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ABSTRACT

To further improve the dynamic speed control performance of an induction motor (IM) using

a controller based on sliding mode control (SMC) strategy, the switching table for direct

torque control (DTC) is realized using a feed forward artificial neural network (ANN). The

proposed feed-forward ANN consists of three layers: input, hidden and output layer. The input

layer consists of three neurons (sector of flux vector, electromagnetic torque error and stator

flux error), the hidden layer consists of a number of neurons that can be determined by

experiment to obtain good results. The output layer consists of three neurons (three signals of

the converter Sa, Sb and Sc). Simulation results under MATLAB environment are presented

and compared with classical DTC using an Integral-proportional (IP) controller to verify the

proposed approach.
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1. INTRODUCTION

Among all methods of direct torque control developed for the induction motor (IM), the most

widely used strategies may be classified within the vector control (VC) and direct torque

control techniques. Although the first publication on VC appeared in 1971 [1], the direct

control techniques, such as DTC [2] and DSC [3], seem to be accepted as they achieve better

transient and steady-state torque control conditions than VC techniques [4-5].

The basic configuration of DTC scheme is very simple. It consists of DTC controller, flux and

torque calculator and voltage source inverter. The configuration is simpler than the VC

technique due to the absence of frame transformer, pulse width modulator (PWM) and

position encoder, which, respectively, introduce delays and require mechanical transducers.

Since its introduction in 1986 [6], many scientific papers have appeared in the literature

principally to further improve the performance of DTC for IM [7].

With the development of micro-processors and power electronics, the realization of complex

schemes is possible. New control techniques for AC speed drive systems include: sliding

mode control, fuzzy logic, artificial neural networks (ANNs), and others.

To improve the characteristics of the classical configuration of DTC technique, the switching

table can be replaced by another strategy based on the property of learning. The ANN strategy

is capable of learning the desired mapping between the inputs and outputs of any complex

system. Since the ANNs do not use a mathematical model of the system, they are excellent

estimators for non-linear systems. Various ANN techniques based control strategies have been

developed for the DTC of an IM to overcome the drawbacks of this scheme [8].

The DTC technique for an IM using an ANN technique to increase the system performance is

described in [9]. An ANN technique with DTC based on space vector modulated to improve

the performance of classical DTC is employed in [10]. Combination of DTC, SMC and space

vector modulation is investigated in [11] to get high performance of the motor. In [12, 13] the

sliding mode speed controller is implemented in real time for DTC of an IM to improve its

control performance.

Many investigators have adopted the classical control laws with Integral-Proportional (IP)

controller that is more suitable in the case of linear systems. In the case of non-linear systems,
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these laws may be insufficient because they are not robust, especially when the requirements

on the accuracy and other dynamic characteristics of the system are strict. For this, other

control laws that are insensitive to disturbances in non-linear cases must be considered.

In this paper, a feed-forward ANN is used to replace the switching table of the classical DTC,

using an Integral-proportional (IP) controller, of an IM where the speed loop is controlled by a

sliding mode controller. The proposed configuration has been investigated and implemented

using MATLAB/Simulink software. Simulation results are presented to compare the

conventional DTC-IP and the proposed configuration, where the results in the

DTC-ANN-SMC case show higher accuracy and faster dynamic speed response with quick

electromagnetic torque response and an instantaneous load rejection.

2. IM MATHEMATICAL MODEL

The state variables of the system are considered as stator currents, stator flux and rotor speed

as shown in Fig. 1. The αβ -phase model of the three-phase IM in the stationary reference

frame is given, in the vector-matrix form, by (1) [13].

Fig.1. Induction motor block diagram
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3. DIRECT TORQUE CONTROL TECHNIQUE

Direct torque control has become one of the high-performance control strategies for an

induction machine to provide a very fast torque and flux control. The basic configuration of

the DTC of an IM drive is presented in Fig. 2 [2], where the flux and torque are controlled

directly and independently by the selection of optimum inverter voltage vectors to limit their

errors.

Outputs of the three level torque hysteresis comparator, two level flux hysteresis comparator,

and the stator flux position are used to obtain the optimum stator voltage vector through a

switching table [14].
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Fig.2. Classical DTC of an IM
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Electromagnetic torque can be estimated by in  frame:

)  sssse .i.ip(T (8)

3.3. Switching Table

Stator flux vector locus and its variation with respect to the voltage source inverter states
chosen is shown in Fig. 3.

Fig.3. Stator flux vector locus and different possible switching vectors

Accordingly a six sector as shown in Fig. 3, switching table [16-17] is obtained as given in

Table 1.

