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ABSTRACT  

Due to the fundamental role played by the interaction electron-matter in scanning electron 

microscopy (Electron Beam Induced Current -EBIC- in silicon case), a Monte  Carlo 

calculation model of this interaction applied in silicon nanostructure is presented in the 

present paper. After a brief introduction to scattering process, our model procedure is 

described in which electron trajectories in the sample, penetration range (in depth and in 

spread), backscattered and secondary electron yields (the total electron yield) for 

nanostructure of silicon are calculated. The variation of this parameters with angle of 

incidence and impact energy have been studied. 

The validation  of our model is performed by means of comparison with  results which 

been reported by various authors. 
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1. INTRODUCTION 

The interaction of electron beams with solids has been studied for a long time because of 

interest in both the fundamentals of the interaction mechanisms and predicting the total 

electrons emission yield (EEY) [1-6]. In this work, this interaction is described by a Monte 

Carlo model.   

Due to the rapid growth of technology a great variety of materials is used nowadays in the 

nanotechnology industry. We will confine ourselves, however, to one important material in 

particular, i.e. Silicon, with his interesting properties. Monte Carlo simulations can be used to 

predict these parameters. 

First, the principle fundamental considerations about the scattering process is briefly 

described. Next, the model is described also, the simulation results (trajectories, the electrons 

penetrations, EEY) in silicon's nanostructure are presented finally. The numerical results of 

the calculations are compared with others reported in the literature. 

 

2. FUNDAMENTALS 

2.1. Electrons trajectory  

The electron-matter interaction during EBIC analysis may results in a range of effects on 

incident electrons, which can be divided into two primary types of electron scattering: elastic 

and inelastic. At low energy, one has to take into account not only the inelastic scattering (i.e., 

collision with electrons), but also the elastic scattering (i.e., deflection by nuclei) predominant 

in this energy ranges. In elastic scattering, the incident electrons is deflected to a new 

trajectory with now energy loss. 

Our model is based on the widely accepted Monte Carlo model by Browning and al. [7]. In 

this model, the scattering angles  (polar angle) and  (azimuth angle) are defined by [8], 

           cos  = 1-(2 R1-(1+- R2))              (1) (Rutherford scattering) 

In this equation that can generate a unique scattering angle  in the rage of [0,π] . 

            = 2π R3                             (2) 

 can be in the range [0,2π]. R1, R2 and R3 are a random number in the range [0,1] drawn 

automatically by computer after injection a germ n.  
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The atomic screening parameter derived by Wenzel, , is defined as [9], 

            = 3.4 10-3 Z0.67 E-1                    (3)  

Where Z is the atomic number and E is the energy of the electron (in KeV). 

The total average mean free path between scattering events, is defined by, 

          (1/  Tot) = (1/ e ) + (1/ i)                (4) 

The path length S between any scattering events has the Poisson distribution [10], 

          P(s) = Tot
-1  e-s/Tot                     (5)  

and can be obtained with a uniform random number R4 [0,1] via the relation [11], 

         S = -Tot ln (R4)                          (6)  

Where e is the mean free path for elastic scattering given by [12], 

         e = A / (Na  σelas )                       (7)  

A is the atomic weight of the target material [g/mol],   is the density [g/cm3], and Na is the 

Avogadro's number. The total elastic cross section σelas [cm2 /atom] is obtained by [8], 

         σelas = [5.21 10-21 (Z/E)2 ((E+511)] / [(E+1024))2 (4  / (+1))]    (8) 

In the other hand and for inelastic scattering the mean free path for silicon is given by [13],  

           i= E / [257.23 (0.03 ln (0.125 E) - (1.66/E) +(46.49 E2)]             (9) 

Where E [eV] and i [°A].       

2.2. Maximum penetration range 

In a solid, each electron has an individual trajectory. The path electron length of this trajectory 

is the total distance traveled until the electron comes to rest. The average path length is known 

as the "range" of the electrons in the solid. The total length of an individual electron "random 

walk" trajectory is known as Bethe range [14],   

              =
0

0
E

e dER                               (10) 

The effective depth to which energy dissipation extends is much smaller and its known as 

penetration range, it is given by this general formula [14]:  

            Re= (K/) (E0)𝛾                           (11)  
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Where K depends on the atomic number and is also a function of energy, γ depends on the 

atomic number and on E0.  

