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ABSTRACT  

Mechanical buckling response of isotropic and orthotropic plates using the two variable 

refined plate theory is presented in this paper. The theory takes account of transverse shear 

effects and parabolic distribution of the transverse shear strains through the thickness of the 

plate; hence it is unnecessary to use shear correction factors. Governing equations are derived 

from the principle of virtual displacements. The nonlinear strain-displacement of Von Karman 

relations are also taken into consideration. The closed-form solution of a simply supported 

rectangular plate subjected to in-plane loading has been obtained by using the Navier method. 

Numerical results are presented for the present efficient sinusoidal shear deformation theory, 

demonstrating its importance and accuracy in comparison to other theories.    
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1. INTRODUCTION  

Laminated composite plates are widely used in civil infrastructure systems due to their high 

strength to weight ratio and flexibility in design. One of the main failure mechanisms in 

composite plates is buckling. Accurate prediction of structural response characteristics is a 

challenging problem in the analysis of laminated composites due to the orthotropic structural 

behavior, the presence of various types of couplings and due to less thickness of the structural 

elements made of composites. Thus, an accurate buckling analysis of the laminated composite 

plates is an important part of the structural design [1]. The buckling of rectangular plates has 

been a subject of study in solid mechanics for more than a century. Many exact solutions for 

isotropic and orthotropic plates have been developed [2], most of them can be found in 

Timoshenko and Woinowsky-Krieger [3], Timoshenko and Gere [4], BankandJin [5], 

KangandLeissa [6], AydogduandEce [7], and Hwangand Lee [8]. In company with studies of 

buckling behavior of plate, many plate theories have been developed. The simplest one is the 

classical plate theory (CPT) which neglects the transverse normal and shear stresses. This 

theory is not appropriate for the thick and orthotropic plate with high degree of modulus 

ratio.In order to overcome this limitation, the shear deformable theory which takes account of 

transverse shear effects is recommended. TheReissner [9] and Mindlin [10] theories are 

known as the first-orders hear deformable theory (FSDT), and account for the transverse shear 

effects by the way of linear variation of in-plane displacements through the thickness. 

However, these models do not satisfy the zero traction boundary conditions on the top and 

bottom faces of the plate, and need to use the shear correction factor to satisfy the constitutive 

relations for transverse shear stresses and shear strains. For these reasons, many higher-order 

theories have been developed to improve in FSDT such as Levinson [11] and Reddy [12]. 

Shimpi and Patel [13] presented a twovariable refined plate theory (RPT) for orthotropic 

plates. This theory which looks like higher-order theory uses only two unknown functions in 

order to derive two governing equations for orthotropic plates.The most interesting feature of 

this theory is that it does not require shear correction factor, and has strong similarities with 

the CPT in some aspects such as governing equation, boundary conditions and moment 

expressions. The accuracy of this theory has been demonstrated for static bending and free 
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vibration behaviors of plates by Shimpi and Patel [13], therefore, it seems to be important to 

extend this theory to the static buckling behavior. In this paper, the two variable RPT 

developed by Shimpi and Patel [13] has been extended to the buckling behavior of orthotropic 

plate subjected to the in-plane loading. Using the Navier method, the closed-form solutions 

have been obtained. Numerical examples involving side to thickness ratio and modulus ratio 

are presented to illustrate the accuracy of the present theory in predicting the critical buckling 

load of isotropic and orthotropic plates. The results are compared and validated with the 

results of previous works which are available in the literature. 

