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ABSTRACT  

In the present study, we explored a series of molecules with anticancer activity, so that 

qualitative and quantitative studies of the structure-activity relationship (SAR/QSAR) were 

performed on seventeen theophylline derivatives. These are inhibitors of ALDH1A1. The 

present study shows the importance of quantum chemical descriptors, constitutional descriptors 

and hydrophobicity to develop a better QSAR model, whose studied descriptors are LogP, MW, 

Pol, MR, S, V, HE, DM, EHOMO and ELUMO.  

A multiple linear regression (MLR) and artificial neural networks (ANN) procedure was used 

to design the relationships between molecular descriptors and the inhibition of ALDH1A1 by 

theophylline derivatives. The validation and good quality of the QSAR model are confirmed by 

a strong correlation between experimental and predicted activity. 
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1. INTRODUCTION 

Aldehyde dehydrogenases (ALDHs) metabolize reactive aldehydes and have important 

physiological and toxicological functions in areas such as CNS, metabolic disorders, and 

cancers. Increased ALDH (e.g., ALDH1A1) gene expression and catalytic activity are vital 

biomarkers in a number of malignancies and cancer stem cells, highlighting the need for the 

identification and development of small molecule ALDH inhibitors. So, a new series of 

theophylline-based analogs as potent ALDH1A1 inhibitors is described [1]. 

Theophylline, one of xanthines, is a naturally occurring alkaloid. It is habitually used as a 

respiratory drug in the treatment of asthma and obstructive pulmonary disease [2]. 

The QSAR method is based on defining mathematical dependencies between the variance in 

molecular structures (encoded by so-called molecular descriptors), and the variance in a given 

physico-chemical or biological property (so-called endpoint) in a set of compounds. In practice, 

this imply that if one has experimentally measured substituent constants, other physico-

chemical properties or calculated some molecular parameters for a group of similar chemicals 

and toxicological data are available only for a part of this group, one is able to interpolate the 

lacking data from the molecular descriptors and a suitable mathematical model [3]. 

Such predictive computational models could help to decrease the number and cost of synthesis 

and further requirements of characterization and testing as well as to design nanoparticles 

having the properties required for their future applications that are simultaneously safe for 

human health and the environment [4]. 

The QSAR analysis can be used for two types of purposes:[5]  

(1) Qualitative QSAR: To identify the structural/pharmacophoric features, which are 

responsible for the activity/toxicity profile of a con-generic series of molecules. 

(2) Quantitative QSAR: To estimate the activity/toxicity of a molecule before its synthesis 

and/or biological screening [6]. In this study, the focus is on deriving qualitative and quantitative 

QSAR models. 

The multi-parameter optimization (MPO) methods used to predire drug-likeness and identify 

bioactive compounds with a good balance ofthe many physicochemical and biological 

properties essentially to become a successful, efficacious and safe drug [7]. In the MPO 
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methods, we realised some of rules of thumb including Lipinski and Veber rules and calculated 

metrics [8-10]. 

Therefore, discovering drugs is a process, which realizes a sustained balanced search for 

molecules that have structural features that produce: 1) strong target binding using structure-

activity relationship (SAR) and 2) high performance at in vivo barriers, using structure property 

relationship (SPR) [11]. 

Multiple linear regression (MLR) as well as artificial neural network (ANN) analysis with 

backward elimination of variables was used to model the structure–activity relationship. A 

mathematical technique minimizes the difference between the actual and predicted values [12]. 

In this contribution, we interest at a series of 17 theophylline derivatives reported by yang and 

al [1]. Our research aims to describe the qualitative and quantitative structure-activity 

relationship study on theophylline derivatives and to develop QSAR model for these 

compounds with regard to their activity sited above. 

The IC50 values (concentration of a compound required to inhibit 50% of theophylline inhibitors 

activity) were adopted as reported by yang and al (Tables I). Then for the used as a dependent 

variable for the QSAR model were converted to the logarithmic scale [pIC50], (pIC50=−log10 

IC50). 

The molecular modeling calculations for all the theophylline derivatives to describe the QSAR 

the following software’s performs properties: HyperChem 8.08 [13], Gaussian 09 program 

package [14] and Molinspiration online database [15]. 
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Table I. Chemical structures and experimental activities of the theophylline derivatives. 

