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ABSTRACT

Solar energy can be converted to electricity by photovoltaic and photo electrochemical cells,

Dye-sensitized solar cell [DSSC] has been considered as a promising next generation solar

cells. In this work, we used theoretical methods to studies the properties of some metal free

organic dayes our aim was to make a correlation between some new Density Functional

theory derived indexes and the efficiency of the organic dyes used as sensitizers in solar cells.

The Density Functional Theory (DFT) calculations were done using the B3lyp hybrid

functional level of theory and the 6–31G(d,p) basis set. This level of calculation was used to

find the optimized molecular structure, the molecular orbitals energies, and the global

properties, derived from Conceptual DFT our results show a good correlation between the

DFT derived indices and the experimental efficiencies.
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1. INTRODUCTION

1.1. Solar energy

Energy’ is identified as one of the most important challenges that humanity faces over the

next 50 years [1]. To overcome this problem the scientific community had already started

working on various issues (to save, convert or create energy by utilizing existing resources).

Actually, solar energy conversion has become one of the major alternatives to the

conventional fossil fuels, considering their drastic depletion over the last few decades [2].

Indeed a very important number of both theoretical and experimental researches has greatly

encouraged scientists to explore and develop renewable and environmentally friendly energy

sources, particularly low cost direct use photoelectric conversion devices [3]. Inorganic

semiconductor cells, especially silicone in various forms, have been developed over several

decades and have important applications. However, silicone materials are not cost effective.

Recently, dye sensitized solar cells [DSScS], are considered as a credible alternative to

activist inorganic silicone-based solar cells, and have attracted much attention relevant to

global environmental issues [4]. Recentlly, It has been found that the nature of

photosensitizers, such as redox potential, structure and photophysical properties, play an

important role in determining the overall cell efficiencies.

1.2 Dyes Sensitizers solar cells Very recently, two kinds of photo sensitizers ,ruthenium dyes

[5,6] and metal-free organic dyes, were developed for DSSCs. Metal-free organic dyes were

regarded as an alternative to ruthenium dyes because of their high molar absorption

coefficient, simple synthesis procedure, and low cost. To date, various kinds of metal-free

organic dyes [7] including coumarin[8], indoline[9], squaraine [10], polyene [11],

hemicyanine [12], oligothiophene[13], perylene[14] porphyrin [15], carbazole [16],

benzothidizole [17] and truexene [18] have been developed and attained high efficiency up to

9% [9b,19]. Our aim in this work is to elucidate theoretically by means of DFT derives

indices the solar-to-electric conversion efficiencies of two groups of dye sensitizers:

Coumarin and Carbazoledye and three other dyes from the same family, experimental results

have been done by Mishra and all [20].
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2. RESULTS AND DISCUSSIONS

2.1. Computational methods

- DFT calculations were carried out using the semi empirical PM6 method and the

B3LYP exchange-correlation functional, together with the standard 6-31G[d] basis set.

- The stationary points were characterized by frequency calculations in order to verify

that TSs had one and only one imaginary frequency.

- The electronic global properties derived from conceptual DFT were caring out .

- The calculations presented in this work were performed with the Gaussian 09  suite of

programs

2.2. Molecular structure choice of some metal free organic dye

The molecular structure of the dye plays an important role in DSSCs. After absorption of light,

charge separation is generally initiatedat the interface between the dye bond at the TiO2

surface and the hole-transporting material. The performance of DSScS generally depends on

the energy levels of the sensitizers and the kinetics of the electrontransfer processes at the

interface between the dye bound to the semiconductor surface and the hole-transporting

material.[21].

Fig.1. a) fundamental processes in a dye-sensitized solar cell.

b) Energy-level diagram of a DSSC. TCO= transport conducting oxide.[21

In fig. 2, 3 and 4 we represent for each family the molecular structurewhich we have chosen

in our study and DFT calculation.
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Fig.2. Coumarin molecularstructure

Fig.3. Carbazole molecular structure

Fig.4. Other family of sensitizers
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Table 1. Experimental results [21]

