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ABSTRACT  

Rayleigh-Bénard's convection is a classic problem of heat transfer. Since the 1900s, studies for 

Newtonian fluids have been widely developed in this field and phenomena well understood. On 

the other hand, the complexity of non-Newtonian behavior makes the number of studies much 

lower. Among the non-Newtonian behavior, the shear-thinning fluid studies are even rarer. This 

work focuses on a numerical study of natural convection for a non-Newtonian fluid shear 

thinning, in the Rayleigh-Bénard configuration. The Carreau-Yasuda model describes the shear 

thinning behavior. The convective flow considered is confined in a cavity, which is subjected 

to a vertical temperature gradient, heated from below and cooled from above. The transport 

equations are discretized by the finite volume method and are solved numerically using a CFD 

code: "Ansys Fluent".The influence of the control parameters on the flow and heat transfer such 

as the Rayleigh 𝑅𝑎 number, the aspect ratio, 𝐴, the Prandtl numbers, 𝑃𝑟, the power index 𝑛 

and the time constant 𝐸, are studied. 
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1. INTRODUCTION 

Rayleigh-Bénard type convection basically refers to the convection between two parallel plates, 

the bottom plate is heated and the upper plate is cooled. It is a convection induced by the impulse 

of Archimedes, which opposes two effects exerted on the particles of fluid: the effects of 

dissipation viscous and thermal, which slow the movement. The control parameter that governs 

the system is the Rayleigh number. Since the 1900s, numerous studies on Rayleigh Benard's 

instability have been carried out on Newtonian fluids [1]. The critical value of the Rayleigh 

number in this case is about 1708. This value was obtained theoretically via a linear stability 

analysis, and verified experimentally by several studies, for example, in the work of 

Koschmieder [2], different Newtonian fluids are used in various devices, and the critical value 

of Ra is found around 1708. Most real and industrial fluids are not Newtonian, that is, their 

viscosity varies with the shear rate. The importance and the need to study Rayleigh Bernard’s 

convection are obvious. There are several classes of non-Newtonian behavior, such as shear 

thinning fluid, characterized by a decrease in viscosity as the shear stress increases. The interest 

in understanding and mastering the rheological behavior of fluids, in convective flows, is 

essential to provide solutions to the problems encountered in the various branches of activity 

such as: industrial processes, chemical, petrochemical, pharmaceutical products and 

particularly in the food industry. Tien and al [3] used the solutions of Carboxyl Methyl Cellulose 

(CMC) and polyacrylate (Carbopol solutions) with the model of the power law to determine the 

influence of shear thinning fluid on heat transfer. Liang and Acrivos [4] carried out their 

experiments with polyacrylamide solutions (Separan AP30) modeled by the Carreau model. It 

has been observed that shear-thinning fluid tends to favor the transfer of heat in the convective 

regime. A numerical solution made it possible to highlight the dependence of the fields of 

function of current, temperature and concentration of the behavior index of the non-Newtonian 

fluid. Benouared and al [5] have studies numerically the natural convection of non-Newtonian 

fluids in the configuration of Rayleigh-Bénard (RB). The non-Newtonian fluid rheological 

behavior was modeled using the Carreau-Yasuda model. The convective flow has been confined 

in a cavity of finite/infinite aspect ratio, which was subject to a vertical temperature gradient 

[10-12]. Aspect ratio effects in Rayleigh-Bénard convection of Herschel-Bulkley fluids, studied 
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by Mohammad Saeid Aghighi [15-17]. The objective of this study is the effect of viscous 

dissipation, which is being taken into consideration while the axial conduction of heat in the 

fluid is considered negligible. The objective of our work is to study numerically the natural 

convection for a shear thinning fluid, in the Rayleigh-Bénard configuration. 

 

2. MATHEMATICAL FORMULATION 

We are interested in thermal convection in a cavity of h height, with adiabatic vertical walls and 

horizontal walls subject to constant temperatures respectively Tc and Tf (figure 1). 

Approximation of Boussinesq, it is given by the following relation:   

 𝜌 = 𝜌0[1 − 𝛽(𝑇 − 𝑇0)]           whith       𝛽 = −
1

𝜌
(

𝜕𝜌

𝜕𝑇
)

𝑝
      1 

Where 𝜌0 and 𝑇0 respectively denote the density and the reference temperature and β is the 

thermal expansion coefficient. 