 

 

 

 

N° R1 R2 IC50(nM) 

 

1 

   

57 

 

2 

   

138 

 

3 

   

537 

 

4 

 

 

 

  

214 

 

5 

   

177 

 

6 

   

629 

 

7 

   

81 

 

 

8 

   

33 
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2. EXPERIMENTAL DETAILS 

2.1. Data Set 

 

9 

   

256 

 

10 

   

69 

 

11 

   

320 

 

12 

   

555 

 

13 

   

562 

 

14 

   

225 

 

15 

 

 

 

  

245 

 

16 

   

91 

 

17 

   

270 
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A data   set   of   theophylline derivatives as ALDH1A1 inhibitors is described. Seventeen 

molecules presented in (table I), were adopted as reported by Yang and al [1], the reported IC50 

values (nM) have been converted to the logarithmic scale [pIC50], for QSAR study. 

2.2. Descriptors Generation 

Seventeen investigated molecules were pre-optimized by means of the Molecular Mechanics 

Force Field (MM+) included in HyperChem version 8.0.8 package. So the resulting minimized 

structures were refined by HyperChem using the PM3 semi-empirical Hamiltonian. This 

approach allowed us to identify a number of physico-chemical descriptors: surface area grid 

(S), molar volume (V), hydration energy (HE), partition coefficient octanol/water (LogP), the 

molar refractivity (MR), molar polarizability (Pol) and molecular weight (MW). 

Then we use Gaussian 09 program package, at the density functional theory (DFT) level using 

Becke’s three-parameter LeeYang-Parr (B3LYP) [16], with the 6-311G (d, p) basis set to re-

optimized the group of theophylline derivatives and  identify other electronic descriptors: 

dipole moment (DM) and energy of frontier orbital’s (EHOMO and ELUMO). 

In addition, Veber’s and Lipinski rules suggest that the polar surface area (PSA), number of 

rotatable bonds (NRB), hydrogen bond donors (HBD) and hydrogen bond acceptors (HBA) are 

important to determine the oral bioavailability [8]. These descriptors were calculated by using 

Molinspiration. 

The calculation of the two parameters LogP and molar refractivity (MR) were performed using 

atomic parameters derived by Viswanadhan and co-workers [17]. 

Refractivity was calculated using atomic contributions to refractivity by Ghose and Crippen 

[18]. Solvent-accessible surface bounded molecular volume and van der Waals surface-

bounded molecular volume were calculated using the atomic radii of Gavezotti [19], and basing 

on a grid method derived by Bodor and al [20]. 

Based on exposed surface area [21], hydration energy (HE) was considered an essential factor 

in determining the stability of various molecular conformations [22, 23]. 

The additivity scheme makes it possible to estimate the polarizability with a precision of 3%, 

which has been proposed by Miller [24] where different increments are associated with different 
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atom types; the polarizability of a molecule characterizes the capability of its electronic system 

to be distorted by the external field [25]. 

The molecular weight (MW) of a system calculation is based on a general applicability method 

[13]. 

2.3. Regression Analysis 

Multiple linear regression (MLR) analysis of molecular descriptors and artificial neural 

networks (ANNs) are used. The reliability of such models is mainly evaluated by the correlation 

coefficient R2 [26]. The MLR and ANN models were generated using the software JMP 8.0.2 

[27]. 

 

3. RESULTS AND DISCUSSION   

3. 1. Computational screening for theophylline derivatives 

In this part, we have applied rules of thumb and metrics methods on seventeen derivatives of 

theophylline (Table I) with respect to their anticancer activity (pIC50) against ALDH1A1 [1]. 

The properties involved are: partition coefficient octanol/water (LogP), molecular weight 

(MW), hydrogen bond donors (HBD), hydrogen bond acceptors (HBA), number of rotatable 

bonds (NRB), polar surface area (PSA), Ligand efficiency (LE) and Lipophilic efficiency 

(LipE).The results using HyperChem 8.0.8 [13] and Molinspiration online data base [15] are 

shown in (Table II). 

At first, we have studied Lipinski and Veber rules to identify “drug-like” compounds. Rich 

absorption or permeability is more likely when: [7,8] 

 (1) H-bond donors, nitrogen or oxygen atoms with one or more hydrogen atoms (HBD) ≤5 

(expressed as the sum of OHs and NHs).   