Table 1. Switching table for DTC

Flux Torque Sector

sdφ edT S1 S2 S3 S4 S5 S6

1

1 V2 V3 V4 V5 V6 V1

0 V0 V7 V0 V7 V0 V7

-1 V6 V1 V2 V3 V4 V5

0

1 V3 V4 V5 V6 V1 V2

0 V7 V0 V7 V0 V7 V0

-1 V5 V6 V1 V2 V3 V4

DTC is based on the flux orientation using the instantaneous values of the voltage vector. A
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voltage source inverter (VSI) provides eight voltage vectors, among which two are zeros [17].

These vectors are selected from the switching table according to the flux and torque errors as

well as the stator flux vector position. The eight voltage vectors which correspond to possible

inverter states are shown in Table 2.

Table 2. Switch positions with their voltage vectors

V0 V1 V2 V3 V4 V5 V6 V7

Sa 0 1 1 0 0 0 1 1

Sb 0 0 1 1 1 0 0 1
Sc 0 0 0 0 1 1 1 1

3.4. IP Speed Controller

The regulation loop of the speed with an IP controller is shown in Fig. 4.

Fig.4. Speed control block diagram with IP controller

The closed-loop speed transfer function is given by:
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with:

pK : proportional gain

iK : integral gain

 : damping factor

n : natural frequency

4. DTC BASED ANN AND SMC IN SPEED LOOP

4.1. Principle of ANN

ANN is considered as a mathematical programming technique designed to simulate the

method of thinking and information processing by the human mind. Natural neural networks

are composed of simple processing units called cells or neurons. All connections between the

cells have specific values called weights. These cells store information to make it available to

the user by adjusting the values of the weights [18].

In this paper, an ANN is used to replace the switching table and to improve the performance of

the classical DTC. ANN applied to DTC is based on inputs and outputs. The proposed ANN

consists of three layers: input, hidden and output layer. The input layer consists of three

neurons (inputs of the classical switching table) which are: sector of flux vector,

electromagnetic torque error and stator flux error where the output layer consists of three

neurons (outputs of the classical switching table) that are the impulses (Sa, Sb and Sc) allowing

the control of the inverter switches [19]. The outputs are connected to the inputs through the

hidden layer in between input layer and output layer.

In ANN, the training or learning phase is necessary to track the estimated output of the
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network its target (desired output). To start this process the initial weights are chosen

randomly. Then, the training begins. In addition, during this phase the network weights are

corrected. Until finally, the error between the target and estimated output can be minimized.

The error back-propagation algorithm is considered to release the training phase in this paper.

In order to create this ANN by Simulink, the ANN structure adopted has 3 linear layers with 3

neurons in the input layer and 3 neurons at the output layer. In hidden layer, big a number of

neurons lead to complicate the training of the ANN and small a number of neurons lead to bad

results.

The structure of the proposed DTC of the IM is presented in Fig. 5, where, the block SMC

represents the speed controller by sliding mode control.

Fig.5. Proposed DTC diagram of the induction motor
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4.2. Speed Sliding Mode Controller

A first order SMC is used in this work. The sliding surface ‘ s ’ of this controller is given as a

function of speed error ‘e’. The speed error is defined by [13]:

rre  * (13)

The speed control surface and its derivative are obtained as follows:

rrrs e  *)( (14)

dt

d

dt

d

dt

d rrrs 





 *)(
(15)

As 0sq , from Eq. (2):

sqsde .ipT  (16)

and from Eq. (3):
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Substituting Eq. (16) in Eq. (17) gives:
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1
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Substituting Eq. (18) in Eq. (15) gives:
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In sliding mode, take:
n
sq

eq
sqsq iii  (20)

with :

eq
sqi : equivalent control,

n
sqi : switching control,

In the sliding mode and in permanent regime:

0)(  rs , 0
)(



dt

d rs and 0n
sqi (21)

So, the equivalent control is:
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Therefore, the switching control is given by:

))(( rs
n
sq K.sati  (23)

where, K : positive gain, and sat: saturation function.

The speed controller by SMC under Simulink is shown in Fig. 6.
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Fig.6. (a) Block diagram of speed control with SMC under Simulink,
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5. SIMULATION RESULTS

To validate the feasibility of the proposed DTC-ANN-SMC scheme, computer simulations

based on the IM were realized under Simulink as shown in Fig. 7.

