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ABSTRACT  

This paper presents a higher order, block implicit, four step method with trigonometric 

coefficients constructed via multistep collocation technique. The stability properties of the 

method are discussed. Numerical results obtained disclose that the new method is suitable for 

the integration of second order nonlinear periodic problems.  
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1. INTRODUCTION 

This paper proposed and applied a Block Implicit Trigonometrically-Fitted Method (BITM) of 

higher order to solve second order Initial Value Problems (IVPs) of the form  

                             
𝑦′′(𝑥) = 𝜓(𝑥, 𝑦(𝑥))  , 𝑥 ∈ [𝑥0 , 𝑥𝑁]

𝑦(𝑥0) = 𝑦0,   𝑦
′(𝑥0) = 𝑦0

′                    
}                                           (1) 

for which the solutions are periodic in nature, where 𝜓: [𝑥0 , 𝑥𝑁 ] × ℝ𝑛 ⟶ ℝ𝑛 is sufficiently 
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differentiable, satisfies the conditions of existence and uniqueness of solution (See [1] and [2]). 

Equation (1) is frequently encountered in pure and applied mathematics and in several area of 

applied science and engineering, such as mechanics, physics, molecular biology and control 

theory. In applications, most equations in the form of equation (1) do not possess exact solutions 

or the exact solutions are not easily obtained. Thus, numerical methods become necessary for 

solving equation (1). 

A number of numerical methods built on traditional Runge-Kutta (RK) methods, Linear 

Multistep Methods (LMM), Boundary Value Methods (BVM), Exponential Fitted (EF) 

methods and Trigonometrically-Fitted methods have been discussed and investigated in 

literatures for solving equation (1) (see [3]-[16]) and are referenced therein. It turns out that 

some of these methods are of low order, some have many numbers of function evaluation 

particularly those executed in predictor-corrector mode, the hybrid methods are compounded 

with the need to develop predictors for the evaluation of the correctors at the off step points. 

Numerical methods for solving equation (1) which involves higher-order derivatives have been 

discussed in [11] and [17]. Ehigie [18] emphasized that the use of higher derivatives in 

formulations of numerical schemes can reduce error constant more rapidly than increasing the 

number of steps in a multistep method. [14] averred that methods with higher derivatives are 

more often favourable, since meeting stability condition for multistep methods is often 

demanding. 

It is against this background that, a block trigonometric method with fewer function evaluation 

that is self-starting is developed for solving equation (1), which is first transformed to the 

system of first order IVPs of the form 

𝑦′ = 𝑓(𝑥, 𝑦),   𝑦(𝑥0) = 𝑦0                (2) 

before its implementation. The BITM is applied on the partition 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁 over 

non-overlapping subintervals without the need for predictors and is formulated by combining 

the method 

𝑦𝑛+4 = 𝛼0(sin 𝑢 , cos 𝑢)𝑦𝑛 + 𝛼1(sin𝑢 , cos 𝑢)𝑦𝑛+1 + 𝛼2(sin 𝑢 , cos 𝑢)𝑦𝑛+2 +

𝛼3(sin 𝑢 , cos 𝑢)𝑦𝑛+3 + ℎ(𝛽0(sin 𝑢 , cos 𝑢)𝑓𝑛 + 𝛽1(sin 𝑢 , cos 𝑢)𝑓𝑛+1 + 𝛽2(sin 𝑢 , cos 𝑢)𝑓𝑛+2 +

𝛽3(sin𝑢 , cos𝑢)𝑓𝑛+3 + 𝛽4(sin 𝑢 , cos 𝑢)𝑓𝑛+4) + ℎ2𝛾4(sin 𝑢 , cos 𝑢)𝑔𝑛+4         (3) 
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with complementary methods given by    

 ℎ2𝑔𝑛+1 = 𝛼0,1̅̅ ̅̅ ̅(sin𝑢 , cos 𝑢)𝑦𝑛 + 𝛼1,1̅̅ ̅̅ ̅(sin 𝑢 , cos 𝑢)𝑦𝑛+1 + 𝛼2,1̅̅ ̅̅ ̅(sin 𝑢 , cos 𝑢)𝑦𝑛+2 +

