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ABSTRACT  

Solving a non-linear differential equation most times is difficult and requires some 

technicalities. Many semi-analytical methods were derived in literature to provide series 

solution to non-linear problem, with each method giving some level of accuracy when 

compared with their equivalent exact solution (or numerical solution incase exact does not 

exist). Thus, system of ordinary differential equations (ODEs) arising from a formulated 

Susceptible- Infected-Quarantine-Recovered-Immunity (SIQRM) mathematical model of a 

disease dynamics were solved using DTM and Pade approximation; and their results 

numerically compared with Runge-Kutta order 4 (RK4). The table of result shows that DTM 

is reliable to tackle non-linear DE while Pade approximant improves its (DTM) accuracy.  
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1. INTRODUCTION 

The concept of mathematical modeling arises from transforming physical problems (be it 

financial, biological, ecological, technological, epidemiological and so on) into mathematical 

equation. Most of these problems are non-linear in nature when transformed into 
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mathematical equation (either as algebraic or differential). Thus, solving these equations using 

the exact methods approach most times fails, which gave birth to many series solution 

developed to tackle the non-linearity problem. Of such series solution methods are Adomian 

Decomposition Method (ADM), Variational Iteration Method (VIM), Differential 

Transformation Method (DTM) and others. The shortcoming of these method however 

includes their accuracy level, time of computation, their convergence or divergence when 

large value(s) are involved.  

In majority of the text where these semi-analytical methods were used to solve non-linear 

problems, the problem solved were either already known problem with result or just a 

theoretically formulated problem. The case(s) of solving physical problem arising from 

Mathematical modeling of real world issue is minimal. Most of the mathematical modeling of 

real world issue are solved qualitatively with some mathematical theorems and analysis. This 

is because it is easier to make deductions, generalization and conclusions on them once the 

pattern (or features exhibits) are known from analysis. Thus, mathematical modelers are 

interested in obtaining the underlying characteristics of a certain events in order to forecast 

future occurrence(s) as well as proffer solution(s) that may be of help in tackling the 

challenges. Data obtained from their analysis sometimes are used to perform numerical 

simulation (the result of which will help them to ascertain the degree of effectiveness of their 

model) Thus, this work focused on solving non-linear differential equations that arise from 

mathematical modeling of real life issues using the semi-analytical method DTM.  

DTM is a semi-analytical method (although some texts do refer to it as numerical method) 

developed and applied by Zhou to solve some non-linear problems that arises from modeling 

electrical circuits (Zhou, 1986) and has been established as an effective method that solve 

both linear and non-linear differential equations. Akinboro et al., (2014) applied the method in 

conjunction with VIM to solve an SIR model. Similarly, it was used to solve Volterra integral 

equation with separable kernels by Odibat (Odibat, 2008). To better refine the result of DTM, 

Pade approximant was used on the series solution obtained from the DTM. Pade approximant 

is obtained by the expansion of a function as a ratio of power series of rational functions and 

it gives a better approximation than a truncated Taylor series expansion of the function. 



O. Odetunde           J Fundam Appl Sci. 2021, 13(3), 1327-1339              1329 

 

 

2. MATERIALS AND METHOD 

This section is dedicated to highlighting steps in developing the non-linear problems solved in 

this paper. Biological model for disease transmission was developed based on the 

fundamentals of disease transmission established by Kermarck and McKendrick (1927). The 

model equations were solved using differential transform method developed by Zhou (1986). 

2.1 Model formulation 

Modeling physical problems with their underlying characteristics always result to an equation 

that is non-linear in nature. For instance, the price change of a certain commodity does not 

only depend on quantity supplied and demanded but also on other factors like time, location, 

socio-economic group of the consumer and so on. 

Thus, a non-linear deterministic model for the transmission dynamics of infectious diseases in 

the presence of relapse and immunity loss was built by dividing the total human population at 

any given time t, denoted by N(t) into five disjoint epidemiological subpopulations, which are, 

Susceptible (S), Infected (I), Quarantine (Q), Recovered (R) and Partial Immunity (M). Thus,  

N(t) = S(t) + I(t) + Q(t) +R(t) +M(t) 

Some of the infections that falls into this category include Ebola, Lassa fever, coronavirus, 

and most of viral diseases. As shown by the arrow in the flow diagram, inflow into a certain 

compartment means addition for the compartment while outflow denotes subtraction from the 

compartment. Recruitment into susceptible compartments is either through birth or 

immigration at the rate of π and natural mortality occurs across all compartments at the rate μ. 