 (2) The molecular weight (MW) ≤500 Da. 

 (3) Octanol water partition coefficient logP ≤5. 

 (4) H-bond acceptors, nitrogen or oxygen atoms (HBA) ≤10 (expressed as the sum of Ns and 

Os).  

 (5) Rotatable bonds ≤10. 

 (6) Polar surface area ≤140 Å2.  
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We used the Lipinski’s rules to identify compounds with problems of absorption and 

permeability if these compounds do not validate at least two of its rules [28]. 

In addition, the last two descriptors mentioned are identified by Veber and al [8] concerning the 

oral bioavailability of the drug. Lipinski and Veber rules are based on a strong physicochemical 

rationale. Hydrogen bonds increase solubility in water and must be broken allowing the 

compound to permeate into and through the lipid bilayer membrane [29]. Thus, an increasing 

number of hydrogen bonds reduce partitioning from the aqueous phase into the lipid bilayer 

membrane for permeation by passive diffusion [30]. (Table II) shows that all the studied 

derivatives are compatible with rules number (1) and (4). Therefore, it is possible to say that 

they are less polar and more absorbed. 

Table II. Pharmacological activities and properties involved in MPO method for theophylline 

derivatives 

  

Lipinski rules     

 

Veber rules 

Ligand efficiency and 

Lipophilicity efficiency 

 

N° 

 

Log P 

 

MW 

(uma) 

 

HBA 

 

HBD 

Lipinski 

score of 

4 

 

NRB 

 

PSA 

Å2 

 

pIC50 

 

LE   

 

LipE 

1 0.19 433.47 9 1 4 5 100.17 7.244 0.3169 7.054 

2 1.55 421.50 10 0 4 7 100.61 6.860 0.3201 5.310 

3 1.17 389.46 9 0 4 6 91.38 6.270 0.3135 5.100 

4 0.75 437.50 9 0 4 5 91.38 6.669 0.2917 5.919 

5 0.53 471.94 9 0 4 5 91.38 6.752 0.2860 6.222 

6 1.00 451.53 9 0 4 6 91.38 6.201 0.2630 5.201 

7* 1.67 431.53 9 0 4 7 91.38 7.015 0.3168 5.345 

8* -0.03 450.54 9 0 4 5 85.38 7.481 0.3173 7.511 

9 0.32 438.53 9 0 4 5 85.38 6.591 0.2883 6.271 

10 -0.41 470.96 9 0 4 5 85.38 7.161 0.3038 7.571 

11* 0.39 430.55 9 0 4 6 85.38 6.494 0.2932 6.104 

12 0.77 415.49 9 0 4 6 91.38 6.255 0.2905 5.485 

13 0.87 454.53 10 1 4 6 103.41 6.250 0.2651 5.380 

14 0.84 439.51 9 0 4 5 91.38 6.647 0.2908 5.807 
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Molecular weight (MW) is related to the size of the molecule, with its increasing, a larger cavity 

should be formed in water to solubilize the compound [31]. There is an inverse relationship 

between (MW) and the concentration of the compound on the surface of the intestinal 

epithelium and its absorption. If the size increases will create barriers such as the prevention of 

passive diffusion through the tight aliphatic side chains of the bilayer membrane. We find that 

the molecular weight of all the compounds of the theophylline derivatives series is less than 

500 Da (rule number 2), so we can consider them soluble and easily cross cell membranes. 

The oral solubility of the drug is determined by LogP, this parameter is give by partitioning the 

molecule between water and the hydrophobic solvent n-octanol, and determining the P value as 

the ratio of the concentration of the compound in n-octanol and that in water. However the 

increasing LogP decreases aqueous solubility, which minimizes absorption. If the values of 

LogP are negative indicates that the compound is too hydrophilic. So it has good aqueous-

solubility, better gastric tolerance and efficient elimination through the kidneys. But if the 

values of LogP are positive indicates that the compound is too lipophilic. So it has a good 

permeability through biological membrane, a better binding to plasma proteins, elimination by 

metabolism but a poor solubility and gastric tolerance [32]. All studied molecules have almost 

optimal (LogP) values; for good oral bioavailability, the LogP must be greater than zero and 

less than 3 (0 <LogP<3). If LogP is too high (>3), the drug has low solubility. Where as for too 

low LogP (<0), the drug has difficulty penetrating the lipid membranes [33,34]. 