                   𝛼3,1̅̅ ̅̅ ̅(sin𝑢 , cos𝑢)𝑦𝑛+3 + ℎ(𝛽0,1
̅̅ ̅̅ ̅(sin 𝑢 , cos 𝑢)𝑓𝑛 + 𝛽1,1

̅̅ ̅̅ ̅(sin𝑢 , cos𝑢)𝑓𝑛+1 +

                   𝛽2,1
̅̅ ̅̅ ̅(sin𝑢 , cos𝑢)𝑓𝑛+2 +  𝛽3,1

̅̅ ̅̅ ̅(sin 𝑢 , cos 𝑢)𝑓𝑛+3 + 𝛽4,1
̅̅ ̅̅ ̅(sin𝑢 , cos 𝑢)𝑓𝑛+3) +

                    ℎ2𝛾4,1̅̅ ̅̅̅(sin 𝑢 , cos 𝑢)𝑔𝑛+4                        (4) 

ℎ2𝑔𝑛+2 = 𝛼0,2̅̅ ̅̅ ̅(sin𝑢 , cos𝑢)𝑦𝑛 + 𝛼1,2̅̅ ̅̅ ̅(sin 𝑢 , cos 𝑢)𝑦𝑛+1 + 𝛼2,2̅̅ ̅̅ ̅(sin 𝑢 , cos 𝑢)𝑦𝑛+2 +

                    𝛼3,2̅̅ ̅̅ ̅(sin 𝑢 , cos 𝑢)𝑦𝑛+2 + ℎ(𝛽0,2
̅̅ ̅̅ ̅(sin𝑢 , cos 𝑢)𝑓𝑛 + 𝛽1,2

̅̅ ̅̅ ̅(sin𝑢 , cos𝑢)𝑓𝑛+1 +

                    𝛽2,2
̅̅ ̅̅ ̅(sin𝑢 , cos𝑢)𝑓𝑛+2 +  𝛽3,2

̅̅ ̅̅ ̅(sin𝑢 , cos 𝑢)𝑓𝑛+3 + 𝛽4,2
̅̅ ̅̅ ̅(sin𝑢 , cos 𝑢)𝑓𝑛+3) +

                   ℎ2𝛾4,2̅̅ ̅̅̅(sin 𝑢 , cos 𝑢)𝑔𝑛+4                                   (5) 

ℎ2𝑔𝑛+3 = 𝛼0,3̅̅ ̅̅ ̅(sin𝑢 , cos𝑢)𝑦𝑛 + 𝛼1,3̅̅ ̅̅ ̅(sin 𝑢 , cos 𝑢)𝑦𝑛+1 + 𝛼2,3̅̅ ̅̅ ̅(sin 𝑢 , cos 𝑢)𝑦𝑛+2 +

                    𝛼3,3̅̅ ̅̅ ̅(sin 𝑢 , cos 𝑢)𝑦𝑛+2 + ℎ(𝛽0,3
̅̅ ̅̅ ̅(sin𝑢 , cos 𝑢)𝑓𝑛 + 𝛽1,3

̅̅ ̅̅ ̅(sin𝑢 , cos𝑢)𝑓𝑛+1 +

                    𝛽2,3
̅̅ ̅̅ ̅(sin𝑢 , cos𝑢)𝑓𝑛+2 + 𝛽3,3

̅̅ ̅̅ ̅(sin 𝑢 , cos 𝑢)𝑓𝑛+3 + 𝛽4,3
̅̅ ̅̅ ̅(sin 𝑢 , cos 𝑢)𝑓𝑛+3) +

                    ℎ2𝛾4,3̅̅ ̅̅̅(sin 𝑢 , cos 𝑢)𝑔𝑛+4                        (6)        

   where  𝛼𝑖, 𝛼𝑗,𝑖̅̅ ̅̅ , 𝛽𝑟 , 𝛽𝑟,𝑖
̅̅ ̅̅ , 𝛾𝑘, 𝛾𝑘,𝑖̅̅ ̅̅ ,      𝑗 = {0,1,2,3}, 𝑖 = {1,2,3}, 𝑟 = {0,1,2,3,4}  and  𝑘 = 4  are 

coefficients to be ascertained distinctively via multistep collocation method. These coefficients 

are selected so that BITM integrates equation (1) exactly, where the solutions are member of 

any linear combination of the function {1, 𝑥, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7} ∪ {sin(𝜔𝑥) , cos(𝜔𝑥)}, and 

𝜔 = 𝑢ℎ. 