2. RPT FOR ORTHOTROPIC PLATES  

2.1 Basic Assumptions of RPT 

Assumptions of the RPT are as follows:  

i. The displacements are small in comparison with the plate thickness h and, there fore, strains 

involved are infinitesimal.   

ii. The transverse displacement w includes two components of bending wb and shear ws. Both 

these components are functions of coordinates x, y and time t only.   

w(x,y,t) = wb(x,,ty)+ws(x,y,t) 

iii. The transverse normal stress σz is negligible in comparison with in-planestresses σx and σy. 

iv. The displacements u in x-direction and v in y-directionconsist of extension, bending, and 

shear components  

u = u0+ub+us ; v = v0+vb+ vs 

_ The bending components ub and vb are assumed to be similar to the displacements given by 

the classical plate theory. Therefore, the expression for ub and vb can be given as  

;b b
b ns b ns

w w
u z v z

x y

 
   

 
  

_ The shear components us and vs give rise, in conjunction with ws, to the parabolic variations 

of shear strains γxz, γyz and hence to shear stresses σxz, σyz through thethickness of the plate, h, 

in such a way that shear stresses σxz, σyz are zero at the top and bottom faces of the plate. 

Consequently, the expression for us and vs can be given as  

(1) 

(2) 

(3a) 
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( ) ,s
s ns

w
u f z

x





 ( ) s

s ns

w
v f z

y





 

where  

 ( ) sin
h πz

f z z
π h

   
 

 

2.2 Kinematics 

Based on the assumptions made in the preceding section, the displacement field can be 

obtained using Eqs.(1)–(3b) as   

0

0

( , , ) ( , ) ( )

( , , ) ( , ) ( )

( , ) ( , ) ( , )

b s

b s

b s

w w
u x y z u x y z f z

x x
w w

v x y z v x y z f z
y y

w x y w x y w x y

 
  

 
 

  
 

 

 

This displacement field accounts for zero traction on boundary conditions on the top and 

bottom faces of the plate, and the quadratic variation of transverse shear strains (and hence 

stresses) through the thickness. Thus, there is no need to use shear correction factors. The 

strain field obtained by using strain-displacement relations can be given as [14] 

0

0

0

( ) , ( )

b s
x x x sx

yzyzb s
y y y y s

xz yzb s
xy xy xy xy

k k

z k f z k g z

k k

      
                                 

            
            




 
 

 

 

where 

2
0 0 1

2
b s

x

u w w
ε

x x x

         
,  

2

2
b b
x

w
k

x


 


,  

2

2
.s s

x

w
k

x


 


 

2

0 0 1

2
b s

y

v w w
ε

y y y

   
      

,  
2

2
b b
y

w
k

y


 


,  

2

2
s s
y

w
k

y


 


 

0 0 0 b s b s
xy

u v w w w w
γ

y x x x y y

                    
,  

2

2b b
xy

w
k

x y


 

 
,  

2

2s s
xy

w
k

x y


 
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s s
yz

w
γ

y





, s s
xz

w
γ

x





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( ) 1 ns

ns
ns

f z
g z

z


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(5) 

(6) 

(7) 

(4) 

(3b) 
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2.3 Constitutiveequations  

The constitutive equations of an orthotropic plate can be written  

12 22

12 22

66

44

55

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

x x

y y

xy xy

yz yz

xz xz

Q Q

Q Q

Q

Q

Q

    
    
           

    
    
        

 
 

 

 

 

 

 where Qij are the plane stress reduced elastic constants in the material axes of the plate, and 

are defined as 

1 12 2 2
11 12 22 66 12 44 23 55 13

12 21 12 21 12 21

, , , , ,
1 1 1

E E E
Q Q Q Q G Q G Q G


     

     
  

 

in which E1, E2 are Young’s modulus, G12, G23, G13 are shear modulus, and ν12, ν21 are 

Poisson’s ratios. For the isotropic plate, these above material properties reduce to E1 = E2 = E, 

G12 = G23 = G13 = G, ν12 = ν21 = ν. The subscripts 1, 2, 3 correspond to x, y, z directions of 

Cartesian coordinate system, respectively.  

