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ABSTRACT  

In the hydraulic field, the Chezy’s flow resistance coefficient in canals and pipes is often 

chosen arbitrarily. This value is tabulated independently of the depth of the flow or hydraulic 

radius and even less of the Reynolds number. This coefficient is usually influenced by a 

number of parameters that must be defined and considered. The objective of this study is to 

examine, on the one hand, the variation of the Chezy’s flow resistance coefficient for a semi-

elliptical pipe under the hypothesis of an uniform flow with free surface, and to determine on 

the other hand, the expressions which govern them. Further, it must search expression for 

Chezy’s with consideration of the geometric characteristics of the pipe and hydraulic flow. 

This study is based on the rough model method (RMM). 

Keywords: (Semi-Elliptical Pipe, Chezy’s Coefficient, Uniform flow, Rough Model 

Method.) 
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1. INTRODUCTION 

In the eighteenth century, Antoine Chezy designed a canal on the river Yvette near Paris 1. 

From experiments on the Courpalet canal and the Seine, Chezy developed what is now known 

as the Chezy’s formula for comparing uniform flows in open channels 2. This relationship 
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highlights the link function between depth and mean velocity. These two factors are the most 

important in the flow, so hydraulic researchers give them a lot of importance. The functional 

relationship between the mean velocity and the mean depth of a free water surface is 

determined by the total resistance to flow 3. This resistance is parameterized by the Chezy’s 

coefficient of resistance that often edit by the letter "C". 

In practice, there are tables which give the values of the coefficient C depending on the nature 

of the materials constituting the internal walls of the channels and pipes 4. However, this 

approach does not correspond to the physical reality of the flow, because the coefficient of 

resistance depends in mainly on the geometry of the pipe and the hydraulic characteristics of 

the flow. 

This is confirmed by several researchers in the field, where the Chezy’s coefficient is 

constantly variable according to multiple parameters. The behavior of C can be inferred 

directly from that of friction factor 5. The cross-sectional shape of the channel and 

differences in bed and bank roughness has a substantial effect on flow resistance6. Chezy’s 

roughness coefficient is not constant but it varies in a wide range 7. On besides, the normal 

depth of water has an impact on the Chezy’s coefficient C 1. According to the last 

testimonies and based on fundamental equations in hydraulics, we will elaborate in this 

research work, simple and explicit equations for the calculation of the Chezy’s coefficient 

then we study the variations of this coefficient with consideration of different geometric 

characteristics of the pipe and hydraulic flow. This study would be done in a semi-elliptical 

pipe. Closed non circular sections are frequently employed for sewers carrying large 

discharges 8. In our study we base on the rough model method RMM 9. An example of an 

application will be proposed in order to better appreciate the simplicity, speed and efficiency 

of the proposed relations. 

 

2. GEOMETRIC CHARACTERISTICS 

Figure 1 shows four geometric spaces that the flow 8 can occupy, depending on the value of 

the filling rate ny / D  . Where  is the filling rate and D is the vertical diameter. 

- 09605.00  ,the flow width ab , is located in the lowest circular part of the 

conduct. 

- 24/509605.0  , the flow width de , is located in the space delimited by the arcs 

of circle AE


et BD


. 
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- 85441.024/5  , the flow width gf , is located in the space delimited by the arcs 

of circle EG


et DF


. 

- 185441.0  , the flow width ij , is located in the highest circular part of the 

conduct. 

 

Fig.1. Schematic definition of semi-elliptical conduct 

 

3. GEOMETRIC AND HYDRAULIC PROPERTIES 

The characteristics of the flow, the wetted perimeter P
,
 the water area Aand the hydraulic 

radius Rh depend on the filling rate ny / D  where
n

y is the normal depth of the flow. In 

addition, these characteristics are expressed by different relationships depending on the 

geometric location of the flow. 

i. 09605.00   

  DP                                                                                                                         (1) 

The function    is defined as follow: 

  )8.01(cos5.2 1   

                                                                                             (2) 
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  2DA                                                                                                                     (3) 

Where the function )( is by definition: 

 )4.01(4.0)8.01(2)8.01(cos5625.1)( 1   

                                         
(4) 

 
 
 


DRh 

                                                                                                                   

(5) 

ii. 24/509605.0   

  DP                               (6) 

The function    is defined as follow: 

    3625,0sin
3

2
21548,1 1                                               (7) 

  2DA                                      (8) 

Where the function    is by definition: 

       21 3625,013625,0
9

1
3625,0sin

9

1

3
103428,0 


 

















 

            

(9) 

 
 
 


DRh                                    (10) 

iii. 85441.024/5   

  DP                         (11) 

The function   is defined as follow: 

  
















 

5

1

25

24
sin

12

25
21548,1 1                                                       (12) 