 

2. DEVELOPMENT OF BITM   

Our starting point in this section is to construct the continuous approximation for BITM via 

multistep collocation technique which has the form 

𝜏(𝑥) = ∑𝛼𝑗(𝑥, 𝑢)

3

𝑗=0

𝑦𝑛+𝑗 + ℎ∑𝛽𝑗(𝑥, 𝑢)

4

𝑗=0

𝑓𝑛+𝑗 + ℎ2𝛾4(𝑥, 𝑢)𝑔𝑛+4                   (7) 

2.1 Continuous Approximation for the BITM 

We assume that the exact solution 𝑦(𝑥) is locally approximated by seeking the solution of the 

form 

𝜏(𝑥) = ∑𝑎𝑗

7

𝑗=0

𝑥𝑗 + 𝑎8 sin(𝜔𝑥) + 𝑎9 cos(𝜔𝑥)                      
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We specifically demand that the following 10 system of equations be satisfied 

                                        𝜏(𝑥𝑛+𝑗) = 𝑦𝑛+𝑗   ,   𝑗 = 0,1,2,3                                                                   (8), 

                                  𝜏′(𝑥)|𝑥=𝑥𝑛+𝑗
= 𝑓𝑛+𝑗   ,   𝑗 = 0,1,2,3,4                                                             (9), 

                                  𝜏′′(𝑥)|𝑥=𝑥𝑛+4
= 𝑔𝑛+4                                                                                        (10). 

We now state the theorem that aids the construction of the continuous method as follows: 

Theorem 1 

Let 𝜏(𝑥)  satisfies the system of 10 equations obtained in equations (8)-(10), then the 

continuous approximation used to obtain equation (3) and equations (4)-(6) are given by 

𝜏(𝑥) = Θ𝑇(Ω−1)𝑇𝜎(𝑥) 

𝜏′′(𝑥) =
𝑑2

𝑑𝑥2
(Θ𝑇(Ω−1)𝑇𝜎(𝑥)) 

where Ω is a 10 × 10 matrix given by 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

0 1 2 9

0 1 1 1 2 1 9 1

0 2 1 2 2 2 9 2

0 3 1 3 2 3 9 3

' ' ' '

0 1 2 9

' ' ' '

0 1 1 1 2 1 9 1

' ' ' '

0 2 1 2 2 2 9 2

' ' '

0 3 1 3 2

( ) ( ) ( ) ( )

n n n n

n n n n

n n n n

n n n n

n n n n

n n n n

n n n n

n n n

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x

   

   

   

   

   

   

   

  

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ +

=

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

'

3 9 3

' ' ' '

0 4 1 4 2 4 9 4

'' '' '' ''

0 4 1 4 2 4 9 4

n

n n n n

n n n n

x

x x x x

x x x x



   

   

+ +

+ + + +

+ + + +

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 , 

Θ and 𝜎(𝑥) are vectors defined by  

Θ = (𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+2 , 𝑦𝑛+3, 𝑓𝑛, 𝑓𝑛+1, 𝑓𝑛+2, 𝑓𝑛+3, 𝑓𝑛+4, 𝑔𝑛+4)
𝑇and  

𝜎(𝑥) = (𝜎0(𝑥), 𝜎1(𝑥), 𝜎2(𝑥), 𝜎3(𝑥), 𝜎4(𝑥), 𝜎5(𝑥), 𝜎6(𝑥), 𝜎7(𝑥), 𝜎8(𝑥), 𝜎9(𝑥)  )𝑇 respectively, 

and T is the transpose.  

Proof 

To solve the system of equations (8)-(10), we required that equation (7) be defined by the 

assumed basis function as follows 
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                                                  𝛼𝑗(𝑥, 𝑢) = ∑𝛼𝑖,𝑗(𝑥, 𝑢)

9

𝑖=0

𝜎𝑖(𝑥)      𝑗 = 0,1,2,3                              (13) 

                                        ℎ𝛽𝑗(𝑥, 𝑢) = ∑ℎ𝛽𝑖,𝑗(𝑥, 𝑢)

9

𝑖=0

𝜎𝑖(𝑥)      𝑗 = 0,1,2,3,4                                (14) 

                                       ℎ2𝛾4(𝑥, 𝑢) = ∑ℎ2𝛾𝑖,4(𝑥, 𝑢)

9

𝑖=0

𝜎𝑖(𝑥)                                                           (15) 

Substituting equations (13)-(15) into equation (7) yield 

   𝜏(𝑥) = ∑{∑𝛼𝑖,𝑗(𝑥, 𝑢)

3

𝑗=0

𝑦𝑛+𝑗 + ℎ ∑𝛽𝑖,𝑗(𝑥, 𝑢)