2.4 Equation of motions  

The strain energy of the plate can be written as  

/2

0 0 /2

1

2

a b h

x x y y xy xy yz yz xz xzh
U dzdydx         


          

Substituting Eqs.(6) and (9) intoEq.(10) and integrating through the thickness of the plate,the 

strain energy of the plate can be rewritten as  

 

 

0 0 0 b b b b b b
x x y y xy xy x x y y xy xyA

s s s s s s
yz yz xz xz x x y y xy xyA

1
U = N ε + N ε + N γ + M k + M k + M k dxdy +

2
1

γ + Q γ + M k + M k + M k dxdy
2

Q




  

Where the stress resultants N, M and Q are defined by  

 /2

/2

/2

/2

1

, ,

( )

( , ) ( , ) ( )

x y xy
hb b b

x y xy x y xyh
s s s
x y xy

hs s
xz yz xz yzh

N N N

M M M z dz

M M M f z

S S g z dz

  

 





   
      
   

  







 

Substituting Eqs.(6) and (8) into Eq.(11) and integrating through the thickness of the plate, the 

(8) 

(9) 

(10) 

(11) 

(12) 
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stress resultants are related to the generalized displacements (u0, v0, wb, ws) by the relations  

0

0 ,

s

b s b s

s s s s s

N A B

M D D k S A

M B D H k




    
         

        

 

where 
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t t tb b b b s s s s
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s
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Where Aij and Dij are called extensional and bending stiffness, respectively, and are defined in 

terms of the stiffness Qij as  

2 2
11 11 11 11 11 11

/2 2 2
12 12 12 12 12 12/2

2 2
66 66 66 66 66 66

22 22 22 22 22 11 11 11

(1, , ( ), ( ), ( ))

(1, , ( ), ( ), ( ))

(1, , ( ), ( ), ( ))

( , , , , ) ( , ,

s s s

hs s s

h
s s s

s s s

A D B D H Q z f z zf z f z

A D B D H Q z f z zf z f z dz

A D B D H Q z f z zf z f z

A D B D H A D B



   
      
      





 
11 11

2/2

44 55 / /2

, , )

44 ( )

s s s

hs s

h

D H

A A Q g z dz  

  

 The work done of the plate by applied forces can be written as  

     

 

2 2 2w + w w + w w + ws s s1 b b b0 0 0V = N + N + 2N dxdyx y xyA 2 22 xyx y

- q w + w dxdysA b

   
      



 

where q and Nx
0, Ny

0, Nxy
0 are transverse and in-plane distributed forces, respectively. The 

kinetic energy of the plate can be written as  

(13) 

(14) 

(15) 

(16) 
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 2 2 2 2
ii 0 0 0 b s b sv A

2 22 2

b b s s
2 2A

1 1
T = ρu dv = I u + v + w + w + 2w w dxdy

2 2

w w w w1
+ I + + I + dxdy

2 x y x y
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 



      

   
 

where ρ is mass of density of the plate and Ii (i = 0, 2) are the inertias defined by  

   
/2

2
0 2

/2

, 1,
h

h

I I z dz




   

Hamilton’s principle is used herein to derive the equations of motion appropriate to the 

displacement field and the constitutive equation. The principle can be stated in analytical form 

as  

 
0

0
t

U V T dt    

 where δ indicates a variation with respect to x and y.  

Substituting Eqs. (11), (16) and (17) into Eq. (19) and integrating the equation by parts, 

collecting the coefficients of ðu0, ðv0, ðwb, and ðws, the equations of motion for the 

orthotropic plate are obtained as follows :  

2 22

2 2

2 22

2 2

 0

 0

 2 0

 2 0

xyx

xy y

b bb
xy yx

s s ss s
xy y yzx xz
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x y

N N

x y

M MM
N

x x y y

M M SM S
N

x x y y x y


 

 
 

 
 

 
   

   

   
     
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where 

     2 2 2

2 2
2b s b s b s

x xy y

w w w w w w
N N N N

x x y y

      
       

  

The boundary conditions of a plate (of length a and width b) are given as follows:          

 Clamped–clamped boundaries:  

On edges x = 0 and a  

(17) 

(19) 

(20) 

(21) 