                                     y                             

 

 

 

 

 

x 

 

                      

Fig.1. Schematic representation of the flow configuration 

 

The mathematical formulation of convection phenomena is based on the equations linking the 

different parameters namely: speed, pressure and temperature. These equations come from the 

averaging of the Navier Stokes equations over time. It is more convenient to present the 

equations governing the problem in dimensionless form. Numbers without characteristic 

dimensions will appear and that will considerably reduce the complexity of the problem are 

given by: 

 𝑿 =
𝒙

𝑯
 , 𝒀 =

𝒚

𝑯
 , 𝑼 =

𝒖

(
𝜶

𝑯
)
 , 𝑽 =

𝒗

(
𝜶

𝑯
)

𝑷 =
𝒑

(
𝝆𝜶𝟐

𝑯𝟐 )
 , 𝜽 =

𝑻−𝑻𝒇

𝑻𝒄−𝑻𝒇
 , 𝒕 =

𝒕𝜶

𝑯𝟐  ,   𝜼 =
𝝁

𝝁𝟎
         2 

Then with the introduction of the dimensionless variables, the system of equations defines 

   
𝜕𝑇

𝜕𝑥
= 0                             H   

𝜕𝑇

𝜕𝑥
= 0              

Tc 

Tf 
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previously takes the following form:  

        
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0                                       3 

 (
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑥
+ 𝑉

𝜕𝑈

𝜕𝑦
) =   −

𝜕𝑃

𝜕𝑋
+ 𝑃𝑟 (

𝜕𝜏𝑥𝑥

𝜕𝑋
+

𝜕𝜏𝑥𝑦

𝜕𝑌
)                                 4      

 

(
𝜕𝑉

𝜕𝑡
+ 𝑈

𝜕𝑉

𝜕𝑥
+ 𝑉

𝜕𝑉

𝜕𝑦
) = −

𝜕𝑃

𝜕𝑋
+ 𝑃𝑟 (

𝜕𝜏𝑥𝑦

𝜕𝑋
+

𝜕𝜏𝑦𝑦

𝜕𝑌
) + 𝑃𝑟𝑅𝑎𝜃                      5 

 𝜏𝑥𝑥 = 2𝜂
𝜕𝑈

𝜕𝑋
        𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜂 (

𝜕𝑈

𝜕𝑌
+

𝜕𝑉

𝜕𝑋
)        𝜏𝑦𝑦 = 2𝜂

𝜕𝑉

𝜕𝑌
                 6 

𝜕𝜃

   𝜕𝑡
+ 𝑈

𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
=

𝜕2𝜃

𝜕𝑋2 +
𝜕2𝜃 

𝜕𝑌2                                                                   7                                                 

 

The parameters Pr and Ra appearing in Eq (5) are the Prandtl and the Rayleigh numbers, 

respectively, defined as:   𝑅𝑎 =
𝑔𝛽𝐻3

𝛼𝑣
(𝑇𝑐 − 𝑇𝑓)         Pr=γ/α           8 

Where α and µ0 are the fluid thermal diffusivity and dynamic zero-shear rate viscosity, 

respectively. In non-dimensional form, the apparent viscosity 𝜇 in the Carreau-Yasuda model 

(Bird et al) reduces to:      𝜇 = 𝜇∞ + (𝜇0 − 𝜇∞)[1 + (𝐸 𝛾̇) 𝑎]
𝑛−1

𝑎                           9 

 Where s= µ0/µ∞ is the infinite- to zero-shear-rate viscosities ratio. The Carreau-Yasuda 

model is best suited to represent the rheological behaviour of a wide variety of polymer 

solutions. The power-law index, n, characterizes the fluid behaviour and E is a dimensionless 

characteristic time of the fluid. Generally, boundary conditions to solve the equations are as 

follows: No slip bounder conditions are assumed at the solid wall for velocity. The stress 

components at the wall are obtained by solving constitutive equations and b applying known 

velocity boundary conditions. At the outlet, the Neumann boundary conditions are imposed for 

the flow variables. 