IM is rated at 4 kW. Motor parameters used in the simulation studies are illustrated in

appendix B. The block diagram was realized and executed on an Intel(R) Core(TM) i3 PC

having 2.20 GHz CPU, 4 GB RAM.
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Fig.7. Block diagram of the proposed control under Simulink

5.1. Simulation Model of DTC-ANN-SMC

Training performance between the target and estimated output is presented in Fig. 8 and the

Mean Squared Error (MSE) versus the number of epochs is shown in Fig. 9. Neural network

was trained using backpropagation, appendix C, and its performance is presented in Fig. 10. It

can be seen from Figs. 9 and 10 that the ANN training is completed in 465 epochs with a

negligible error (2.32e-32) between the target and the estimated output of the ANN.

Simulink block of the neural network switching table, Fig. 11, is composed of two layers as

shown in Fig. 12, where the blocks “Layer 1” and “Layer 2” are presented in Fig. 13.
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Fig.8. Training performance between the target and estimated output

Fig.9. MSE versus the number of epochs
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Fig.10. Neural network training performance
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Fig.11. Simulink block of the neural network switching table
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Fig.13. Details of ANN blocks in Fig. 12: (a) “Layer 1” and  (b) “Layer 2”.

5.2. Results and Discussion

Comparative performance of the IM for a test performed under the same conditions, a sudden

change in load, is observed with DTC-ANN-SMC and classical DTC with IP controller, and

the motor operating at the command speed of 157 rad/sec under no-load. At t=0.8 s, a 25 N.m

load torque is suddenly applied. This load changes to 15 N.m and then to 10 N.m at t=1.2s

and t=1.6s, respectively, as shown in Fig. 14.
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Fig.14. Load torque values versus time applied in the test of the motor

Speed responses in the two cases, DTC-IP and DTC-ANN-SMC, are presented in Figs. 15 and

16, respectively, and a comparison of speed response between classical DTC and
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DTC-ANN-SMC is shown in Fig. 17.

The IP controller, used in the classical DTC, rejects the load disturbance slowly in 0.8 s with

an overshoot and with a steady-state error as shown in Figs. 18 and 19. An undershoot

appeared at t=1.2 s when the load reduced to 15 N.m as shown in Fig. 18.

With DTC-ANN-SMC, the proposed ANN was able to train and to work as a switching table.

The SMC rejects the load disturbances with no overshoot, without undershoot and with no

steady-state error as shown in Fig. 16. The DTC-ANN-SMC presents good performance to

achieve tracking of the desired trajectory.

The performance of the proposed control is compared to the conventional DTC in the same

conditions. It can be seen that the DTC-ANN-SMC gives minimum response time and robust

speed response compared to the conventional DTC as shown in Figs 17, 18 and 19.

The torque response in the two cases, DTC-IP and DTC-ANN-SMC, is shown in Figs, 20 and

21, respectively. Comparison of the torque response between the two controls is presented in

Fig. 22.

The stator flux magnitudes and their trajectories, 2D and 3D, are presented, respectively, in

Figs. 23, 24 and 25 for classical DTC. DTC-ANN-SMC stator flux magnitudes and their

trajectories, 2D and 3D, are illustrated in Figs. 26, 27 and 28, respectively.

According to the results of the stator flux trajectory, the comparison between the two cases,

classical and proposed DTC, is divided into two states: transient state and steady state. In

transient state, the proposed has good performance than the conventional DTC except small

perturbations in start-up. In addition, DTC-ANN-SMC gives 0.00758 sec response time small

than 0.01427 sec given by conventional DTC as shown in Table 3 and Figs. 23 and 26. In

steady state, the stator flux trajectory of the proposed presents almost the same performance

which obtained by the conventional DTC as shown in Figs. 24, 25, 27 and 28. In addition,

DTC-ANN-SMC has a very quick response in electromagnetic torque (Fig. 22) compared to

the classical DTC.

The three phase stator currents in the two cases, DTC-IP and DTC-ANN-SMC, Figs. 29 and

30, respectively, show good sinusoidal currents.

It can be seen that DTC-ANN-SMC shows a fast response and good improvement in
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performance compared to that with the conventional DTC. The proposed and the conventional

DTC behaviour can be better compared using standard performance where the results are

described in Table 3.

Performance of the proposed DTC-ANN-SMC compared to that of the classical DTC,

summarized in Table 3, confirms the improved performance of DTC-ANN-SMC. The

proposed control surpasses the conventional DTC, taking into account many performance

indices:

 Speed response time is reduced more than 55% (0.3459 s for conventional DTC while

it is 0.1507 s for the proposed DTC-ANN-SMC).

 Speed overshoot is reduced from 1.4640 % for conventional DTC to 0% using

DTC-ANN-SMC.

 Speed undershoot is reduced from 3.9465 % for conventional DTC to 0% using

DTC-ANN-SMC.

 Steady-state error is reduced from 0.0637% for conventional DTC to a negligible

value using the proposed DTC-ANN-SMC.