2.3. Electron emission yoeld 

The EEY is defined as the ratio between the number of electrons emitted by a solid over the 

number of electrons initially impacting this solid. 

2.3.1. Backscattered electrons 

The backscattered electrons are primary electrons that have undergone inelastic energy losses. 

The electrons that have been backscattered after experiencing a single inelastic interaction 

will get out of the target material.      

2.3.2. Secondary electrons 

The number of secondary electrons produced at a distance z from the surface n(z,E) can be 

assumed to be proportional to the average rate of energy loss, so[15]:    

                 n(Z,E) = (-1/) (dE/dz)                     (12) 

Where , is the energy required to produce a secondary electron. The SE yield can be obtained 

as follows [16]:       δ (E0)=Const (E0 /) (μ/ Re) (1-e- Re / μ)         (13) 

μ is the mean electron escape depth.   

3. Model 

                                   

 

  

 

 

 

 

 

     

 

 

Let us consider an electron beam with nele incidents electrons and energy E0 incident on a 

homogenous unsupported silicon nano-film in the +z direction.  

From (Figure 1) we obtained:  

 

cos n+1 = cosn cos - sinn sin cos             (14) 
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Fig.1. Schematic drawing to illustrate 

the present model for Monte Carlo 
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sin (n+1 -n) = (sin sin) / sinn+1                (15) 

cos(n+1 -n) =(cos -cosn+1 cosn) /sinn+1 sinn    (16) 

(n-1) and (n-1) denote the direction of motion of an electron before scattering and (n) , (n) 

are its direction just after scattering through the scattering angle  and  being the azimuthal 

scattering angle (eq.1 and 2).  

The electron goes forward one step with a defined orientation and its position at the next 

scattering point is defined by:  

xn+1 = xn +Sn (sin n cosn )                      (17) 

yn+1 = yn +Sn (sin n sinn )                      (18) 

zn+1 = zn cosn                                 (19) 

The type of scattering for each scattering event is selected by using a random number R5 

according to the relation: if R5  (1/e) / (1/i) the scattering is elastic, and vice versa.  

We suppose to the first scattering was elastic. 

Paths, energy losses and secondary electrons are calculated until the electron is emitted out of 

the solid or until its energy falls under an energy threshold. This threshold equals e+Eg+ΔV 

for semiconductors, with Eg the energy bandgap, e the electron affinity and ΔV the valence 

[14], for Silicon this value is 50eV. 

3.1. Maximum penetration range 

3.1.1 In the depth 

The electron range is measured of the straight-line penetration of electrons in a target.  

We have determined the range Re by: 

     

ele

i

nele

i
e

n

r

R

)( max
1


==                    (20) 

Where (rmax )i : the maximum distance traversed by the i electron. 

3.1.2. In spread  

In penetration in spread, we have calculated this Value Ymax (E0) by the relation: 

                  

ele

i

nele

i

n

y

Y


== 1

max
                               (21) 

where yi is the position of the electron on (Y) axis.  
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3.2. Secondary yield 

In order to be able to apply our model, the values of the parameters  and μ must be known.  

We used Joy [17] values: For Silicon  = 70 eV and μ =3.0 nm. 

The range is then divided into fifty zones of equal length. in each collision the energy loss is 

ΔE = Ee-h, where Ee-h is the average energy of an electron-hole pair production. And in each 

zone, a quantity of pairs is generated.  

The program was executed by changing target material and beam parameters. 

 

4. RESULTS AND DISCUSSION 

In all graphs, the angle of incidence (tilt) α (in degrees, 0 α < 90) is the angle between the 

vector of the incident beam and the normal vector to the sample surface. 