In this study, it is noted that the compound 10 has the lowest value of LogP, so is expected to 

have the highest hydrophilicity, this implies that this compound will have good aqueous-

solubility, better gastric tolerance and efficient elimination through the kidneys. This during 

compound 7 which has the highest LogP value will be the most lipophilic; this implies that this 

15 0.22 425.49 9 0 4 4 91.38 6.610 0.2985 6.390 

16 0.82 487.56 9 0 4 5 91.38 7.040 0.2737 6.220 

17 1.05 440.50 10 0 4 5 94.62 6.244 0.2731 5.194 

* corresponds to test molecules. 
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compound will have good permeability across cell membrane. Note that all compounds of the 

chosen series have LogP values less than 5. 

It is well known that high oral bioavailability is a significant factor for the progress of bioactive 

molecules as therapeutic agents. Reduced molecular flexibility (measured by the number of 

rotatable bonds) and low polar surface areas are found to be important predictors of good oral 

bioavailability [35,36]. 

The number of hydrogen bond acceptors (O and N atoms) and the number of hydrogen bond 

donors (NH and OH) have shown to be critical in a drug development setting as they influence 

absorption and permeation [37]. These are found to be within Lipinski’s limit i.e., less than 10 

and 5 respectively, in the tested compounds. Molecules violating more than one of these 

parameters may have problems with bioavailability and high probability of failure to display 

drug likeness [38,39]. 

Whereas, rotatable bonds and polar surface area tend to increase with molecular weight may in 

part explain the success of these two parameters in predicting the oral bioavailability and the 

transport across membranes. 

The number of rotatable bonds (NRB) was defined as any single bond, not in a ring, bound to 

a no terminal heavy (i.e., non-hydrogen) atom. Excluded from the count were amide C–N bonds 

because of their high rotational energy barrier [8]. The low number of rotatable bonds (reduced 

flexibility) in the studied series indicates that these Ligands upon binding to a protein change 

their conformation only slightly [40]. 

The number of rotatable bonds (NRB) is a simple topological parameter that measures 

molecular flexibility and is considered to be a good descriptor of oral bioavailability of drugs. 

The low number of rotatable bonds (reduced flexibility) in the studied series indicates that these 

ligands upon binding to a protein change their conformation only slightly [41]. Rotatable bonds 

are under 10 so all the screened compounds were flexible. 

Polar surface area (PSA) is a very useful parameter for prediction of drug transport properties.  

PSA is  defined  as  a  sum  of  surfaces  of  polar  atoms  (usually  oxygens, nitrogens 

and attached hydrogens) in a molecule [42]. This parameter has been shown to  correlate  very  

well  with  the  human  intestinal  absorption,  Caco-2  monolayer’s  permeability, and 
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blood-brain barrier penetration [43]. Molecules with PSA values of 140 Å2 or more are expected 

to exhibit poor intestinal absorption [44]. 

Indeed, all the 17 molecules with PSA values between 85.38 and 103.41 Å2, belong to the 

compounds with reduced absorption (Table II).  

We have studied Lipophilic Efficiency LipE, which is considered important for normalizing 

potency over lipophilicity. 

LipE is used to compare compounds of different potencies (pIC50) and lipophilicities (LogP).  

For a given compound lipophilic efficiency is defined as the pIC50 of interest minus the LogP 

of the compound [45,46]. Although in vitro potency and lipophilicity of compounds are 

important parameters to evaluate, the concept of Lipophilic Efficiency (LipE) aids in 

establishing a more balanced relationship between the potency observed in vitro and 

lipophilicity properties of evaluated chemical compounds [47]. Ryckmans et al [48] reported 

that high quality lead compounds possess higher LipE values. 

Lipophilicity efficiency (LipE) is defined as follows: 

     LipE= pIC50-LogP                     (1) 

The lipophilicity is the major factor for the promiscuity of compounds, LipE optimized 

compounds should be more selective. It is suggested to target a LipE in a range of 5–7 or even 

higher [32]. In the series studied, for the 17 compounds, the LipE value is in the suggested range 

of 5 to 7 or even a little above, indicating that these compounds have been successfully 

optimized. 