    𝑥 = 0,   0 < 𝑦 < 𝐻,   
𝜕𝑇

𝜕𝑥
= 0     ;     0 < 𝑥 < 𝐿,   𝑦 = 𝐻       𝑇(𝑥, 𝐿, 𝑡) = 𝑇𝑓         10 

 0 < 𝑥 < 𝐿,   𝑦 = 0,   𝑇(𝑥, 𝐿, 𝑡) = 𝑇𝑐  ; 𝑥 = 𝐿,   0 < 𝑦 < 𝐻,     
𝜕𝑇

𝜕𝑥
= 0               11    

3. NUMERICAL METHOD  

Fluid flows, whether in a laminar or turbulent regime, are described by the system of partial 

differential equations. Thus, all physical phenomena are governed by this system formed by the 
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equations of continuity, momentum and energy that must be solved to know the characteristics 

of the thermal field and the flow field. Unfortunately, it is practically impossible to find an 

analytical and exact solution for such systems because the equations mentioned above are very 

complex, that is to say non-linear on the one hand and coupled on the other hand. In this case, 

the use of digital resolution is necessary and prompts us to choose the appropriate numerical 

method to obtain the best approximations. For this reason, we use numerical methods or 

software, among this software the Fluent. ANSYS Fluent is the computational fluid dynamics 

(CFD) software tool allowing going further and faster whiling optimizing product performance. 

This software includes well-validated physical modeling capabilities to provide fast and precise 

results on the widest range of CFD applications.The ANSYS Fluent software contains the vast 

physical modeling capacities necessary to model the dynamics of fluids, heat transfer for both 

Newtonian and non-Newtonian fluids. The commercial computational fluid dynamics code 

FLUENT was used to solve the governing equations. 

 

4   RESULTS AND DISCUSSION   

In this work, we will present the results followed by a discussion of the effects of the rheological 

parameters of the Carreau model on flow structure, heat transfer and the existence of subcritical 

convection. Effects of control parameters on flow and heat transfer will also be examined; 

namely the aspect ratio, A, the Prandtl number, Pr, and Rayleigh numbers, Ra, the power index 

n and the time constant E. 

4-1 Validation of the numerical code 

The numerical code developed to solve the conservation equations was validated in the 

Newtonian and non-Newtonian case by comparing the results of the present study to those 

reported by Benouared and al [5]. Validation of the numerical code in terms of mean Nusselt 

number, Num in the case of a Newtonian fluid in a square cavity filled with air (Table 1). 
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Table 1: Nusselt number in the case of a square cavity filled with air 𝐴 = 1, 𝑃𝑟 = 0.71 

Validation of the numerical code in terms of mean Nusselt number, Num in the case 

of a Non-Newtonian fluid in a cavity filled with water (Table 2, 3). Tables (1) (2) (3) show 

that with a mesh of 81 × 81 for A = 1, and 161 × 81 for A = 10, good agreement of the 

results is observed for the average Nusselt values, Num, with a relative error less than 1%. 

Table 2: Average Nusselt number Num, in the case of a square A = 1, Pr = 10 

 

Table 3: Validation of the numerical code in terms of average Nusselt number, Num  

 

A = 10,

Pr = 10 
Ref [5 ] Present study 

Ra n = 1 n = 0.6 n = 1 n = 0.6 

2000 1.2 2.7 1.199 2.402 

3000 1.6 3.2 1.642 3.283 

4000 1.9 3.6 1.897 3.785 

5000 2.1 4.1 2.078 4.157 

10000 2.6 5.2 2.584 5.168 

 

𝑅𝑎 102 1.5 × 104 105 106 

Reference [5] 2.163 2.42 3.934 6.379 

Present study 2.163 2.424 3.925 6.274 

 n = 1 n = 0.8 n = 0.6 n = 0.4 

Ra Ref [5] 
Present 

study 
Ref [5] Present study Ref [5] 

Present 

study 

Ref 

[5] 
Present study 

2000 1.1 1.093 1.4 1.303 2 1.716 2.4 2.285 

4000 1.5 1.518 2 1.803 2.4 2.201 2.9 2.768 

6000 1.8 1.835 2.2 2.142 2.7 2.567 3.4 3.232 

8000 2 2.044 2.4 2.371 2.9 2.836 3.6 3.658 

10000 2.1 2.196 2.6 2.544 3.1 3.056 3.9 4.051 
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4-2 Newtonian Fluid Case 