Susceptible are vaccinated at the rate χ while they become infected with the force of infection 

which is given as where denotes the effect of sensitization/education in 

reducing disease transmission by contact, are the contact with infective and quarantine 

classes sufficient to bring about new infections. Infected classes are treated and recovered at the 

rate ε, quarantined at the rate ϒ, reduced by induced death parameter and increased by 

re-infection parameter η. The quarantined class reduced by natural mortality rate, induced death 

rate and recovery rate Partial immunity compartment is increased at the rate of 

immunity obtained from successful treatment of some infections and reduced by immunity loss 
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rate α. Some assumptions were made when developing this model, some of which are: 

1. New recruitments are assumed to be free of infection, thus are recruited into susceptible 

class 

2. There is interaction within the community which can lead to new cases of infection with 

the force of infection expressed as  

3. For this model, mortality can occur due to certain disease whether the victim is aware or 

not. 

The flow diagram of the model is given in figure 1 below. 

 

Fig.1. Diagrammatic Representation of SIQRM Model 

 

The above deterministic model is govern by the following linear and non-linear system of 

ordinary differential equation: 
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where  The table below shows the value used for each parameter in the 

model. 

Table 1: Parameter Values and Source 

Parameter Symbol Value Source 

π 
 

(Okuonghae, 2013) 

χ 0.3 Assumed 

η 0.1 (Okuonghae, 2013) 

ϒ 0.4 Assumed 

ε 0.75 (Okuonghae, 2013) 

μ 0.036 (Group, 2020) 

α 0.5 Assumed 

 
0.6 Assumed 

 
1.5 (Okuonghae, 2013) 

 
0.365 (Okuonghae, 2013) 

 
0.365 (Okuonghae, 2013) 

S(0) 5000 Assumed 

I(0) 100 Assumed 

Q(0) 70 Assumed 

R(0) 30 Assumed 

M(0) 50 Assumed 
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2.2  Methodology/model solution by dtm 

Using DTM table of transform as given by Akinboro et al., (2014) and Odibat (2008) to 

transform the system of Eq. (1) into its DTM equivalent. Thus, for finite step k, the system of 

Eq. (1) becomes: 
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3. RESULTS AND DISCUSSIONS 

 The initial conditions together with the value of parameter in table 1 was used to iterate Eq. 

(2) to obtain the series solution given below: 

 

2 3 4 5

2 3 4 5

2

2956.5500 -587.5889220t -528.7784280t -414.1866315t -261.2464800t . .

( ) 100+347.230000t+312.3777045t +413.4746413t +288.3952338t +193.7187987t . .

( ) 70-66.0750t+128.3420688t -21.

( )

4
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5

h o t
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t
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=
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723773t +53.91758712t +8.421699430t . . (3)

( ) 30+160.890t+29.41153500t +136.0204113t +47.81878060t +53.34244858 t . .

( ) 50+6.200t+51.04022500t -3.824468790t +20.51895669t +3.290109536t . .

h o t

R t h o t

M t h o t

+

= +

= +

 

The above series in Eq. (3) was truncated at power of t = 5 to save space but it was originally 

computed up to t = 50 with Maple 18 software. Also, the Pade approximant of Eq. (3) was 

computed and truncated at time t = 20. For some values of t indicated, the result of series 

solution in Eq. (3) was computed and compared with its Pade approximant equivalent and 
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RK4, the results obtained were tabulated below. 