(18) 
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b s
b s

w w
w = w = + = 0

x x

 
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On edges y = 0 and b   

b s
b s

w w
w = w = + = 0

y y

 
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 Simply supported boundaries:  

On edges x = 0 and a    

2 2 2 2
b b s s

b s 11 12 11 122 2 2 2

w w w w
w = w = - D + D = - D + D = 0

x y x y
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 Free–free boundaries:  
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3. BUCKLING OF A SIMPLY SUPPORTED RECTANGULAR PLATE UNDER 

COMPRESSIVE LOADS 

When a plate is subjected to in-plane compressive forces (Fig. 1b), and if the forces are small 

enough, the equilibrium of the plate is stable and the plate remains flat until a certain load is 

reached. At that load, called the buckling load, the stable state of the plate is disturbed and 

plate seeks an alternative equilibrium configuration accompanied by a change in the 

load-deflection behavior. The critical buckling loads of simply supported, orthotropic, 

(23a) 

(22b) 

(22a) 

(23b) 

(24a) 

(24b) 
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rectangular plate will be determined in this paper by using the Navier solution. The governing 

equations of plate in case of staticbuckling are given by  
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D D D D D D D D N

x x y y x x y y

u u v v w w
B B B B B B D D D

x x y x y y x x y

     
         

        

     
       

        
4 4 4 4 2 2

22 11 12 66 22 55 444 4 2 2 4 2 2
2( 2 ) 0s s s s s s sb s s s s sw w w w w w

D H H H H A A N
y x x y y x y

     
        

      

The Navier method is only applied for simply supported boundary conditions on all four 

edges of the rectangular plate, as shownin Fig. 1a. The simply supported boundary conditions 

on all four edges of the rectangular plate can be expressed as  

       
       
,0 , 0, , 0

0, , , 0 , 0x x x x

w x w x b w y w a y

M y M a y M x M x b

   

   
 

The following displacement functions wb and ws are chosen to automatically satisfy the 

boundary conditions in Eqs. (26a) and (26b)   

bmn
m=1 n=1

smn
m=1 n=1

w = W sin x sin y

w = W sin xs in y

b

s

 

 





 

 
 

where λ = mπ/a, μ = nπ/b and Wbmn, Wsmn are coefficients.  

Substituting Eq. (27) into Eq. (25), the following system is obtained: 

   0K    

where  

   ,
t

bmn smnW W   

and 

  11 12

12 22

k k
K

k k

 
  
 

 

Where 

(25) 

(27) 

(26a) 

(26b) 

(28) 

(29) 

(30) 
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4 2 2 4 0 2 0 2
11 11 12 66 22

4 2 2 4 0 2 0 2
12 11 12 66 22

4 2 2 4 2 2 0 2 0 2
22 11 12 66 22 55 44

( 2( 2 ) )

( 2( 2 ) )

( 2( 2 ) )

x y

s s s s
x y

s s s s s s
x y

k D D D D N N

k D D D D N N

k H H H H A A N N

      

      

        

     

     

       

 

For non trivial solution, the determinant of the coefficient matrix in Eq. (26) must be zero. 

This gives the following expression for buckling load: 

2
0 0 33 44 34

2 2
33 44 34

1

2x y

a b a
N N

a a a 


 
  

 

Clearly, when the effect of transverse shear deformation is neglected, the Eq. (28) yields the 

result obtained using the classical plate theory. It indicates that transverse shear deformation 

has the effect of reducing the buckling load. For each choice of m and n, there is a 

corresponsive unique value of N0. The critical buckling load is the smallest value of N0(m, n).  

 

4. NUMERICAL RESULTS AND DISCUSSION 

 For verification purposes, a simply supported rectangular plate subjected to the loading 

conditions, as shownin Fig. 2, is considered to illustrate the accuracy of the present theory in 

predicting the buckling behavior of the plate. In order to investigate the effects of 

side-to-thickness ratio and modulus ratio, the first example is applied for isotropic and 

orthotropic square plat. 