  In this part, the study is based on the effect of increasing the number of Rayleighs on the flow 

structure and heat transfer of a flow for a Newtonian fluid in a cavity. The variation in Rayleigh 

number is performed in the range of 5 * 102 to 104. Figure 2 shows the current lines for different 

values of Rayleigh number Ra. We remark a flow of particles of the fluid that heats up along 

the hot wall under the effect of buoyancy and the downward movement of the particles of the 

fluid that cools along the cold wall under the effect of gravity. For Ra = 103, the values of the 

current function are very small. When the Rayleigh number is increased to           Ra =1.7 

× 103, the flow structure and the values of the current function increase substantially, reflecting 

a nascent natural convection. For the higher values of Rayleigh number Ra = 104, the values of 

the Current Function corresponding to these values increase significantly, all this leads us to 

say that natural convection has become preponderant. The current lines are very tight near the 

active walls. This is explained by the increase in the number of Rayleigh, which leads to a 

dominance of natural convection at the corners of the cavity. 

                 

𝑅𝑎 = 103                                 𝑅𝑎 = 1.5 × 104                                   𝑅𝑎 = 106 

Fig.2. Effet of Rayleigh number Ra effect on speed contours for A = 1, Pr =  0.71 

                       

𝑅𝑎 = 103                                          𝑅𝑎 = 1.5 × 104                     𝑅𝑎 = 106 

Fig.3.  Effet of Rayleigh number Ra effect on isotherms for 𝐀 = 𝟏, 𝐏𝐫 = 𝟎. 𝟕𝟏. 

 Figure 3, represents the thermal field for different numbers of Rayleigh Ra, for  Ra =103, 



B. Ali benyahia et al.        J Fundam Appl Sci. 2021, 13(3), 1361-1379           1368 
 

 

we remark that the isothermal lines are parallel to the horizontal walls of the cavity, in this case 

the temperature distribution is simply decreasing from the hot wall to the cold wall. The thermal 

transfer takes place essentially by conduction, and for Ra =1.7 × 103, show that the isothermal 

lines are slightly deformed according to the direction of rotation of the current lines but remain 

almost parallel to the cold high wall. Heat transfers always remain dominated by a pseudo-

conductive regime. For higher values of the number of Rayleigh Ra = 104, the corresponding 

contours show that the isothermal lines deform a lot to become parallel to the inactive vertical 

walls in the middle of the enclosure and follow the shape of the horizontal active walls while 

remaining very tight which shows a very intense transfer in these regions. The increase in the 

number of Rayleigh therefore reflects an intensification of natural convection. The increase in 

the number of Rayleigh therefore reflects an intensification of natural convection. Shows a high 

intense transfert in these regions. The increase in the Rayleigh number therefore reflects an 

intensification of natural convection. Figure (4) shows the contours of the velocity v for 

different values of the Rayleigh number Ra, shows a profile symmetrical with respect to the 

centre of the cavity and we remark an increase in the velocity gradient near the vertical adiabatic 

walls, with the increase in the number of Rayleigh Ra.  Figures (5), (6), illustrate the velocity 

profiles; longitudinal and transverse as a function of x, for different values of Rayleigh number 

Ra. The velocity profile u (Figure 5) shows that it is symmetrical with respect to the centre of 

the cavity. For small values of Rayleigh number Ra = 104, the velocity is almost zero. With the 

increase in the number of Rayleigh, we observe the appearance of the maximum and minimum 

values of the speed u near the horizontal active walls. For the velocity v, (Figure 6) also shows 

a symmetrical profile with consideration to the centre of the cavity and one notices an increase 

of the gradient of the velocity near the vertical adiabatic walls, with the increase of the number 

of Rayleigh. We can conclude that the increase in the number of Rayleigh results in a gradual 

increase of speeds. 

