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ABSTRACT

When used to reconstruct the anterior cruciate ligament (ACL), the medial hamstrings graft

has been shown to produce lower rates of osteoarthritis (OA) than the patellar tendon graft.

The goal of this study was to determine how reducing medial hamstring strength during

surgery affects joint contact forces during loading, and hence the joint’s proclivity towards

OA. A previously developed model of the entire body was used to perform a muscle-actuated

forward dynamics simulation of running for two cases: normal muscle strength and medial

hamstrings (i.e. semitendinosus and gracilis) weakened by 30%. The muscle forces from these

simulations were then used to actuate a discrete element model in a forward dynamics

simulation. Weakening the medial hamstrings caused an overall decrease in total hamstrings

force by <1%, total quadriceps force by 2%, and cartilage contact force by 4%. This

decreased force may be protective against long-term OA and hence may help explain the

lower rates of OA in patients who receive medial hamstring grafts.
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1. INTRODUCTION

Over 200,000 anterior cruciate ligament (ACL) reconstructions are performed every year in

the United States [1], which leads to $15,000 in health care costs per procedure [2]. After ACL

surgery, knee osteoarthritis (OA) develops within 10 – 20 years in 50% of these knees [3]. In

an effort to reduce these long-term complications and associated health care costs, much

research has been done on developing programs to prevent ACL injury [4], optimizing

surgical techniques [5], and developing effective post-surgical rehabilitation programs [6].

One important surgical parameter to research is the tissue used to replace the ACL.

Typically, ACL reconstructions harvest ligament replacement tissue from two sites in the

injured patient: patellar tendon and medial hamstrings [7]. For the patellar tendon graft, an 8

to 11-mm wide graft is taken from the central third of the patellar tendon with adjoining

patellar and tibial bone grafts [8]. This graft provides high strength and stiffness properties

with a stiffness 84% of an intact ACL [9]. Therefore, this graft is one option used in young

athletes involved in dynamic sports to allow for a quick return to sport [8]. However, donor

site morbidity can be an issue, e.g. anterior knee pain, knee extensor weakness. Medial

hamstrings grafts are the preferred option in young athletes due to smaller incisions for

surgery and lower anterior knee pain, which results in lower donor site morbidity [8],

[10]–[13]. These grafts are also more comparible to the stiffness of a native ACL, i.e. 103% of

an intact ACL [9]. In this graft option, portions of the semitendinosus and gracilis tendons are

harvested, folded in half, and combined to create a 10-mm round ACL replacement [8].

Compared to a patellar tendon graft, patients receiving a medial hamstrings graft have

reported a better ability to walk on their knees after 2-years post-surgery [14], i.e. walking

while kneeling on the ground [15]. However, these studies are typically observational in

nature, which precludes a mechanistic explanation of how the medial hamstrings graft affects

joint health.

Joint health has been quantified as joint mechanics measures, particularly cartilage contact

forces. These forces have been associated with osteoarthritis progression [16]. Specifically,

increased cartilage contact forces are positively related to increased rate of cartilage

degradation in an osteoarthritic joint [16]. Medial hamstrings grafts have been shown to result
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in a lower rate of OA than patellar tendon grafts [17]. The goal of this study is to determine

how weakening the medial hamstrings affects joint health and help explain the lower OA rate

in these patients. Hence, medial hamstring weakness (which results when harvesting the

semitendinosus and gracilis tendons for reconstruction [18]) is hypothesized to cause

decreased cartilage contact forces during running. Running is an important exercise to

investigate because 82% of athletes who receive an ACL reconstruction return to some level

of dynamic sporting activities [19].

2. METHODS

Joint contact forces have only been measured in vivo using instrumented knee replacements

[20]. This method is not available in patients with intact cartilage. Therefore, computational

models have been used to study soft tissue loads [20]–[23]. To quantify cartilage contact

loads, an open-source musculoskeletal model of the body [24] and discrete element knee

model [25] were utilized in a serial approach (Fig.1) [23], [26].

Fig.1. Serial approach where multibody dynamics are first solved using computed muscle

control. The resulting muscle forces are used to actuate a discrete element knee model, where

soft tissue loads are calculated
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First, a previously developed model of the entire body was used to perform a muscle-actuated

forward dynamics simulation of running at a self-selected speed of 3.96 m/s [24]. The model

was comprised of 12 links representing bony segments of the body and 29 degrees of freedom

(dof) for the joints. Each lower extremity contained 5 dof: ball-and-socket hip joints (3 dof), 1

dof custom knee joints, and revolute ankle joints (1 dof). Lumbar-pelvis motion was modeled

as a ball-and-socket joint. Each arm was composed of 5 dof: ball-and-socket shoulder joints

(3dof), hinge elbow joint (1 dof), and a revolute forearm joints (1 dof). Muscular structures

were included as 92 musculotendon actuators and the arms moved using torque actuators at

the shoulders. The joint kinematics, kinetics, and muscle activations of this model were

validated against experimental data (e.g. electromyography) for running [24]. This model,

along with experimental running kinematics and kinetics freely provided by [24], were input

into computed muscle control (CMC) [27].

