plotted over 10-tick intervals. 

 

Table 2: Average evacuation time [tick], and standard deviation, σ for 20 simulation runs per 

simulation set 

  Percentage of Tenant in the arena 

Arena type Description 0% 25% 50% 75% 100% 

Open-arena Average evacuation time [tick] 174.5 174.5 153 153.5 72 

Standard deviation σ 34.8644 25.0210 19.4936 23.2322 4.104 

Blob-arena Average evacuation time [tick] 163.5 180 152 152 75 

Standard deviation σ 22.1980 28.6540 20.6729 35.7771 5.13 

Block-arena Average evacuation time [tick] 320.5 301.5 287 232.5 114.5 

Standard deviation σ 27.8104 45.6848 47.8044 43.6342 7.592 

 

From Table 2 above, it can be inferred that simulations in arenas with complex block 

obstacles take significantly less time to complete evacuation only when the Tenant agent 

composition is 50% or higher. For other arenas, increasing Tenant composition does not result 

in significantly quicker time taken for complete egress simulation, until all 100% of the 

agents are Tenant. Simulations with higher Tenant agent composition only facilitated quicker 

egress during the early stages, when all Tenant agents head along the path towards the exit 

simultaneously.  
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(a) 

(b) 

(c) 

Fig.6. Average number of agents not yet evacuated over time for heterogeneous agent ratio 

with varying arena layouts: (a) Open-arena, (b) Blob-arena, (c) Block-arena 
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As can be seen in figure 6, there is no significant difference between time taken for complete 

evacuation between open-arena and blob-arena, only between the former two arenas and the 

arena with block obstacles. Given the same heterogeneous agent ratio, arenas with block 

obstacles consistently require 50% to 95% more time to completely evacuate compared to 

arenas with blob obstacles, or open arenas without any obstacles at all. 

The reason behind the phenomenon may be explained by the lack of interaction between the 

two agent types. While Visitor agents were set to seek out and follow Tenant agents within 

local line-of-sight; Tenant agents were not set to help facilitate efficient egress by actively 

leading neighboring agents towards the exit, instead progressing solely along paths 

determined at the beginning of the simulation.  

If a form of behavior been implemented into a third agent type that actually seeks out and 

helps facilitate other agents’ egress, the difference between the egoistic and altruistic behavior 

in different agent types and their composition within the crowd may provide an insight 

towards modeling and observing the effects of the aforementioned different approaches in 

crowd evacuation. 

The complexity in arena layout, coupled with the lack of efficient path-finding algorithms in 

Visitor agents, contributed to the phenomena where Visitor agents are often “trapped” between 

the inner walls of the block-obstacle arena for extended lengths time, resulting in longer time 

taken for complete evacuation. It can be hypothesized that higher densities in layouts of blob 

obstacles, different layouts of block obstacles, or a combination of both factors will be able to 

model the results of evacuation in different arenas more realistically. 

 

5. CONCLUSION   

An emergency egress agent-based model is implemented and tested using NetLogo 5.1.0 as 

the programming and modeling platform. The model is capable of generating complex arenas, 

integrate heterogeneous rules into a crowd of mobile agents, and visually simulate emergency 

evacuation from the arena under preset parameters. Two different sets of behaviors are 

modeled into the mobile agents, the first being a variant of the A* path-finding algorithm, and 

the second being the three rules of flocking behavior. 
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During simulations under the sets of coded rules, observation is made possible for the 

micro-level interaction between agents and the environment, and macro-level crowd patterns 

on a localized scale. Agents with the intelligent A* path-finding algorithms are observed to 

head directly towards the exit with optimum efficiency while flocking agents are found to 

take more time to facilitate egress. The model was tested to collect statistical data, and the 

results were found to be insignificant. That is, no significant decrease in evacuation time has 

been observed for a non-substantial increase in agent composition with intelligent 

path-finding behavior. 

Two main limitations of this project have been found during the subsequent analysis of the 

results for the project. The first is the constraints set by the computer processing power 

required to implement the A* algorithm over a large number of agents. Given the algorithm’s 

approach to search for, and only accept, globally optimal heuristic values, it requires much 

processing power and time, and thus can only be implemented during the initiation phase of 

the simulation. As a consequence, the existence of mobile obstacles such as other agents 

present along the path is not taken into account, and the path is not recalculated when the 

agent encountered mobile obstacles on the path towards the exit. 

The second limitation was the lack of hard-coded interactions between the two types of agents 

present within the heterogeneous crowd. The individual-level interaction has shown to be 

unidirectional only, as flocking agents looked to follow the path-finding agents towards the 

exit. But, the reciprocal interaction was not implemented, therefore a small increase in the 

numbers of path-finding agents was found to be insignificant towards reducing the total time 

taken for complete egress. 

Further work may be done by introducing more types of agents into the simulation, to further 

enhance the heterogeneity of the crowd in simulations. More complex behavioral rules, such 

as codification of interaction behavior between agents, both egoistic and altruistic, may be 

implemented to observe the effect of altruism and egoism in emergency egress. A simpler 

approach towards the implementation of intelligent path-finding algorithms is recommended 

to reduce the required processing power and enable the simulation of path recalculation. 

Finally, more case studies should be observed and other models should be developed in order 
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to compare the emergent crowd behavior and to ensure that the observations conform to 

realistic evacuation phenomena. 
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APPENDIX A 
Flow chart for behavioral model of Tenant agent 
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APPENDIX B 

Flow chart for behavioral model of Visitor agent 
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