Ligand Efficiency (LE) is a particularly important parameter in fragment drug design as it gives 

priorities to small molecules with relatively lower potency rather than larger, higher potency 

molecules [49,50]. 

Ligand efficiency is defined by the following equation: 

        LE = 1.4pIC50/NH                        (2) 

Where: NH is the number of heavy atoms. So if the number of heavy atoms increases, the value 

of LE decreases [51]. 

From the results obtained in (Table II), all the derivatives containing a pIC50 between 6.201 and 

7.481 and we can penalize the compounds 6 and 13 with the lowest values of LE respectively 
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0.2630 and 0.2651.  

3.2. Structure Activity Relationship for Theophylline Derivatives 

In the first step of our studies, we have studied seven physicochemical properties of 

theophylline derivatives shown in (table III) taken from the literature with their IC50 against 

ALDH1A1 [1]. The properties involved are: surface area grid (S), molar volume (V), hydration 

energy (HE), partition coefficient octanol/water (LogP), the molar refractivity (MR), 

polarizability (Pol) and molecular weight (MW) using HyperChem 8.0.8; Also, we have studied 

three quantum properties of theophylline derivatives (Table III). The properties involved are: 

dipole moment (DM), Energy of frontier orbital’s EHOMO and ELUMO using Guaussian 09. 

The attractive part of the Van der Waals interaction is a good measure of the polarizability [52]. 

Molecular polarizability of a molecule characterizes the capability of its electronic system, and 

it plays an important role in modeling many molecular properties and biological activities [37], 

also, the molar refractivity is important criterion to measure the steric factor and designated as 

a simple measure of the volume occupied either by individual atom or cluster (group) of atoms 

[53]. Molar refractivity and polarizability relatively increase with the size and the molecular 

weight of the studied theophylline derivatives (Table III). This result is in agreement with the 

formula of Lorentz-Lorenz [42] which gives a relationship between polarizability, molar 

refractivity and the molecular size [54]. 

For example, the compound 16 has great values of polarizability (51.76Å³), molar refractivity 

(139.77Å³) and volume (1335.13Å³). In contrast, the compound 3 is the small molecule in this 

studied series, which has a small value of polarizability (39.58Å³), of molar refractivity 

(101.52Å³) and volume (1153.65Å³). The decreasing order of polarizability for these studied 

for examples 16, 10, 8, 5 and 3 (Table III). 

 

Table III. Values of some descriptors used in the regression analysis. 

 

N° Log P 
Pol 

Å³ 

MW 

(uma) 

V 

Å³ 

MR 

Å³ 

S 

Å² 

HE 

kcal/mol 

DM 

(D)  

EHOMO 

(a.u) 

ELUMO 

(a.u) 

1 0.19 45.7700 433.47 1217.6100 126.0400 708.0800 -5.1700 2.5236 -0.2434 -0.0724 

2 1.55 42.8300 421.50 1244.2800 110.2200 724.2600 0.2900 2.9090 -0.2148 -0.0332 

3 1.17 39.5800 389.46 1153.6500 101.5200 680.3400 0.0200 4.4100 -0.2464 -0.0674 
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4 0.75 45.5700 437.50 1225.9600 121.5800 701.5700 -2.4600 4.5937 -0.2448 -0.0668 

5 0.53 47.5000 471.94 1262.9400 126.2900 721.7400 -2.2100 5.5317 -0.2492 -0.0677 

6 1.00 47.4100 451.53 1249.3600 126.3300 693.7700 -2.0700 0.6801 -0.2323 -0.0742 

7* 1.67 45.0900 431.53 1284.0900 115.8500 742.6100 0.6000 4.7468 -0.2429 -0.0637 

8* -0.03 48.1200 450.54 1275.0700 128.2600 721.4800 -0.4200 1.8830 -0.1602 -0.0959 

9 0.32 47.0600 438.53 1246.3200 125.7800 697.8200 -0.9700 6.1760 -0.1769 -0.0746 

10 -0.41 48.2200 470.96 1248.7800 128.7000 698.5700 -1.3100 2.8554 -0.2150 -0.0708 

11* 0.39 45.8000 430.55 1221.8700 118.5200 678.6700 0.7700 4.8421 -0.2412 -0.0677 

12 0.77 42.4800 415.49 1181.1900 109.4400 670.0500 -0.3100 1.8993 -0.2433 -0.0671 