 Stator flux response time is reduced more than 45% (0.01427 % for conventional DTC

instead of 0.00758 % for DTC-ANN-SMC).

Table 3. Comparison between classical DTC and DTC-ANN-SMC
Speed performance Stator Flux performance

Control Classical DTC DTC-ANN-SMC Classical DTC DTC-ANN-SMC
Response time (Tr 5%) (sec) 0.3459 0.1507 0.01427 0.00758

Overshoot (%) 1.4640 0 0 0
Undershoot (%) 3.9465 0 0 0

Steady-state error (%) 0.0637 Neglected Neglected Neglected
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Fig.16. Speed response in DTC-ANN-SMC case
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Fig.21. Torque response in DTC-ANN-SMC case
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Fig.24. Stator flux trajectory in DTC-IP case
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Fig.25. 3D representation of stator flux trajectory in DTC-IP case
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Fig.26. Stator flux magnitude in DTC-ANN-SMC case
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Fig.27. Stator flux trajectory in DTC-ANN-SMC case

0
0.5

1
1.5

2

-2
-1

0
1

2
-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

DTC-ANN-SMC

alpha-axis Stator Flux (Wb)

be
ta

-a
xi

s 
St

at
or

 F
lu

x 
(W

b)



Y. Bekakra et al. J Fundam Appl Sci. 2020, 12(1), 86-114 109

Fig.28. 3D representation of stator flux trajectory in DTC-ANN-SMC case
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Fig.29. Three phase stator currents in DTC-IP case
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Fig.30. Three phase stator currents in DTC-ANN-SMC case

6. CONCLUSIONS

In this paper, a DTC based ANN, with sliding mode control, used as a speed controller has

been implemented and simulated under Simulink. The ANN has been implemented to produce

voltage inverter switching states according to the switching table of the conventional DTC-IP.

The IP controller has been replaced by an SMC to improve the dynamic performance of the

conventional DTC. The simulation results presented show that the classical DTC rejects the
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load slowly with an overshoot (load decrease), with steady-state error and with undershoot

(load increase). However, the DTC-ANN-SMC responds to the load change immediately with

no overshoot, with no steady-state error and without undershoot. As the DTC-ANN-SMC

provides a better performance compared to the classical DTC, the proposed DTC-ANN-SMC

is more efficient and better for use in induction motor drives compared to the conventional

DTC.

7. APPENDIX

Appendix A. Nomenclature

IM

sV , sV stator , frame voltages

si , si stator , frame currents

sφ , sφ stator , frame fluxes

sd
 ,

sq
 stator dq frame fluxes

sd
i ,

sq
i stator dq frame currents

s
R stator resistance

r
R rotor resistance

s
L stator inductance

r
L rotor inductance

mL mutual inductance

s
T ,

r
T stator and rotor time-constant

 leakage factor

J moment of inertia

f friction coefficient

P number of pole pairs

r rotor speed
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r rotor angular speed

eT electromagnetic torque

LT load torque

Sliding mode control

s sliding surface

sat saturation function

e error

Acronyms

IM Induction Motor

DTC Direct Torque Control

SMC Sliding Mode Controller

DSC Direct Self-Control

ANN Artificial Neural Network

IP Integral-Proportional

VSI Voltage Source Inverter

Superscripts

“ * ” reference value

“ . ” derivative value

Appendix B. IM parameters

Nominal values:

4 kW, 220/380 V, 50Hz, 15/8.6 A, , 1440 rpm

Nominal parameters:

s
R = 1.2 Ω

Rr = 1.8 Ω

s
L = 0.1554 H

Lr = 0. 1568 H
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Lm = 0.15 H

P = 2

Mechanical constants:

J = 0.2 Kg.m2

f = 0.0 N.m.s/rad

Appendix C. ANN program

To create a feed-forward back-propagation network using “ newff ”:

Consider this example:

X =[-1 -1 2 2; 0 5  0 5]

Y =[-1 -1 1 1]

Where:

X is input vector,

Y is target.

To create a feed-forward ANN use the following:

net_example=newff(minmax(X),[3 1],{'tansig' 'purelin'},’traingdm’);
net_example = train(net_example,X,Y);

Z = sim(net_example,X);

plot(X,Y,X,Z,'*-')

%------------------------------------------------------------

To generate a Simulink block to simulate a neural network “ gensim ” can be used.

In Matlab command, just simply use the following command:

>> gensim(net)

The result of this command is as shown in Fig. 31.

y{1}

Input 1

x{1}

x{1} y {1}

Neural Network

Fig.31. Simulink block of a neural network by using the command “gensim”.
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