3.1 Tabular solution of the approximate result 

Each of the compartmental series solution in Eq. (3) was iterated for each of the methods 

(DTM and Pade) and the result compared with RK4 to obtain the table below 

Table 2: Error estimation of Result for both DTM and Pade Approximant Using RK4 

Susceptible compartment 

Time 

(t) 

DTM  Pade RK4 Error in DTM 

|DTM-RK4| 

Error in Pade 

|Pade-RK4| 

0 5000 5000 5000 0 0 

0.1 5289.206171 5289.206169 5289.20616022100 0.0000107790046968148 0.00000877900492923800 

0.2 5562.821383 5562.821382 5562.82137288057 0.0000101194318631315 0.00000911943152459571 

0.3 5815.716835 5815.716836 5815.71684598401 0.0000109840102595626 0.00000998401083052158 

0.4 6040.931349 6040.931353 6040.93135413207 0.00000513207396579674 0.00000113207443064312 

0.5 6229.139518 6229.139513 6229.13953747261 0.0000194726144400192 0.0000244726143137086 

0.6 6368.141418 6368.141406 6368.14147289069 0.0000548906928088400 0.0000668906923237955 

0.7 6442.602000 6442.601977 6442.60205361148 0.0000536114803253440 0.0000766114799262141 

0.8 6434.481062 6434.481069 6434.48126782682 0.000205826818273636 0.000198826818632369 

0.9 6324.832655 6324.832703 6324.83276938540 0.000114385396955186 0.0000663853970763739 

1.0 6097.695283 6097.695292 6097.69540485351 0.000121853513519454 0.000112853513201117 

Infected Compartment 

0 100 100 100 0 0 

0.1 138.2911189 138.2911189 138.291128646865 0.00000974686506083344 0.00000974686506083344 

0.2 185.7781842 185.7781841 185.778197989461 0.0000137894614340439 0.0000138894614281071 

0.3 246.3203116 246.3203116 246.320313406278 0.00000180627787926824 0.00000180627787926824 

0.4 325.0717975 325.0717972 325.071804830728 0.00000733072783987154 0.00000763072785048280 

0.5 428.8397598 428.8397600 428.839749764804 0.0000100351961691558 0.0000102351961572822 

0.6 566.3805304 566.3805307 566.380492392046 0.0000380079544584078 0.0000383079544690190 

0.7 748.4258781 748.4258767 748.425875365407 0.00000273459329491743 0.00000133459332118946 



O. Odetunde           J Fundam Appl Sci. 2021, 13(3), 1327-1339              1334 

 

 

0.8 987.0531779 987.0531771 987.053034975545 0.000142924455417415 0.000142124455351222 

0.9 1293.834097 1293.834105 1293.83402892157 0.0000680784253290767 0.0000760784253088786 

1.0 1676.224346 1676.224345 1676.22435371599 0.00000771598524806905 0.00000871598513185745 

Quarantine Compartment 

0 70 70.0000002 70 0 2.00000016548074  

0.1 64.65995172 64.65995170 64.6599511889762   

0.2 61.83679337 61.83679344 61.8367914543675 0.00000191563255214078 0.00000198563255082718 

0.3 61.61551764 61.61551765 61.6155147511862 0.00000288881383880835 0.00000289881383963575 

0.4 64.25173804 64.25173803 64.2517357616943 0.00000227830568633181 0.00000226830569260983 

0.5 70.20706520 70.20706516 70.2070638899428 0.00000131005724313127 0.00000127005723982165 

0.6 80.19309007 80.19309011 80.1930879453182 0.00000212468177096525 0.00000216468176006401 

0.7 95.21636799 95.21636795 95.2163570922048 0.0000108977952351097 0.0000108577952460109 

0.8 116.6058726 116.6058724 116.605858111186 0.0000144888143296384 0.0000142888143273012 

0.9 145.9873954 145.9873955 145.987388297584 0.00000710241624801711 0.00000720241624208029 

1.0 185.1508158 185.1508157 185.150781221754 0.0000345782464421518 0.0000344782464480886 

Recovered Class 

0 30 30 30 0 0 

0.1 46.52447275 46.52447279 46.5244740269009 0.00000127690087481369 0.00000123690087860950 

0.2 64.53765976 64.53765976 64.5376593525008   

0.3 85.12088192 85.12088193 85.1208764011610 0.00000551883900357097 0.00000552883899729295 

0.4 109.6390760 109.6390760 109.639070050994 0.00000594900595274339 0.00000594900595274339 

0.5 139.8577978 139.8577979 139.857793978854 0.00000382114609465134 0.00000392114611713623 

0.6 178.0834071 178.0834072 178.083397792394 0.00000930760569417544 0.00000940760571666033 