 

Fig.1. Rectangular plate: (a) boundary condition and (b) in-plane forces. 

(31) 

(32) 
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Fig.2. The loading conditions of square plate for (a) uniaxial compression, (b) biaxial 

compression and (c) tension in the x direction and compression in the y direction. 

Many shear correction factors (k=2/3, k=5/6 and k=1) are also used for the FSDT in 

comparison with the present theory. The following engineering constants are used [15]:  

E1=E2 varied; G12/E2=G13/E2 = 0.5; G23=/E2 = 0.2; ν12 = 0.25  

For convenience, the following nondimensional buckling load is used: 

2

3
2

crN a
N

E h
  

where a is the length of the square plate and h is the thickness of the plate. The results of 

critical buckling load of simply supporteds quare plate are presented in Tables1–3 and Figs. 

3–6. In the case of isotropic plate (Fig. 3a), the results obtained by RPT and FSDT are in 

excellent agreement event though the plate is very thick. In case of square plate (a=b=5h), the 

maximum difference of RPT and FSDT with the shear correction factor 5/6 is 0.24%, as 

shown in Table3. When the orthotropic plate is used, the difference between RPT and FSDT 

will increase with respect to the increase of side-to-thickness ratio (Fig. 3) and modulus ratio 

(Figs. 4–6). As presented in Table1, the differences between RPT and FSDT (k=5/6), and RPT 

and FSDT (k=1) are 16.14% and 2.24%, respectively, for the same case of square plate 

(a=b=5h and E1/E2=40). It can be seen from Tables 1–3 that the difference of critical 

buckling load between RPT and FSDT depends on not only the side-to-thickness and modulus 

ratios, but also the in-plane loading conditions (Fig. 2). In case of square plate (a=b=10h), the 

(33) 

(34) 
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difference between RPT and FSDT (k=5/6) is 9.62% for uniaxial compression (Fig. 4 and 

Table1), 9.36% for biaxial compression (Fig. 5 and Table2), and 2.92% for tension in the x- 

direction and compression in the y-direction (Fig. 6 and Table3).   

Table 1. Comparison of nondimensional critical buckling load of square plate ssubjected to 

uniaxial compression 

a/h 

 

Theories   

 

Isotropic 

v = 0,3 

Orthotropic   

E1/E2=10 E1/E2=25 E1/E2=40 

5 

 

 

RPT  

FSDT (k=2/3) 

FSDT (k=5/6) 

FSDT (k=1) 

2.9512 

2.8200 

2.9498 

3.0432 

6.3478 

5.5679 

6.1804 

6.6715 

9.1039 

7.1122 

8.2199 

9.1841 

10.5783 

7.7411 

9.1085 

10.3463 

10 

 

 

RPT  

FSDT (k=2/3) 

FSDT (k=5/6) 

FSDT (k=1) 

3.4224 

3.3772 

3.4222 

3.4530 

9.3732 

8.8988 

9.2733 

9.5415 

16.7719 

14.7011 

15.8736 

16.7699 

22.2581 

18.3575 

20.3044 

21.8602 

20 

 

 

RPT   

FSDT (k=2/3) 

FSDT (k=5/6) 

FSDT (k=1) 

3.5650 

3.5556 

3.5650 

3.5733 

10.6534 

10.4926 

10.6199 

10.7066 

21.3479 

20.4034 

20.9528 

21.3363 

31.0685 

28.8500  

30.0139 

30.8451 

50 

 

 

RPT  

FSDT (k=2/3) 

FSDT (k=5/6) 

FSDT (k=1) 

3.6071 

3.6051 

3.6071 

3.6085 

11.0780 

11.0497 

11.0721 

11.0871 

23.1225 

22.9366 

23.0461 

23.1197 

34.9717 

34.4886 

34.7487 

34.9244 

100 

 

 

RPT  

FSDT (k=2/3) 

FSDT (k=5/6) 