4

𝑗=0

𝑓𝑛+𝑗 + ℎ2𝛾𝑖,4(𝑥, 𝑢)𝑔𝑛+4 }

9

𝑖=0

𝜎𝑖(𝑥)                        (16) 

Letting 

Δ𝑖 = ∑𝛼𝑖,𝑗(𝑥, 𝑢)

3

𝑗=0

𝑦𝑛+𝑗 + ℎ ∑𝛽𝑖,𝑗(𝑥, 𝑢)

4

𝑗=0

𝑓𝑛+𝑗 + ℎ2𝛾𝑖,4(𝑥, 𝑢)𝑔𝑛+4  

equation (16) becomes 

                                                𝜏(𝑥) =  ∑Δ𝑖

9

𝑖=0

𝜎𝑖(𝑥)                                                                           (17) 

Imposing the conditions in equations (8)-(10) on equation (17), we obtain a system of 10 

equations which is expressed as ΩΔ = Θ where Δ = (Δ0, Δ1, Δ2 ⋯ ,Δ9)
𝑇 is a vector form of 

10 undetermined coefficients that are ascertained by applying matrix inversion method since Ω 

is a nonsingular matrix to obtain 

                                                                    Δ = Ω−1Θ                                                                         (18) 

Re-writing equation (17) in vector form gives 

                                                                   𝜏(𝑥) = ∆𝑇𝜎(𝑥)                                                                  (19) 

It follows from equations (18) and (19) that 

𝜏(𝑥) = Θ𝑇(Ω−1)𝑇𝜎(𝑥)                              (20) 

Differentiating equation (20) with respect to 𝑥 twice gives 

𝜏′′(𝑥) =
𝑑2

𝑑𝑥2
(Θ𝑇(Ω−1)𝑇𝜎(𝑥))         (21) 

We emphasis that equations (20) and (21) are the continuous methods given by 

𝜏(𝑥) = ∑𝛼𝑗(𝑥, 𝑢)

3

𝑗=0

𝑦𝑛+𝑗 + ℎ∑𝛽𝑗(𝑥, 𝑢)

4

𝑗=0

𝑓𝑛+𝑗 + ℎ2𝛾4(𝑥, 𝑢)𝑔𝑛+4                (22) 



R. I. Abdulganiy et al.        J Fundam Appl Sci. 2021, 13(2), 1056-1078        1061 
 

 

𝜏′′(𝑥) =
1

ℎ2
∑𝛼𝑗,𝑖̅̅ ̅̅ (𝑥, 𝑢)

3

𝑗=0

𝑦𝑛+𝑗 +
1

ℎ
∑𝛽𝑗,𝑖

̅̅ ̅̅ (𝑥, 𝑢)

4

𝑗=0

𝑓𝑛+𝑗 + 𝛾4,𝑖̅̅ ̅̅ (𝑥, 𝑢)𝑔𝑛+4        (23) 

from which the main method given by equation (3) and complementary methods given by 

equations (4)-(6) are obtained respectively.  

2.2 Specification of BITM 

The main method in equation (3) is obtained by evaluating equation (22) at = 𝑥𝑛+4 , while the 

3 complementary methods in equations (4)-(6) are obtained by evaluating equation (23) at 𝑥 =

𝑥𝑛+𝑖 , 𝑖 = 1,2,3 which are respectively written in compact form as 

𝑦𝑛+4 = ∑𝛼𝑗(sin 𝑢 , cos 𝑢)

3

𝑗=0

𝑦𝑛+𝑗 + ℎ ∑𝛽𝑗(sin 𝑢 , cos 𝑢)

4

𝑗=0

𝑓𝑛+𝑗 + ℎ2𝛾4(sin 𝑢 , cos 𝑢)𝑔𝑛+4      (24) 

ℎ2𝑔𝑛+𝑖 = ∑𝛼𝑗,𝑖̅̅ ̅̅ (sin 𝑢 , cos 𝑢)

3

𝑗=0

𝑦𝑛+𝑗 + ℎ ∑𝛽𝑗,𝑖
̅̅ ̅̅ (sin𝑢 , cos𝑢)

4

𝑗=0

𝑓𝑛+𝑗 + ℎ2𝛾4,𝑖̅̅ ̅̅ (sin𝑢 , cos 𝑢)𝑔𝑛+4     (25) 

The coefficients of equation (24) are given in equation (26) below 
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(26) 

To avoid substantial losses of accuracy when evaluating the coefficients that may occur when 

ℎ is small, the use of power series expansion of 𝛼𝑗 , 𝛽𝑗 , 𝛾4, 𝛼𝑗,𝑖̅̅ ̅̅ , 𝛽𝑗,𝑖
̅̅ ̅̅   and 𝛾4,𝑖̅̅ ̅̅   is preferable ([13] 

and [19]). The converted coefficients of the main method of BITM in power series form is given 

in equation (27). 