0.7 227.3145698 227.3145700 227.314539510985 0.0000302890147452217 0.0000304890147617698 

0.8 291.3707439 291.3707444 291.370706671603 0.0000372283969340970 0.0000377283969328346 

0.9 374.9265197 374.9265198 374.926494275887 0.0000254241129482580 0.0000255241129707429 

1.0 483.3361552 483.3361554 483.336074085057 0.0000811149426453994 0.0000813149426335258 

Partial Immunity Compartment 
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0 50 50 50 0 0 

0.1 51.12866763 51.12866759 51.1286673026592   

0.2 53.28522951 53.28522949 53.2852283916008 0.00000111839919725298 0.00000109839919559818 

0.3 56.52847433 56.52847426 56.5284718811295 0.00000244887054634546 0.00000237887054055363 

0.4 60.98338702 60.98338704 60.9833837672802 0.00000325271982148934 0.00000327271981603872 

0.5 66.85697797 66.85697803 66.8569746153583 0.00000335464167733335 0.00000341464166808692 

0.6 74.46067155 74.46067163 74.4606661661581 0.00000538384185233554 0.00000546384185895477 

0.7 84.24002962 84.24002964 84.2400205228196 0.00000909718042407803 0.00000911718042573284 

0.8 96.81135234 96.81135256 96.8113427043779 0.00000985562212463265 0.00000985562212463265 

0.9 113.0018648 113.0018647 113.001853936915 0.0000108630850661484 0.0000107630850578744 

1.0 133.8851075 133.8851075 133.885092189634 0.0000153103659101816 0.0000153103659101816 

 

The above table 2 shows that DTM is reliable in solving both linear and non-linear system of 

differential equation that arises from a biological model. From the table, it was observed that 

the modulus of error in each method is relatively insignificant when compared with standard 

RK4. However, Pade approximation of DTM solution gives a better result compared with 

ordinary DTM as obtained from the susceptible compartment result.  

3.2 Graphical representation of the model solution 

The above result depicted in the table was plotted for each compartment, and the result are 

given below: 
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Fig.2. Dynamics of Susceptible compartment with time 

 

The population of the susceptible grow over a period of time before it reverses to downward 

trend. The three graphs for both the semi-analytical method DTM, its Pade equivalent and the 

numerical scheme RK4 agreed as seen above. 

 

Fig.3. Dynamics of Infected compartment with time 
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The population steadily increases over the cause of time of simulation. This is due largely to 

more contact of susceptible people (as a result of non-compliance with best practices that can 

reduce the risk of infection) with the infection which resulted in emergence of new cases. 

 

 

Fig.4. Dynamics of Quarantine compartment with time 

 

This compartment firstly reduces in population before increasing again with time. It reduces 

because the little ones detected recovered from the illness after treatment while it increases as 

a result of more clinical test conducted on suspected individual that are traced.  

 

Fig.5. Dynamics of Recovered compartment with time 
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The recovered compartment consistently increases due to effective treatment as well as 

personal hygiene that build immune system. DTM, Pade and RK4 solution also agrees in 

picture.  

 

Fig.6.  Dynamics of Partial Immunity compartment with time 

 

The partially immune population increases due to recovery over time. Thus, it can be deduced 

that effective treatment of an infected individual gives the individual some level of immunity 

against immediate re-occurrence/reinfection. The result of the methods DTM, Pade and RK4 

also agrees as obtained from the diagram. 

 

4. CONCLUSION  

System of linear and non-linear differential equations that was obtained from epidemiological 

model were solved using semi-analytical tool differential transform method. The resulting 

series of the method was approximated using Pade approximant. Both result were numerically 

simulated and compared with Runge-Kutta order 4 standard numerical scheme using 

mathematical software Maple 18. The table of result gives the error in each result when 

compared with RK4. It was concluded based on the table and the graphical result that DTM is 

an efficient tool for solving both linear and non-linear differential equations. Also, from the 

analysis of the model, it can be concluded that early diagnosis and effective treatment will 

help to contain the spread of an infection within a population. If an infection is left to spread 

within a certain population, the effect will lead to decrease in the susceptible class as obtained 
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from the graph of susceptible compartment (the result that means that more people get 

infected as time increases). 
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