13 0.87 47.7000 454.53 1249.8200 126.7800 703.4000 -1.6800 4.2402 -0.2351 -0.0692 

14 0.84 46.3500 439.51 1252.5800 123.0900 702.0100 -1.0200 5.6455 -0.2423 -0.0681 

15 0.22 44.5100 425.49 1199.5400 118.4600 675.5200 -1.3100 5.6278 -0.2423 -0.0679 

16 0.82 51.7600 487.56 1335.1300 139.7700 755.3000 -2.8300 1.6417 -0.2331 -0.0674 

17 1.05 45.8600 440.50 1234.8300 122.6700 700.2900 -1.3000 3.0396 -0.2291 -0.0741 

* corresponds to test molecules. 

 
        

  

Surface and distribution volume of these molecules are definitely higher than those of more 

polar molecules like the lipopeptides or beta-lactams [55]. We found that surfaces vary from 

(670.05 to 755.30 Å²). The most important hydration energy in the absolute value, is that of 

compound 1 (5.17 kcal/mol) and the weakest is that of compound 3 (0.02 kcal/mol) (Table III). 

As seen in (Tables III) the compound 3 have the smallest value of hydration energy (0.02 

kcal/mol) whereas compound 1 correspond to very high value of absolute hydration energy 

given by (5.17 Kcal/mol). The results obtained by calculating LogP of theophylline derivatives 

show that the compounds 10 present small coefficient of lipophilicity (-0.41). 

Although the inhibition effect produced by all molecules seems to be the same pharmacological 

point of view, an additional element of answer provided by the theoretical study is that each 

theophylline derivative has negative, different and lower energy. Compound 16 (-6989.1755 

a.u) is more stable in comparison with compound 3 (-5563.1607 a.u). This may explain the 

inhibition behaviour. Compound 9 indicates the value of the maximum dipole moment (6.1760 

D). It comes from a resonance effect, involving a donor effect of the nucleus towards the electro-

attractive. 
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For more precision, in this work we have studied other very important quantum chemical 

descriptors such as the energies of the HOMO (the highest molecular orbital occupied) and the 

LUMO (the lowest molecular orbital occupied). 

The EHOMO is directly related to the ionization potential and characterizes the susceptibility of 

the molecule toward attack by electrophiles, where the ELUMO is directly related to the electron 

affinity and characterizes the susceptibility of the molecule toward attack by nucleophiles. Both 

the EHOMO and the ELUMO are important in radical reactions [56-57]. 

3.3. Quantitative Structure-Activity Relationships Studies (QSAR) of theophylline 

derivatives 

In the second step, we conducted this study in order to develop the best QSAR model and 

explain the correlations between physicochemical parameters and biological activities pIC50 

values of theophylline derivatives.Various statistical parameters allowed us to select the best 

QSAR model, among which we can mention: squared correlation coefficient (R²> 0.6) which 

is relative measure of quality of fit, Fischer’s value (F), F is the Fisher ratio, reflects the ratio of 

the variance explained by the model and the variance due to the error in the regression. High 

values of the F-test indicate that the model is statistically significant [58]. 

The selection of a set of appropriate descriptors that encode various structural features of the 

molecules among many of them for the development of a QSAR model requires a method 

capable of distinguishing the parameters. 

Pearson’s correlation matrix has been performed on all descriptors by using the software JMP 

8.0.2. [27] The analysis of the matrix revealed physico-chemical descriptors and quantum 

descriptors for the development of MLR model. MLR is one of the earliest and still one of the 

most commonly used methods for constructing QSAR mathematical models [59-61] because of 

its simplicity, transparency, reproducibility, and easy interpretability [62]. 

The values of descriptors used in MLR analysis are presented in (TableIII). The data set was 

randomly divided into two sets: a training set (fourteen compounds) and a testing set (three 

compounds: 7, 8 and 11) 
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After multiple regression analysis, we have revealed four independents descriptors for the 

development of the model. The resulting MLR QSAR model is represented by the following 

equation: 

pIC50 = - 0.455 + 0.017S+10.354 ELUMO - 0.762 LogP- 0.008 MW     (3) 

 

R2 = 0.93           F = 30.36          RMSE=0.11 

Where, R² is the coefficient of determination, F is the Fischer statistics and RMSE is the root-

mean-square error 

Squared correlation coefficient R² is 0.93, explains 93% variance in biological activity. The R² 

value is more 0.6, which suggest that a good percentage of the total variance in biological 

activity is accounted by the model.  