 

 

 

 

 

 

 

 

 

   (27) 

 

It is also interesting to note that as 𝑢 ⟶ 0  in the power series expansion of the parameter  

𝛼𝑗 , 𝛽𝑗 , 𝛾4, 𝛼𝑗,𝑖̅̅ ̅̅ , 𝛽𝑗,𝑖
̅̅ ̅̅   and 𝛾4,𝑖̅̅ ̅̅ , methods based on polynomial basis are recovered ([13]).  

We also remark that the coefficients of the 3 complementary methods in equations (25) are in 

trigonometric form and are omitted together with their equivalent power series for brevity  
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2.3 Convergence of BITM 

The convergence of BITM is in the spirit of [20], [21] and [22]. 

Theorem 2 

Let Y̅ be an approximation of the solution vector Y for the system obtained from BITM given 

by equations (23) and (24). If 𝑒𝑛 = |𝑦(𝑥𝑛) − 𝑦𝑛| , where the exact solution is several times 

differentiable on [𝑥0, 𝑥𝑁] and if ‖E‖ = ‖Y̅ − Y‖, then for sufficiently small ℎ, the BITM is a 

9th order convergent method. In other words, ‖E‖ = 𝑂(ℎ9). 

Proof 

The proof is similar to the one in [22]. 

 

3. ANALYSIS OF BITM 

3.1 Local Truncation Errors of BITM 

Theorem 3 

The BITM has a local truncation error (LTE) of   𝐶10ℎ
10 (𝜔2𝑦(8)(𝑥𝑛) + 𝑦(10)(𝑥𝑛)) +

𝑂(ℎ(11))       

Proof: 

Consider the Taylor series expansion of the following 

𝑦𝑛+𝑗, 𝑦(𝑥𝑛 + 𝑗ℎ), 𝑦𝑛+𝑗
′  , 𝑦′(𝑥𝑛 + 𝑗ℎ), 𝑦𝑛+𝑗

′′ , 𝑗 = 0(1)4   and  𝑦′′(𝑥𝑛 + 4ℎ).  Also, assume that 

𝑦(𝑥𝑛+𝑗) = 𝑦𝑛+𝑗, 𝑦′(𝑥𝑛+𝑗) =  𝑓𝑛+𝑗 , 𝑦′′(𝑥𝑛+4) = 𝑔𝑛+4 .  Then by substituting these into 

method in equation (24) and after simple algebraic simplification, we obtain 

                    𝐿𝑇𝐸 = 𝑦(𝑥𝑛+4) − 𝑦𝑛+4  

                         =  𝐶10ℎ
10 (𝜔2𝑦(8)(𝑥𝑛) + 𝑦(10)(𝑥𝑛)) + 𝑂(ℎ(11))                             

Consequently, the Local Truncation Errors (LTE) of BITM are respectively obtained as 
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LTE =

[
 
 
 
 
 
 
 
 

557ℎ10

24444000
(𝑦(10)(𝑥𝑛) + 𝜔2𝑦(8)(𝑥𝑛)) + 𝑂(ℎ11)

199ℎ10

18333000
(𝑦(10)(𝑥𝑛) + 𝜔2𝑦(8)(𝑥𝑛)) + 𝑂(ℎ11)

733ℎ10

24444000
(𝑦(10)(𝑥𝑛) + 𝜔2𝑦(8)(𝑥𝑛)) + 𝑂(ℎ11)

4ℎ10

254625
(𝑦(10)(𝑥𝑛) + 𝜔2𝑦(8)(𝑥𝑛)) + 𝑂(ℎ11)

]
 
 
 
 
 
 
 
 

                            (28)  

From equation (28), the order of BITM is  𝑝 = (9, 9, 9,9)𝑇  with error constants 

 𝐶10 = (
557

24444000
,

199

18333000
 ,

733

24444000
,

4

254625
)
𝑇

.   Also, following the definition of [13] and 

[23], a numerical method is consistent if its order is greater than one. We therefore remark that 

BITM is consistent. We also remark that that the order obtained in theorems 2 and 3 are in 

agreement.  