Dye

family

Dye

n°

Jsc voc FF n%

C
ou

m
ar

in
1 14.0 0.60 0.71 6.0

2 14.7 0.67 0.73 7.2

3 15.9 0.69 0.75 8.2

4 18.8 0.53 0.65 6.5

C
ar

ba
zo

le 5 14.0 0.74 0.74 7.7

6 10.2 0.67 0.64 4.4

O
th

er

7 12.0 0.60 0.63 4.5

8 8.8 0.52 0.63 2.9

9 7.2 0.54 0.59 2.3

With

[Jsc]:represent theshort-circuit photocurrent density

[Voc]:  open-circuit photovoltage

[ff]: The fill factor is identified

[η]: it is solar-to-electric conversion efficiencies

2.3. DFT Results

To rationalize result resumed in  table. 1, we have calculate the global properties namely:

namely, electronic chemical potential ‘μ’, global hardness ‘ η’ , global electrophilicity, ‘ω’ ,

and global nucleophilicity, ‘Nu’, and global charge transfer , ∆Nmax’results are reported in

table 2,3 and 4

Table 2. The global properties of coumarin metal free organic dye.

Dye family Dye n° Homo Lumo 

C
ou

m
ar

in

1 -0,13908 -0,10182 -0,12045

2 -0,18941 -0,10497 -0,14719

3 -0,18706 -0,10383 -0,14545

4 -0,19415 -0,11526 -0,15471
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Table 2. [Continued]

Dye n°   Nu ΔNmax S

1 0,03726 0,19468 0,20971 3,23 26,838

2 0,08444 0,12828 0,159 1,743 11,842

3 0,08323 0,12709 0,161 1,747 12,01

4 0,07889 0,15169 0,154 1,954 12,67

Table 3. The global properties of carbazole metal free organic dye.

Dye family Dye n° Homo Lumo 

C
ar

ba
zo

le 5 -0,19755 -0,0989 -0,14823

6 -0,19352 -0,10013 -0,146825

Table 3. [Continued]

Dye n°   Nu ΔNmax S

5 0,09865 0 ,111 0,151 1,502 10,136

6 0,09339 0,115 0,155 1,57 10,707

Table 4. The global propertiesof  dye 7,8,9.

Dye familly Dye n° Homo Lumo 

O
th

er 7 -0,18177 -0,09761 -0,13969

8 -0,18475 -0,0983 -0,14153

9 -0,1754 -0,10372 -0,13956

Table 4. [Continued]

Dye n°   Nu ΔNmax S

7 0,08416 0,115 0,167 1,659 11,88

8 0,08645 0,115 0,160 1,638 11,567

9 0,07168 0,135 0,173 1,946 13,95
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With:
2

LUMOHOMO 


 
 (1)

(2)

(3)

(4)

S=1/ (5)




max N (6)

2.4. DISCUSSIONS

- Our calculations indicate that:

The maximum global electrophilicity value is obtained for dye 1 and dye 3 in coumarin dye

family and the highest values of this same quantity areidentified for dye 5 in the carbazole dye

family and for the dye 9 in the last family dye.

The following order of global propertiesfor each family dye is gettingou :

- Coumarin family dye.

- ωDye1>ωDye3>ωDye2>ωDye4, and  the order to the hardness and softness values are as:

-  Dye 4> Dye 2> Dye 3> Dye 1

- S Dye1>SDye 4 >SDye 3 >SDye 2

- NuDye3> Nu Dye2>NuDye4 and µDye3>µDye2>µDye4 .

- Carbazole family dye.

- ωDye6>ωDye5, and  Nu dye 6> Nu dye 5,

-  dye5> dye 6, ∆NmaxDye6>∆Nmax Dye5 and µDye6>µDye5 the same order for the softness values.

- Other family sensitisers

- ωDye9>ωDye8,7, and ∆NmaxDye9>∆Nmax Dye7>∆NmaxDye8 and µDye9 µDye7>µDye8 .

- The hardness and the softness S order did not provide the same order.

2

2




μ


- LUMOHOMO  

(TCE)HOMO(Nuc)HOMO -Nu 
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3. CONCLUSIONS

From our DFT calculation we conclude that the carbazoleobeyed to the same order in her

global properties wish indicate that the highest level of stability molecular structure is

obtained for the second kind of family metal organic dye.

The best correlation of theoretical computation and experience results is identified for the

same family.

Indeed we can observed that global global properties obtained in the comarun family dye

molecules who’s posed the thiophane molecule can correspond to the results experiences.

For the last classification we can say that the last kind of metal free organic dye there is a

lowest correspondence between the dft calculation and experience results
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