The CMC analysis is composed of three components: proportional-derivative (PD) controller,

optimization, and forward dynamics (Fig.2). CMC calculates the muscle forces needed to

actuate the model towards experimental kinematics and kinetics. The PD controller is used to

determine if the predicted model motion is ahead or behind the experimental data and adjust

accordingly. For example, if the model is ahead of the experimental data, the PD controller

will decelerate the model to slow down. The PD controller ultimately calculates joint

accelerations. The next component, optimization, is used to determine how to actuate the

muscles to achieve these joint accelerations. Optimization is needed to reduce muscle

redundancy, i.e. number of muscles is greater than the number of degrees of freedom. These

muscle forces are then used in a short forward dynamics simulation to actuate the model

forward by one time step. This new model location is compared to the experimental data,

where the PD controller starts anew.
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Fig.2. Computed muscle control (CMC) analysis used to calculate muscle forces needed to

actuate a model to match experimentally measured kinematics and kinetics

This muscle-actuated forward dynamics simulation of running (i.e. CMC) was performed for

two cases: normal muscle strength and weakened medial hamstrings. Muscle weakness was

quantified using the maximum isometric force property of the muscle, which was modeled as

a Hill-type musculotendon actuator [28]–[30]. For the weakened hamstring model, the

maximum isometric force of the semitendinosus and gracilis were each decreased by 30% [31]

(Fig.3). This percentage was chosen based on morphological studies done post-surgery. Also,

these specific muscles were chosen as they are most commonly used for the medial

hamstrings ACL graft [7], [8]. The variables of interest extracted from these CMC simulations

were force in the medial hamstrings (semitendinosus and gracilis), lateral hamstrings (biceps

long head and short head), semimebranosus, and quadriceps (vastus lateralis, vastus

intermedius, vastus medialis, and rectus femoris). Total hamstring force was quantified as the

sum of the forces produced by the semitendinosus, semimembranosus, gracilis, biceps femoris

long head, and biceps femoris short head. Total quadriceps force was computed similarly as

the sum of forces produced by the vastus medialis, vastus lateralis, vastus intermedius, and

rectus femoris. The forces in all 92 muscles were subsequently used to actuate a discrete

element knee model.
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Fig.3. Muscles of interest. The medial hamstrings were defined as the semitendinosus and

gracilis since these muscles are used for ACL reconstructions. The biceps femoris long and

short head were considered the lateral hamstrings

The muscle forces from CMC were used to actuate a previously developed discrete element

model [25] using a forward dynamics simulation. The discrete element knee model consisted

of a 6 dof tibiofemoral joint and 1 dof patellofemoral joint. Knee motion was constrained via

18 non-linear elastic ligaments and contact. Contact was quantified with an elastic foundation

model between the medial and lateral tibial plateaus and the femoral condyles. The geometry

of the tibia was assumed to be planar and the femur geometry taken from MRI data (as

described in a previous study [25]). The muscles included in the discrete element knee model

were the same as those from the whole body model [24].

Forward dynamics was used actuate the discrete element knee model with the CMC results of

the whole body model. The discrete element knee model was modified for the two cases:

normal muscle strength and weakened medial hamstrings. The variables of interest extracted

from these forward dynamics simulations results were force magnitude in the medial

tibiofemoral compartment and lateral femoral compartment, which were computed using the

elastic foundation contact model. Muscle and cartilage contact forces were compared to test
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the study hypothesis: medial hamstring weakness will cause decreased cartilage contact forces

during running. Since these simulations were run for a single subject [24] more detailed

statistical measures, such as minimal detectable change [32], were not assessed.

3. RESULTS

Decreasing the gracilis and semitendiosus strength by 30% each resulted in a decreased peak

force for the gracilis and semitendinosus by 44% and 42%, respectively (Table 1 and Fig.4).

In contrast, an increased peak force was experienced in the semimembranosus by 5%, biceps

femoris long head by 2%, and biceps femoris short head by <1%. Ultimately, weakening the

medial hamstrings caused an overall decrease in total hamstrings force by <1%. Peak force

was also decreased for all of the quadriceps muscles by 1 – 3%, with a decrease of 2% for the

total quadriceps force (Table 2 and Fig.4). The maximum forces in the medial and lateral

tibiofemoral cartilage were decreased by 1% and increased by 3%, respectively, after the

medial hamstrings were weakened (Table 3 and Fig.5). This resulted in an overall 4%

decrease of the total tibiofemoral contact force.