FSDT (k=1) 

CPT 

3.6132 

3.6127 

3.6132 

3.6135 

3.6152 

11.1415 

11.1343 

11.1400 

11.1438 

11.1628 

23.4007 

23.3527 

23.3810 

23.3999 

23.4949 

35.6120 

35.4852 

35.5538 

35.5996 

35.8307 
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Table 2. Comparison ofnondimensionalcriticalbucklingloadofsquareplatessubjectedto biaxial 

compressiveload 

a/h 

 

Theories   

 

Isotropic 

v = 0,3 

Orthotropic   

E1/E2=10 E1/E2=25 E1/E2=40 

5 

 

 

RPT  

FSDT (k=2/3) 

FSDT (k=5/6) 

FSDT (k=1) 

1.4756 

1.4100 

1.4749 

1.5218 

2.8549a 

2.5042a 

2.8319a 

3.1027a 

3.3309a 

2.7332a 

3.1422a 

3.4933a 

3.4800a 

2.8303a 

3.2822a 

3.6793a 

10 

 

 

RPT  

FSDT (k=2/3) 

FSDT (k=5/6) 

FSDT (k=1) 

1.7112 

1.6886 

1.7111 

1.7265 

4.6718a 

4.4259a 

4.6367 

4.7708 

6.0646a 

5.4351a 

5.8370a 

6.1425a 

7.2536a 

6.0797a                   

6.6325a 

7.0690a 

20 

 

 

RPT  

FSDT (k=2/3) 

FSDT (k=5/6) 

FSDT (k=1) 

1.7825 

1.7763 

1.7825 

1.7866 

5.3267 

5.2463 

5.3100 

5.3533 

7.6643a 

7.3701a 

7.5546a 

7.6834a 

9.6614a 

8.9895a 

9.3049a 

9.5297a 

50 

 

 

RPT  

FSDT (k=2/3) 

FSDT (k=5/6) 

FSDT (k=1) 

1.8036 

1.8025 

1.8036 

1.8042 

5.5390 

5.5249 

5.5361 

5.5436 

8.2784a 

8.2199a 

8.2566a 

8.2812a 

10.6576a 

10.5111a 

10.5810a 

10.6282a 

100 

 

 

 

RPT  

FSDT (k=2/3) 

FSDT (k=5/6) 

FSDT (k=1) 

CPT 

1.8066 

1.8063 

1.8066 

1.8068 

1.8076 

5.5707 

5.5672 

5.5700 

5.5719 

5.5814 

8.3744a 

8.3593a 

8.3687a 

8.3751a 

8.4069 

10.8172a 

10.7788a 

10.7972a 

10.8095a 

10.8715a 

a Mode for plate is (m, n) = (1,2).  
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Table 3. Comparison of nondimensional critical buckling load of square plates subjected to 

tension in the x direction and compression in the y direction 

a/h 

 

Theories   

 

Isotropic 

v = 0,3 

Orthotropic   

E1/E2=10 E1/E2=25 E1/E2=40 

5 

 

 

RPT  

FSDT (k=2/3) 

FSDT (k=5/6) 

FSDT (k=1) 

4.8274a 

4.4175 a 

4.8158 a 

5.1237 a 

4.0258b 

3.2849d 

3.9241c 

4.4488b 

4.1044c 

3.3001e 

3.9794c 

4.5691c 

4.1525c 

3.3053e  

4.0075d 

4.6073c 

10 

 

 

RPT  

FSDT (k=2/3) 

FSDT (k=5/6) 

FSDT (k=1) 

6.6024a 

6.4032 a 

6.6010 a 

6.7398 a 

7.7863a 

7.2656a 

7.7748a 

8.0651a 

8.5471b 

7.7820b 

8.4774b 

9.0153b 

9.1638b 

8.1208b 

8.9039b 

9.5197b 

20 

 

 

RPT  

FSDT (k=2/3) 

FSDT (k=5/6) 

FSDT (k=1) 