3.2 Stability of BITM 

Following [24], the BITM is represented in a block matrix form as  

(𝐴(1) ⊗ 𝐼)𝑌𝜇+1 = (𝐴(0) ⊗ 𝐼)Y𝜇 + ℎ(𝐵(1) ⊗ 𝐼)𝐹𝜇+1 + ℎ(𝐵(0) ⊗ 𝐼)𝐹𝜇 + ℎ2(𝐷(1) ⊗ 𝐼)𝐺𝜇+1    (29) 

where 𝑌𝜇+1 = (𝑦𝑛+1, 𝑦𝑛+2, 𝑦𝑛+3, 𝑦𝑛+4)
𝑇, 𝑌𝜇 = (𝑦𝑛−3, 𝑦𝑛−2 𝑦𝑛−1, 𝑦𝑛)𝑇, 

 𝐹𝜇+1 = (𝑓𝑛+1, 𝑓𝑛+2, 𝑓𝑛+3, 𝑓𝑛+4)
𝑇 , 𝐹𝜇 = (𝑓𝑛−3, 𝑓𝑛−2, 𝑓𝑛−1, 𝑓𝑛)𝑇 , 𝐺𝜇+1 =

(𝑔𝑛+1, 𝑔𝑛+2, 𝑔𝑛+3, 𝑔𝑛+4)
𝑇 𝐼 is an identity matrix, ⊗ is the kronecker product of matrices and 

𝐴(0), 𝐴(1), 𝐵(0), 𝐵(1), 𝐷(1) are 4 × 4 matrices specified as follows 

1,1 2,1 3,1

(1) 1,2 2,2 3,2

1,3 2,3 3,3

1 2 3

0

0

0

1

A

  

  

  

  

 
 
 

=  
 
   ,

0,1

(0) 0,2

0,3

0

0 0 0

0 0 0

0 0 0

0 0 0

A









 
 
 

=  
 
   ,

1,1 2,1 3,1 4,1

(1) 1,2 2,2 3,2 4,2

1,3 2,3 3,3 4,3

1 2 3 4

B

   

   

   

   

 
 
 

=  
 
   , 

  

  

0,1

(0) 0,2

0,3

0

0 0 0

0 0 0

0 0 0

0 0 0

B









 
 
 

=  
 
   ,

4,1

(1) 4,2

4,3

4

0 0 0

0 0 0

0 0 0

0 0 0

D









 
 
 

=  
 
    

3.3 Zero Stability 

According to [13] and [23], a numerical method is zero stable if the roots of the first 
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characteristic polynomial have modulus less than or equal to one and those of modulus one are 

simple. i.e.  𝜌(𝑅) = det[𝑅𝐴(1) − 𝐴(0)] = 0  and  |𝑅𝑖| ≤ 1. 

Theorem 4 

BITM is zero stable. 

Proof 

From the normalized first characteristic polynomial of BITM, we have in canonical form that 

1,1 2,1 3,1 0,1

(1) (0) 1,2 2,2 3,2 0,2

1,3 2,3 3,3 0,3

1 2 3 0

R R R

R R R
RA A

R R R

R R R R

   

   

   

   

 −
 

− 
− =  

− 
 − 

 

so that 𝜌(𝑅) = det[𝑅𝐴(1) − 𝐴(0)] = 0 ⟹  𝑅3(𝑅 + 1) = 0.  

Consequently,  |𝑅| = 0,0,0 or |𝑅| = 1. Hence the proof. 

3.4 Linear Stability and Region of Absolute Stability of BITM 

Applying the block method to the test equations 𝑦′ = 𝜆𝑦 and 𝑦" = 𝜆2𝑦 and letting 𝑧 = 𝜆ℎ 

yields 𝑌𝑤+1 = Κ(𝑧, 𝑢)𝑌𝑤 , where Κ(𝑧, 𝑢) =
𝐴(0)+𝑧𝐵(0)

𝐴(1)−𝑧𝐵(0)−𝑧2𝐷(1) . The matrix Κ(𝑧, 𝑢)  for BITM 

has eigenvalues given by (𝜑1, 𝜑2, 𝜑3, 𝜑4) = (0,0,0, 𝜑4), where 𝜑4(𝑧, 𝑢) =
𝑝4(𝑧,𝑢)

𝑞4(𝑧,𝑢)
   is called 

the stability function which is used to determine the stability region of the BITM. We give the 

following definition as contained in the literature. 