Table 1 Change in Maximum Hamstrings Force

Semitendinosus

(N)

Semimembranosus

(N)

Gracilis

(N)

Biceps

Femoris

Long

Head (N)

Biceps

Femoris Short

Head (N)

Total Hamstrings

Force (N)

Normal 221 601 120 493 471 1839

Weak 156 633 83 500 473 1830

%

Change -42 5 -44 2 0 0

Table 2 Change in Maximum Quadricpes Force

Vastus

Medialis

(N)

Vastus

Lateralis

(N)

Vastus

Intermedius

(N)

Rectus

Femoris (N)

Total Quadriceps

Force (N)

Normal 999 2038 1194 998 4268

Weak 968 2022 1157 989 4185

% Change -3 -1 -3 -1 -2
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Fig.4. Effect of medial hamstring weakness on quadriceps and hamstrings forces. The curves

are shown for the stance phase of running for a single subject

Table 3 Change in Maximum Cartilage Contact Force

Medial (N) Lateral (N) Total Contact Force (N)

Normal 3612 2999 5450

Weak 3589 3102 5227

% Change -1 3 -4
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Fig.5. Effect of medial hamstring weakness on cartilage contact forces. The curves are shown

for the stance phase of running for a single subject

4. DISCUSSION

In ACL reconstruction surgery, graft tissue is harvested from the medial hamstrings,

specifically the semitendinosus and gracilis. The medial hamstrings graft is preferred over

patellar tendon grafts since they have shown a lower rate of OA occurrence [17]. The goal of

this study was to develop a mechanistic explanation for how a medial hamstrings graft would

affect joint health. Muscle-actuated forward dynamics simulations of running were used to

calculate muscle forces and joint contact loads for a healthy knee and a model with decreased

medial hamstrings strength.

Ultimately, weakening the medial hamstrings caused an overall decrease in total hamstrings

force by <1% and total quadriceps force by 2%. This agrees with other studies that have

shown quadriceps weakness and dysfunction in those with ACL reconstructions [33]. This

uneven decrease in force between the hamstrings and quadriceps can be explained using a free

body diagram of a sagittal view of the knee (Figure 6) and performing a sensitivity analysis.
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Fig.6. When the medial hamstrings are weakened, the quadriceps are more affected than the

hamstrings. This is due to the change in moment arms that result as the joint slides in the

anterior/posterior direction

A change in a torque about the knee joint center is due to a change in both the quadriceps and

hamstrings torques (Eq. 1).

Eq. 1

These change in torques are caused by changes in the muscle forces and moment arms (Eq.

2).

Eq. 2

In both the normal and weakened simulations, the same amount of sagittal plane torque to flex
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and extend the knee was produced. Therefore, the change in quadriceps torque will equal the

change in hamstrings torque (Eq. 3).

Eq. 3

As the quadriceps force decreases, the tibia will decrease in anterior translation and increase

the moment arm of the quadriceps. This will decrease the hamstrings moment arm by the

same amount. This change in quadriceps moment arm has been shown to vary by around 2

mm [34]. Also, the average quadriceps moment arm has been shown to be 4 cm and the

hamstrings around 2 cm [35]. Substituting these values into Eq. 3, along with the values of

4200 N for the force in the quadriceps and 1800 N for the force in the hamstrings (Table 1 and

2), gives Eq. 4.

Eq. 4

This equation shows that the change in quadriceps force is greater than the change induced in

the hamstrings, which is what is shown in the results. This equation also shows both forces

decrease together, as opposed to one increase and one decrease, to create a net zero change in

the sum of torques.

The decrease in muscle forces resulted in a total decrease in cartilage contact force by 4%.

Since increased force has been shown to expedite cartilage degeneration, this decreased

cartilage load may help explain the low rates of OA in those with a medial hamstring graft

[17]. Although, some level of mechanical loading is needed for cartilage growth and

remodeling [36]. Therefore, more work is needed to better elucidate the balance between too

little loading that can cause atrophy versus too much loading that can cause degeneration.

When interpreting the results of this study, there are some study design factors to consider.

First, CMC uses an optimization strategy to solve for muscle forces in a redundant system.

This optimizer activates muscles to use the least energy possible, which is the sum of volume

times muscle activations squared [27]. It is unclear if this neuromuscular strategy is utilized
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after an ACL surgery and how this varies between subjects. Although, this control strategy has

been used for abnormal gait patterns in other studies investigating muscle weakness [30]. A

different control strategy would likely change the values of the results in the current study;

although, the patterns of change would likely remain the same, i.e. medial hamstrings

weakness leading to decrease joint contact loading, as muscle coordination patterns and

timely are fairly consistent in the presence of muscle weakness [30]. Second, the model was

assumed to run at the same speed with the same kinematics and kinetics both in the normal

and weakened states. This was done to isolate the effect of muscle weakness on contact forces

rather than confounding the effect by adding running speed as a variable.

5. CONCLUSION

In summary, musculoskeletal modeling was used to quantify the distribution of joint contact

loads when the medial hamstrings (i.e. semitendinosus and gracilis) are compromised, which

is common in ACL reconstructions. Overall, both quadriceps and hamstrings forces decreased.

Cartilage contact loads also decreased, which may have implications for joint health and

long-term OA development. The next step in this study is to elucidate the optimal loading

needed to maintain cartilage health.
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