In the Eq(3). The negative coefficient of logP explains that any increase in the lipophilicity of 

the molecules causes a decrease in biological activity. From this parameter it may be concluded 

that hydrophilic molecules are more important for anti-cancerous activity against ALDH1A1. 

For validation of the model, we plot in Fig.1 the experimental activities against the predicted 

values as determined by equation (3). We can observe that the predicted pIC50 values are in an 

acceptable agreement and regular distribution with experimental ones with R2=0.93. 

 

 

Fig.1. Correlation of experimental and predicted pIC50 as derived using MLR 
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3.4. Artificial neural networks 

Artificial neural networks (ANNs) models are non-linear models useful to predict the biological 

activity of large data sets of molecules [63]. For instance, ANN was successfully used for the 

prediction and synthesis of new organic chemical compounds [64]. 

For our work, ANN contained four inputs corresponding to the four descriptors selected from 

the correlation matrix, two hidden neurons, and one output neuron which is pIC50 (Fig.2). The 

number of artificial neurons in the hidden layer was adjusted experimentally [65], two neurons 

in the hidden layer permitted to attain the best correlation between experimental and predicted 

data. 

A good correlation of experimental and predicted pIC50 by ANN is found. This is shown in 

(Fig.3), and illustrated by R2= 0.97. 

 

 

 

 

 

 

 

 

Fig.2. Structure of ANN. 

 

Fig.3. Correlation of experimental and predicted pIC50 as calculated by ANN 
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The model was used to predict the activity values for both training and testing sets. Table IV 

reports the experimental and predicted pIC50 activities, as well as their differences. The plot 

of the predicted versus experimental activity (Fig.1 and 3) shows a linear relationship, 

indicating a satisfactory internal predictability of the generated model independently of the 

method used (MLR or ANN). 

Moreover, the plot of the calculated residuals against the experimental activity values shows 

that the residuals are evenly distributed around the zero line, thus confirming the absence of 

systematic errors in the model. 

 

Table IV. Experimental and predicted activities pIC50 of the molecule studied using MLR and 

ANN. 

* corresponds to test molecules. 

 

 

N° PIC 50 exp Pic50Pred. (MLR) Pic50Pred. (ANN) 

1 7.244 7.119 7.211 

2 6.860 6.863 6.870 

3 6.270 6.317 6.340 

4 6.669 6.605 6.627 

5 6.752 6.821 6.829 

6 6.201 6.088 6.162 

7* 7.015 6.686 6.822 

8* 7.481 7.130 6.865 

9 6.591 6.780 6.644 

10 7.161 7.119 7.150 

11* 6.494 6.538 6.479 

12 6.255 6.233 6.260 

13 6.250 6.379 6.353 

14 6.647 6.514 6.500 

15 6.610 6.653 6.606 

16 7.040 7.045 7.027 

17 6.244 6.254 6.214 
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4. CONCLUSION  

In this paper, Computational screening and SAR/QSAR analysis was carry out to find the 

qualitative and quantitative effects of molecular structure of the compounds on their anti-

cancerous activity. Our study shows that this series of molecules obey the Lipinski's and Veber's 

rules. Various physicochemical parameters, particularly partition coefficient LogP, MW, S and 

ELUMO can be used successfully for modelling anti-cancerous activity of theophylline 

derivatives. Two different methodologies: MLR and ANN were used to identify QSAR models. 

The comparison shows that ANN has better predictive abilities than MLR. This superiority 

suggests a nonlinear relation between the selected molecular descriptors and the inhibition 

activity. The validation and predictive ability of the models were examined by data separation 

into independent training and testing sets, leave one-out cross-validation and Y-randomization; 

we notice that all test molecules (7, 8 and 11) are in a good agreement with the two models. 

The results of which indicate the accuracy and robustness of the proposed QSAR model. 

As we considered the predictive capability of the QSAR model developed as well as the low 

residual activity and cross-tabulation obtained. It indicates the validation of this model and the 

success of its application to predict the anticancer activity of this series of molecules. 
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