Figure 7 represents the variation of the local Nusselt number as a function of X for different 

values of the Rayleigh Ra number, it is noted that the number of local Nusselt Nu increases 

with increasing Rayleigh number and this means that the heat exchange is best for high 

Rayleigh numbers. 
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Ra = 1.7 × 104                Ra = 105                                              Ra = 106 

Fig.4.  Effet of Rayleigh number Ra effect on speed contours A = 1, Pr = 0.71 

            

    

Fig.5. Effect of Rayleigh Number Ra on the variation of velocities "u" as a function of X 
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Fig.6. Effect of Rayleigh Ra number on speed "v" according to X 

 

Fig.7. Effect of Ra on the variation of the local Nusselt number according to X 
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4-3 Non - Newtonian Fluid Case 

In this part of a non-Newtonian model Carreau-Yasuda fluid, the study based on the effect of 

variation of the power index "n" on the structure and the heat transfer of a non-Newtonian fluid 

by natural convection in the same previous cavity. Results with the works of Benouared et al 

[5], we found a good agreement table (2), (3). Figure (8), (9) shows the current and isothermal 

lines when Ra = 4000 for defferent values of the fluid index n. Disturbance and convection are 

observed to increase in the case of a shear thinning  fluid compared to the Newtonian case (n 

= 1). The results show that the heat transfer and convection force increase with increasing 

number 𝑅𝑎 and decreasing the fluid index n. 

 

                 

n=0.8                        n=0.6             n=0.4 

Fig.8. Effect of the fluid index "n" on the flow field and the isotherm for 𝑹𝒂 = 𝟒𝟎𝟎𝟎, 𝑬 =

𝟎. 𝟒, 𝒔 = 𝟎. 𝟎𝟏. 𝑨 = 𝟏, 𝑷𝒓 = 𝟏𝟎 

 

Figures (10), (11), confirm that when the power index (n) decreases, the intensity of the flow 

increases in the profile of the horizontal component of the speed (u), and the vertical component 

of velocity (v). 

 

               

    n=0.8        n= 0.6     n= 0.4 

Fig. 9.  Effect of the fluid index "n" on the variation of the components "u" as a function of X 

for  𝐑𝐚 = 𝟒𝟎𝟎𝟎, 𝐄 = 𝟎. 𝟒, 𝐬 = 𝟎. 𝟎𝟏  
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Fig.10. Effect of the fluid index "n" on the variation of the components of the velocity "u" as 

a function of X for Ra = 4000, E = 0.4, s = 0.01 

 

 

Fig.11. Effect of the fluid index "n" on the variation of the components of the velocity "v" as 

a function of X for Ra = 4000, E = 0.4, s = 0.01 

 

Figure 12 shows the effect of the power index "n" on the variation of the average Nusselt 

number Num as a function of different values of the Rayleigh Ra number. The Nusselt number 

measures the efficiency of the convection, so if Num = 1 the heat transfer is by conduction, for 

the fluid index "n" for the non-Newtonian fluid we note that the decrease of the index causes a 

strong convection with Rayleigh number increase, its means that the mean Nusselt number 

increases with increasing Rayleigh number and decreasing the fluid index "n". 
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Fig.12. Effect of the fluid index “n” on the local Nusselt number Nu as a function of X for  

𝑹𝒂 = 𝟒𝟎𝟎𝟎, 𝑬 = 𝟎. 𝟒, 𝒔 = 𝟎. 𝟎𝟏 

 

Figure 13 shows the effect of the index 'n' on the variation of the Nu m Rayleigh Ra number 

function. In general, this number increases as "n" decreases. For a given value of "n", the 

Nusselt number increases as Ra increases.The effect of the Rayleigh number Ra on the average 

Nusselt number Num for different values of the adimensional time constant "𝐸" for a power 

index n = 0.4. It can be seen from Figure (14) that for increasing the dimensionless time constant 

"𝐸" causes a strong convection with increasing Rayleigh Ra number, it means that the average 

number of Nusselt increases with increasing Rayleigh Ra number. For a value of E = 0 we find 

the values of mean Nusselt Num, of the Newtonian case (n = 1). The influence of the variation 

of the form ratio on the flow and the heat transfer, are studied in the following. Thus, in Figures 

(15) and (16), we represent the temperature fields and the current lines, for different values of 

the ratio of form A = 1 and A = 10 with the same number of Rayleigh Ra and for Pr = 10, n = 

0.6, E = 0.4, s = 0.01. 
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Fig.13. Effect of the index 'n' on the variation of the Nu m Rayleigh Ra number function 

 

 