  2DA                                                                                                     (13) 

Where the function   is by definition: 
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 








































 

2

1

5

1

25

24
1

5

1

25

24

5

1

25

24
sin

576

625

12

13
39856,0 

                          

(14) 

  
 


DRh                                                                                                     (15) 

 

iv. 185441.0   

  DP      (16) 

The the function   is defined by: 

   23cos
3

2
25674.3 1         (17) 

  2DA       (18) 

Where the function   is by definition: 

       




   23231231sin

9

1
78315,0

221  (19) 

  
 


DRh      (20) 

 

4. THE GENERAL RELATIONSHIP OF THE CHEZY’S RESISTANCE 

COEFFICIENT  

The discharge flows Q by a conduct of any shape is expressed by the following relation of 

Achour and Bedjaoui 10, either: 











eh

h
RR

SRAgQ
04.10

8,14
log24

       (21) 

Where S is the slope of the conduct, eR  is a Reynolds number,   is the absolute roughness 

and g is the acceleration due to gravity. The Reynolds number eR is governed by the following 

equation 10: 
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

3

232
h

e

gSR
R          (22) 

Where  is the kinematic viscosity. 

The hydraulic radius
fhR .
in the full state corresponding to the filling rate 1  is, by virtue of 

the relation (20): 

 0.24047, DR fh          (23) 

Therefore, the Reynolds number feR . in the full state of the conduct is according to relation 

(22): 



 
33671,5

3

.

gSD
R fe          (24) 

On the other hand, the relation of Chezy’s is defined by following formula:  

SRCAQ h (25) 

Through a comparison of the relations (25) and (21), we can deduce that the Chezy’s flow 

resistance coefficient “ C ” is such as: 













eh RR
gC

04.10

8.14
log24

        (26) 

Or, in dimensionless form: 













eh RRg

C 04.10

8.14
log24

                   (27) 

By using the relationships (5), (10), (15) and (20), we can write for: 

i. 09605.00   

The relation (22) leads to:
 
  fee RR .

2/3

47990,8 












   (28) 

The relation (27) leads to:
          















2/3

. /

18397.1

/8.14
log24





feR

D

g

C
(29) 

ii. 24/509605.0   
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The relation (22) is written:
 
  fee RR .

2/3

47990.8 












  (30) 

The relation (27) is written:
          















2/3

. /

18397.1

/8.14
log24





feR

D

g

C
(31) 

iii. 85441.024/5   

The relation (22) leads to:
 
  fee RR .

2/3

47990.8 












   (32) 

The relation (27) leads to:
          















2/3

. /

18397.1

/8.14
log24





feR

D

g

C
(33) 

iv. 185441.0   

The relation (22) leads to:
 
  fee RR .

2/3

47990.8 












    (34) 

The relation (27) leads to:
          















2/3

. /

18397.1

/8.14
log24





feR

D

g

C
(35) 

 

5. VAIRATION OF CHEZY’S RESISTANCE COEFFICIENT  

According to the relations (29), (31), (33) and (35), dimensionless parameter have been 

represented graphically in figure (2) for the extreme relative roughness / 0D  and

/ 0,01D  . 

 

a) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 5 10 15 20 25 30 35 40 

gC



410 510
610 710



0/ D

feR .
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b) 

Fig.2. Variation of /C g versus  and feR . according to Eq. (29), (31), (33) et (35), for 

the extreme relative roughness, (a): / 0D  ; (b) : 0.01/ D . 

(●) Maximum value gC /max 0.77212
 

For the practical values of  such as 0.2 , it appears from figure 2 (a and b) the 

following observations: 

It appears from figure (2) (a and b) that for the same value of the Reynolds number feR . and 

whatever the relative roughness / D , C / g increases with the increase of the filling rate

. This increase is very fast in the approximate range 0 0 2,  , while it is slower beyond

0 2,  . For all the considered relative roughness, the curves show that C / g reaches a 

maximum for the value 77212,0 . Finally, the figure shows that the variation curves of

C / g are gradually tightening as the increases of relative roughness / D . We can see in 

figure 2.b, corresponding to the highest considered relative roughness, that the curves of 

variation of C / g  are extremely close to each other and merge beyond the Reynolds 

number. This corresponds to the rough turbulent regime for which C / g is independent of 

the Reynolds number feR .  and therefore the kinematic viscosity of the flowing liquid. 