Definition 3.1 [17].  A region of stability is a region in the 𝑧 − 𝑢 plane throughout which the 

spectral radius |𝜌(Κ(𝑧, 𝑢))| ≤ 1. 

The 𝑧 − 𝑢  plot constructed for BITM is presented in Figure 1 
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Fig.1. 𝑧 − 𝑢  plot for BITM 

 

4. IMPLEMENTATION OF BITM 

The application of the BITM with angular frequency 𝜔 , on equation (1) in the interval of 

integration [𝑥0, 𝑥𝑁] is partitioned with N ∈ ℤ, N > 0  for fixed step length such that ℎ =
𝑏−𝑎

𝑁
, 

and the number of blocks for BITM is Λ =
𝑁

4
. To obtain the first block using equation (28) with 

𝑛 = 0  and 𝜇 = 0  , the first numerical results  {𝑦1, 𝑦2, 𝑦3, 𝑦4}  are simultaneously produced 

over the subinterval [𝑥0, 𝑥4] = [𝑥0, 𝑥0 + 4ℎ], since 𝑦0 and 𝑦0
′  are known from the IVP under 

consideration. For the second block, 𝑛 = 4  and  𝜇 = 1 , the values of (𝑦5, 𝑦6, 𝑦7, 𝑦8)
𝑇 are 

simultaneously obtained over the subinterval [𝑥4, 𝑥8] = [𝑥0 + 4ℎ, 𝑥0 + 8ℎ] as 𝑦4 and 𝑦4
′  are 

known from the previous block. This procedure is continued for 𝑛 = 8,⋯ ,𝑁 − 4  and 𝜇 =

2,⋯ , Λ  respectively to obtain the numerical solution to equation (1) on the entire interval of 

integration over non overlapping subinterval {[𝑥0, 𝑥4], [𝑥4, 𝑥8],⋯ [𝑥𝑁−4, 𝑥𝑁]} which makes the 

BITM self-starting and does not suffer the disadvantage of predictor-corrector modes. 

We note that the implementation of BITM was done with the aid of written codes in Maple 

2016.2 software enhanced by the feature of fsolve for nonlinear problems, and executed on 

Windows 10 operating system. 
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4.1 Numerical Examples 

In this section, we present a number of nonlinear periodic problem to illustrate the accuracy and 

efficiency of the BITM. We have calculated the maximum absolute error of the approximate 

solution on  [𝑥0, 𝑥𝑁] as 𝐸𝑟𝑟 = max|𝑦(𝑥) − 𝑦|, the rate of convergence (ROC) is calculated 

as ROC = log2(
𝐸𝑟𝑟ℎ

𝐸𝑟𝑟2ℎ), where 𝐸𝑟𝑟ℎ  is the error obtained using the step size ℎ , and the 

computational efficiency is obtained by plotting the logarithm of the maximum error 

(log(𝐸𝑟𝑟)) versus number of function evaluations (NFEs). It is worthy to note that the fitting 

frequency used in our implementations are obtained from the problem reference from the 

literature. However, where such is not stated, the computational frequency is estimated as 

described in [26] and [27]. Although the frequency choice technique studied by [7], [4] and [5], 

[28] and [29] and [30] can be explored. 

 

Example 1: Nonlinear Strehmel-Weiner Problem 

Consider the nonlinear second order IVP in the interval 0 ≤ 𝑡 ≤ 10 given by 

𝑦1
"(𝑡) = (𝑦1(𝑡) − 𝑦2(𝑡))

3 + 6368𝑦1(𝑡) − 6384𝑦2(𝑡) + 42 cos(10𝑡),   𝑦1(0) = 0.5, 𝑦1
′(0) = 0  

𝑦1
"(𝑡) = −(𝑦1(𝑡) − 𝑦2(𝑡))

3 + 12768𝑦1(𝑡) − 12784𝑦2(𝑡) + 42 cos(10𝑡),   𝑦2(0) = 0.5, 𝑦2
′(0) = 0 

with solution in closed form given by 𝑦1(𝑡) = 𝑦2(𝑡) = cos(4𝑡) −
cos(10𝑡)

2
. 