Fig.14. The effect of the Rayleigh number Ra on the mean Nusselt number Num for different 

values of E with: A = 1, Pr = 10, n = 0.4, s = 0.01 
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(a)  

(b)  

𝑹𝒂 = 𝟐𝟎𝟎𝟎, 𝐀 = 𝟏𝟎 

(a)  

(b)  

𝑹𝒂 = 𝟒𝟎𝟎𝟎, 𝐀 = 𝟏𝟎 

Fig.15. The influence of ratio A on the flow and heat transfer for the number of different 

values that Rayleigh Ra, for 𝑷𝒓 = 𝟏𝟎, 𝒏 = 𝟎. 𝟔, 𝑬 = 𝟎. 𝟒, 𝒔 = 𝟎. 𝟎𝟏. (a) Isotherm  (b) 

Speed contours 

 (a)  

(b)  

𝑅𝑎 = 2000, A = 10 

     (a)  

(b)  

𝑅𝑎 = 4000, A = 10 

Fig.16.  The influence of ratio A on the flow and the heat transfer for different values of Ra, 

with Pr = 10, n = 0.6, E = 0.4, s = 0.01. Ra = 105, A = 10. (a) Isotherm (b) speed contours 
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Fig.17. The influence of ratio A on the number of mean Nusselt Num function of Ra, with 𝑛 =

0.6, 𝐸 = 0.4, 𝑠 = 0.01 

According to the figures (15) and (16), we note that the increase in the aspect ratio A, an 

influence on change of number of cells appears. The number of these cells (rolls) equal or aspect 

ratio of the cavity. From Figure 17, we can see that the mean Nusselt number Num increases 

with increasing aspect ratios for n = 0.6, E = 0.4, s = 0.01. 

 

6. CONCLUSION  

This work relates to a numerical study of natural convection in a cavity filled with a non-

Newtonian shear thinning fluid type, described by the Carreau model. The simulation of this 

problem was performed using an Ansys Fluent business calculation code. Numerical results 

have led us to clarify the influence of rheological parameters on flux and heat transfer, such as 

Rayleigh Ra number, length ratio A, Prandtl numbers, Pr, fluid index n and constant of time E, 

therefore the concentration of the fluid. The main findings deduced from this study. The 

increase in the number of Rayleigh Ra number has allowed us to observe that the latter has a 

direct influence on the structure of the flow as well as on the heat transfer. The Nusselt number 

is sensitive to the fluid index n and the dimensionless time constant E. The average Nusselt 

number increases with increasing Rayleigh number and decreasing the n power index. 

Increasing the adimensional time constant 𝐸 causes a strong convection with increasing 

Rayleigh Ra number. The average number of nusselt increases with decreases in fluid 

concentration. The increase of form ratio A, influence on the change of number of cells appear. 

The number of these cells equals or aspect ratio of the cavity. 
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7. ABRIVIATIONS   

Dij   rate of strain tensor [s–1] 

g  gravitational acceleration [ms–2] 

h  convection heat transfer coefficient   [Wm–2K–1] 

k  Thermal conductivity [W m–1K–1] 

K  consistency coefficient [Nsnm–2] 

L  Cavity length [m] 

n   power-law index [-] 

Nu  Nusselt number [-] 

Num   average Nusselt number [-] 

p   fluid pressure [Nm–2] 

p   modified pressure [Nm–2] 

P   dimensionless pressure[-] 

Pr   Prandtl number[-] 

q’’   heat flux [Wm–2] 

Ra    Rayleigh number[-] 

s   heat source distance from the left wall [m] 

S   dimensionless distance of heat source     from the left wall [-] 

T   temperature [K] 

u,v  velocity components in x, y directions  [ms–1] 

U,V   Dimensionless velocity components [-] 

w   Length of the heat source [m] 

W  Ensionless length of the heat source [-]  

x, y  Cartesian coordinates [m] 

 

Greek symbols 

α   thermal diffusivity [m2s–1] 

β   Thermal expansion coefficient [K–1] 

∆T  Reference temperature difference [K] 

τij  Stress tensor [Nm–2] 

θ   Dimensionless temperature[-] 

μ   Dynamic viscosity [Nsm–2] 

μa*  Dimensionless apparent viscosity [-] 

ρ   Density [kg m–3] 
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