 

6. COMPUTATION OF CHEZY’S RESISTANCE COEFFICIENT 

6.1. THE ROUGH MODEL METHOD (RMM)  

0 
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The rough reference model 9 that we consider is in fact a semi-elliptical conduct, 

characterized by the height D , and relative roughness 037,0D  arbitrarily chosen. The 

symbol "¯¯" is assigned to all the hydraulic parameters of the flow and geometric of the 

reference conduct. This conduit is the seat of a supposed flow located in the rough turbulent 

domain and friction factor is then calculated according to the Colebrook-white equation 11, 

for eR   , is:  

16

1

7.3

037.0
log2

7.3
log2

22
















































D
f



 

The value 16/1f , can translate in a Chezy’s resistance coefficient: 

 fgC /8 g28 Constant   (36) 

The (RMM) states that any linear dimension “L” of a conduct and the homologous linear 

dimension of the rough model L  are related by the following relation 12, applicable to the 

whole turbulent domain: 

LL  (37) 

Where is a non-dimensional correction factor of linear dimension, and which is governed by 

the following explicit equation 13: 

5/2

5.8

19
log35.1






















eh RR


   (38) 

In this relation, hR and eR are respectively designate the hydraulic radius and the Reynolds 

number in the rough model. 

According to the RMM, Chézy's resistance coefficient to flow is defined by the relation: 

5 2/

C
C


           (39) 

Taking into account the relationship (36): 

5 2

8 2
/

g
C


           (40) 
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6.2. NON-DIMENSIONAL CORRECTION FACTOR 

Depending on the range of values of the filling rate , the hydraulic radius
h

R  of rough model 

, is defined by similar relations to relations (5), (10), (15) and (20), as well as the Reynolds 

number eR is given by one of the relations (28), (30), (32) and (34). So: 

i. 09605.00   

 
 


DRh        (41) 

 
  fee RR .

2/3

4799.8 












(42) 

Inserting Eq. (41) and Eq. (42) into Eq. (38), leads to: 

         

5/2

.

2/3
/

0023.1

/19

/
log35.1
































feR

D




   (43) 

Combining Eq. (40) and Eq. (43), one can write: 

          














feR

D
gC

.

2/3
/

0023.1

/19

/
log343.5




(44) 

ii. 24/509605.0   

 
 


DRh           (45) 

 
  fee RR .

2/3

4799.8 












       (46) 

Inserting Eq. (45) and Eq. (46) into Eq. (38), leads to: 

         

5/2

.

2/3
/

0023.1

/19

/
log35.1
































feR

D




   (47) 

Combining Eq. (40) and Eq. (47), one can write: 

          














feR

D
gC

.

2/3
/

0023,1

/19

/
log343,5




(48) 
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iii. 85441.024/5   

 
 


DRh         (49) 

 
  fee RR .

2/3

4799.8 












        (50) 

Inserting Eq. (49) and Eq. (50) into Eq. (38), leads to: 

         

5/2

.

2/3
/

0023.1

/19

/
log35.1
































feR

D




    (51) 

Combining Eq. (40) and Eq. (51), one can write: 

          














feR

D
gC

.

2/3
/

0023.1

/19

/
log343.5




(52) 

iv. 185441.0   

 
 


DRh          (53) 

 
  fee RR .

2/3

4799.8 












 (54) 

Inserting Eq. (53) and Eq. (54) into Eq. (38), leads to: 

         

5/2

.

2/3
/

0023,1

/19

/
log35,1
































feR

D




   (55) 

Combining Eq. (40) and Eq. (55), one can write: 

          














feR

D
gC

.

2/3
/

0023,1

/19

/
log343,5




(56) 

In relations (44), (48), (3), and (52), the Reynolds numbers feR .  In the rough model the full 

state is expressed by similar relation to  relation (24), is: 



 
33671,5

3

.

DgS
R fe     (57) 



Y. Beboukha et al.                  J Fundam Appl Sci. 2019, 11(2), 1045-1060                     1056 

 

 

The relation (29), (31), (33) and (35) permits to evaluate the coefficient of Chézy's only if the 

diameter D of the semi-elliptic conduit is a given of the problem. In the case where D is 

unknown, it is still possible to calculate the C value, provided to use the rough model method 

(RMM). This is one of the advantages of this method. The application of the RMM in Chézy's 

relationship allows the determination of the diameter D , we admit the following conditions: 

QQi ) ;    SSii ) ;     )iii ;     ).iv  

Taking into account conditions (i) and (ii), the discharge Q passed by the rough reference 

model and written as follows: 

SRACQQ h   (58) 

In equation (58), the water area A is calculated by similar relations to that (3), (8), (13) and 

(18), and the hydraulic radius hR is given by relations (41), (45), (49) and (53), depending on 

the range of variation of the filling rate. So: 

i. 09605.00   

The water area of the rough model is: 

 
2

DA  (59) 

Taking into account Eq. (41), Eq. (36) and Eq. (59), Eq. (58) is written: 

      
 

SDDgQ 














2

28  

After the calculation, one obtains: 