4.1. Electrons trajectories 

 

      

 

 

 

 

 

 

 

 

 

An example of simulation calculation is shown in Figure.2, where plots of 250 trajectories 

with E0= 3 KeV. 
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Fig.2. Trajectories of 250 electrons for 3 KeV 
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Figure.3 (a), (b) and (c) depicts an illustration of the trajectories of 200 electrons as a function 

of primary energy (E0 =5, 7, and 10 KeV) through Silicon nano-film. It is noticed that the 

generation volume takes the pear shape, which is the form considered by all the researchers in 

the case of Silicon. As the primary energy beam increases, the incident electrons penetrate 

into the sample along a path close to their incident direction, as they lose energy by inelastic 

scatterings the probability of elastic scatterings increase so they begin deflected into the 

sample.   

Figure.3 (a), (d), and (e) illustrate the effect of the tilt (α=0°,45°, and 60°) angle on electrons 

trajectories (interaction volume). This angle is between the sample surface and the horizontal 

plane, determines the symmetry of the interaction volume; as the sample is tilted away from 

the horizontal the interaction volume appears asymmetric.      

4.2. Electron range 

Figure.4 presents the maximum penetration (in depth (a) and in the spread (b)) of electrons 

calculated for different values of primary energy E0. This maximum increase when E0 

increases because the distance traveled by the primary electron inside a specimen before it 

loses all of its kinetic energy increases with the increase of E0. Our simulation results show 

excellent agreement with the vast majority results of authors [18-21].  
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Fig.4. The maximum penetration of electrons (a) in depth (z (E0)) and (b) in spread (y (E0)) 

 

4.3. Backscattered electrons 

 

 

 

 

 

 

 

 

 

 

Fig.5. ηB versus E0 for normal incidence     (α =0°). 

 

Figure.5, shows the variation of the electron backscatter coefficient ηB with the incident 

electron energy E0 for normal incidence (α = 0°).  A slight increase of ηB with E0 in low 

energies is showed, but in high energies there are a monotone form. The rational is that, for 

low energy there are an increase backscattered electron produced during the random walk. 

But after a E0 value (2.2 KeV in our case) there is not a more backscattered electrons 

produced, but there is only a absorbed and transmitted electrons. 

Figure.6 shows the average energy of the backscattered electrons as a function of E0. In our 

model it's simply to calculate this value by the division of their energies amount by their total 

numbers. There is a good agreement between our results and this of Sternglass [22].  
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Figure 7 compares our Monte Carlo results with Arnal [23] and Drescher [24] data for the 

variation of ηB with α. The value of ηB monotonically increases with α. This is because as α 

increases, the portion of the forward-peaked differential elastic scattering distribution that 

falls in the backscatter volume increases, and thus more electrons can backscatter out of the 

sample, which leads to an increase in ηB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. Secondary electron emission 

 

 

 

 

 

 

Figure 8 compares our results with Joy [17] data. Our calculation coincides very good with 

this data. Secondary electron yield is very important on low energies (the energies used in the 

nano-structures cases), but it is negligible for medium and high energies. Because the same 

reason of the backscattered electrons, after a certain value of E0 there is only a absorbed and 

transmitted electrons.     
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Fig.8. Secondary yield versus E0 
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4.5. The total Electrons Emission Yield (EEY) 

The total yield is defined by [17]:    σ =δ +ηB              (22) 

 

 

 

 

 

 

 

 

 

 

 

Figure.9, shows the variation of the total emission yield with the incident electron energy E0 

for normal incidence (α = 0°). For a nano-film (low energies) Silicon σ depends greatly on δ 

(secondary yield).  

 

5. CONCLUSION 

A numerical model based on Monte Carlo method for interaction of an electron beam with a 

silicon nano-film is developed.  

We have successfully applied this model to calculate the majority parameters of this 

interaction (trajectories, electron range, backscattering, secondary yield, and the total 

electrons emission yield).  

For a Silicon nano-film, we found that, the trajectories, backscattered, and secondary 

electrons are influenced by the primary energies specially at low energies and by the tilt angle. 

In the other hand, the total yield depends greatly on (secondary yield).     

We demonstrated that, this calculated is in good agreement with other results. 

After this accepted result, this work proposes to extend the domain of validity of such kind of 

approaches to different materials and for kinetic energy [few eV-hundreds of keV]. 
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