7.2754a 

7.2139 a 

7.2753 a 

7.3168 a 

9.2811a 

9.1310a 

9.2782a 

9.3790a 

11.6347b 

11.2544b 

11.6015b 

11.8453b 

12.8031b 

12.1990b 

12.6339b 

12.9428b 

50 

 

 

RPT  

FSDT (k=2/3) 

FSDT (k=5/6) 

FSDT (k=1) 

7.4895a 

7.4790 a 

7.4895 a 

7.4965 a 

9.8101a 

9.7830a 

9.8097a 

9.8275a 

12.9531b 

12.8751b 

12.9463b 

12.9942b 

14.4177b 

14.2839b 

14.3789b 

14.4430b 

100 

 

 

 

RPT  

FSDT (k=2/3) 

FSDT (k=5/6) 

FSDT (k=1) 

CPT 

7.5211a 

7.5185 a 

7.5211 a 

7.5229 a 

7.5317 a 

9.8907a 

9.8838a 

9.8906a 

9.8951a 

9.9179a 

13.1666b 

13.1463b 

13.1648b 

13.1772b 

13.2393b 

14.6827b 

14.6474b 

14.6724b 

14.6891b 

14.7732b 

a Mode for plate is (m, n) = (1,2).  

b Mode for plate is (m, n) = (1,3).  

c Mode for plate is(m, n) = (1,4).  

d Mode for plate is (m, n) = (1,5).  

e Mode for plate is(m, n) = (1,6).  
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Fig.3. The effect of side-to-thickness and modulus ratios on the critical buckling load of 
square plate subjected to uniaxial compression: (a) isotropic, (b) E1/E2 = 10, (c) E1/E2 = 25 

and (d) E1/E2 = 40.   

0 10 20 30 40
0

10
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(b)

N

E1/E2

 RPT
 k=5/6
 CPT

 

Fig.4. The effect of modulus ratio on the critical buckling load of square plate subjected to 

uniaxial compression: (a) a = 10h and (b) a = 20h. 
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Fig.5. The effect of modulus ratio on the critical buckling load of square plate subjected to 

biaxial compression: (a) a = 10h and (b) a = 20h. 

The difference between RPT and FSDT is also due to the shear correction factors using in 

FSDT. In case of tension in the x direction and compression in the y direction (Fig. 2c), the 

buckling mode shape (Fig. 7) switches from a symmetric to symmetric or, conversely, from 

symmetric to asymmetric, depending on the shear correction factors. The next comparison is 

carried out for the orthotropic rectangular plates subjected to uniaxial compression with the 

variation of aspect ratio and side-to-thickness ratio. The following material properties are used 

[16]:  

E2/E1=0.52; G12/E1=G23/E1=0.26, G13/E1=0.16; ν12=0.44; ν21=0.23 

0 10 20 30 40
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 K=5/6
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12
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 CPT

 

Fig.6. The effect of modulus ratio on the critical buckling load of square plate subjected to 

tension in the x direction and compression in the y direction: (a) a = 10h and (b) a = 20h. 
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Fig.7. Buckling mode shapes of orthotropic square plate: (a) (m, n) = (1,1); (b) (m, n) = (1,2); 

(c) (m, n) = (1,3); (d) (m, n) = (1,4); (e) (m, n) = (1,5); (f) (m, n) = (1,6). 

 

5. CONCLUDING REMARKS  

The closed-form solution for buckling analysis of isotropic and orthotropic plate using an 

efficient two variable refined plate theory proposed by Shimpi and Patel [13] has been 

developed in this paper. The theory takes account of transverse shear effects and parabolic 

distribution of the transverse shear strains through the thickness of the plate, hence it is 

unnecessary to use shear correction factors. The governing equations are strong similarity 

with the classical plate theory in many aspects. It can be concluded that the all results 

obtained by present closed-form solution will be a useful benchmark results for researchers 

[17] to validate their analytical and numerical methods in the future. 
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