  
  

4.0

6.0

2.0

639.2 














gS

Q
D




(60)

 

ii. 24/509605.0   

 
2

DA      (61) 

Taking into account Eq. (45), Eq. (36) and Eq. (61), Eq. (58) leads to: 
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  
  

4.0

6.0

2.0

639.2 














gS

Q
D




(62) 

iii. 85441.024/5   

 
2

DA  (63) 

By introducing the relation (49), (36) and (63) in the relation (58),we can deduce that 

diameter D is such that: 

  
  

4.0

6.0

2.0

639.2 














gS

Q
D




 (64) 

iv. 185441.0   

 
2

DA (65) 

Taking into account Eq. (53), Eq. (36) and Eq. (65), Eq. (58) leads to: 

  
  

4.0

6.0

2.0

639.2 














gS

Q
D




 (66) 

To evaluate the resistance coefficient of Chézy's to flowC , for the known values of the 

parameters Q , , , S  and ,the following  steps are recommended: 

a) With the given values of the discharge Q , the slope of the conduct S  and that of the filling 

rate , one of the relations (60), (62), (64) or (66) allows to evaluate the diameter of the 

rough model of reference D . 

b) The known parameters D , S and  are introduced in the relation (57) for the calculation 

of the Reynolds number feR . in the full state. 

c) Determining the value of the relative roughness of the model D/ . 

d) The coefficient  can then be evaluated by one of the relationships (43), (47), (51) or 

(55). 

e) Finally, the resistance coefficient of Chézy's C can be explicitly evaluated by one of the 

relations (44), (48), (52) or (56) according to the range of values of the filling rate. 
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7. APPLICATION EXAMPLE 

Calculate the Chézy's resistance coefficient C of a semi-elliptical conduct shown in figure (1). 

For the following data: 

75.0  ; smQ /3.15 3  ; 6 2
10 m / s


  ; 410.4 S  ; 0 0002, m   

Solution 

1. The value of  belongs to the interval 85441.024/5  , so the diameter of the 

referential  rough model D is given by relation (64). The functions    and    are given 

by the relations (12) and (14) respectively and take for values: 

   2.354753
5

1
75.0

25

24
sin

12

25
21548.175.0 1 


























   

   661383.0
5

1
75.0

25

24
1

5

1
75.0

25

24

5

1
75.0

25

24
sin

576

625
75.0

12

13
39856.075.0

2

1 







































   

2. The diameter D is calculated by the relation (64), is: 

  
  

 
 

m
gS

Q
D 2.7622081

0004.081.9

3.15

661383.0639.2

354753.2

639.2

4.0

6.0

2.0
4.0

6.0

2.0































 

3. The relation (57) is applied to determine the number of Reynolds
feR .

in the full state: 

 
41534697.18

10

2.7622081)10.4(81.9
33671.5

 
33671.5

6

343











Dgi
Ref

 

4. The factor  is given by the relation (51): 

         

0.72411873

41534697.18
42.35475281

60.66138270

0023.1

42.35475281

60.66138270
19

2.7622081/0002.0
log35.1

/

0023.1

/19

/
log35.1

5/2

2/3

5/2

.

2/3




































































































feR

D






 

5. The Chézy's resistance coefficient C is, according to the relation (40) : 

sm
g

C / 79.4172847
0.7251318

81,928 28 0,5

2/52/5






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8. CONCLUSION  

The general relationship of the Chezy’s resistance coefficient C was identified by using the 

the discharge relationship proposed by Achour and Bedjaoui (2006). Chezy’s resistance 

coefficient C is a function of both the relative roughness D/ , the filling rate  and the 

Reynolds number feR . , which is itself a function of the slope of the conduct S, the diameter D, 

and the ,  kinematic viscosity of fluid flow. So we wrote the functional relationship

0),,,,(  SCf . Depending on the range of values of the filling rate , we have 

determined the non dimensional parameter gC / . The relation obtained demonstrates that all 

the parameters influencing the flow are taken into account, notably the kinematic viscosity . 

It appear according to the filling rate , the relative roughness D/  and the Reynolds 

number feR .  in the full state. The graphical representation of the parameter gC /

demonstrated that the Reynolds number feR . in the full state plays an important role. The 

obtained graphs show that gC / goes through a maximum for 77212,0 . When the 

diameter D of the conduit is not a data of the problem, the calculation of the Chezy’s 

resistance coefficient could be possible by using the rough model method (RMM). 

The results we presented show the effectiveness and use of the RMM method, and especially 

its applications in the various hydraulic structure and in particular the researches that are 

conducted in the channels. 

This type of method is very useful to avoid calculation errors or failures that may arise during 

the realization of multiple hydraulic works including in the channels or conducts. 
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