This problem was considered and solved for with a sixth order Symmetric Boundary Value 

Method (SBVM) in [31], a fifth order Block Hybrid Trigonometrically-Fitted Method in [32], 

Trigonometric Implicit Runge-Kutta Methods (TIRKM) in [15] and Trigonometrically-Fitted  

Third Derivative Runge-Kutta Nyström Method (TTRKNM) in [17]. This problem is selected 

to establish the efficiency of BITM on Strehmel-Weiner problem. The results obtained using 

BITM with 𝜔 = 4 are shown in Figures 2 as compared to the aforementioned methods while 

the accuracy of BITM is plotted in Figures 3a and 3b respectively. 
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Fig.2. Efficiency curve for Example 1  Fig.3a. Accuracy curve for Example 1 

 
Fig.3b. Accuracy curve for Example 1 

 

We note from Figure 2 that Although SVBM and TTRKNM are direct numerical integrators 

(without reducing to system of first order IVP) for this problem, BITM has least maximum 

errors and uses fewer number of function evaluation and consequently a more accurate and 

more efficient integrator for this problem. 

Example 2: Non-Linear Perturbed Systems   

As our second test, we consider the nonlinear perturbed system on the range [0 , 10] with 𝜖 =

10−3. 

𝑦1
′′ = 𝜖𝜑1(𝑥) − 25𝑦1 − 𝜖(𝑦1

2 + 𝑦2
2)      𝑦1(0) = 1   ,   𝑦1

′(0) = 0 

𝑦2
′′ = 𝜖𝜑2(𝑥) − 25𝑦2 − 𝜖(𝑦1

2 + 𝑦2
2)      𝑦2(0) = 𝜖   ,   𝑦2

′(0) = 5 
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where 

𝜑1(𝑥) = 1 + 𝜖2 + 2𝜖 sin(5𝑥 + 𝑥2) + 2 cos(𝑥2) + (25 − 4𝑥2) sin(𝑥2) 

𝜑2(𝑥) = 1 + 𝜖2 + 2𝜖 sin(5𝑥 + 𝑥2) − 2 sin(𝑥2) + (25 − 4𝑥2) cos(𝑥2) 

The exact solution is given by 𝑦1(𝑥) = cos(5𝑥) + 𝜖 sin(𝑥2)   ,   𝑦2(𝑥) = sin(5𝑥) + 𝜖 cos(𝑥2) 

which represents a periodic motion of constant frequency with small perturbation of variable 

frequency. This problem was selected to show the performance of BITM on a nonlinear 

perturbed system. Thus, we choose 𝜔 = 5 as the fitting frequency, and the numerical results 

of the maximum global errors of BITM were compared with a fifth order Trigonometrically-

Fitted Adapted Runge-Kutta-Nyström (TFARKN) methods in [35], a fifth order 

trigonometrically-fitted explicit method (TRI5) in [33], a sixth order hybrid method with 

dissipation order seven (DIS6) and sixth order hybrid method with Zero dissipative (ZER6) 

both in [36] as presented Figure 4. The accuracy of BITM is presented in Figures 5a and 5b 

respectively. 

 
 

Fig.4. Efficiency curve for Example 2  Fig.5a. Accuracy curve for Example 2 
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Fig.5b. Accuracy curve for Example 2 

 

Details of the results given in Figure 4 show that the BITM is more efficient than the methods 

in [35], [33] and [36] respectively. 

Example 3: Nonlinear Duffing Equation 

We consider the nonlinear Duffing equation forced by a harmonic function given by 𝑦′′ + 𝑦 +

𝑦3 = 𝐵 cos(Ω𝑥) whose theoretical solution is unknown. A very accurate approximation of the 

theoretical solution of this equation is judge by comparison with a Galerkin approximation 

obtained by [34] given by  

𝑦(𝑥) = 𝐶1 cos(Ω𝑥) +𝐶2 cos(3Ω𝑥) +𝐶3 cos(5Ω𝑥) +𝐶4 cos(7Ω𝑥)  

and the appropriate initial conditions are  𝑦(0) = 𝐶0      𝑦
′(0) = 0  where Ω = 1.01  ,   𝐵 =

0.002  , 𝐶0 = 0.200426728069   𝐶1 = 0.200179477536, 𝐶2 = 0.246946143 × 10−3  , 𝐶3 =

0.304016 × 10−6  , 𝐶4 = 0.374 × 10−9. 

This problem has been solved numerically by different researchers in the literature. An explicit 

eight order method (EM8) was considered in [10], a seventh order hybrid linear multistep 

method (HLMM) was used in [16] while [11] considered both eighth order block third 

derivative formulae (BTDF8) and tenth order block third derivative formulae (BTDF10) 

respectively all in the interval [0,
20.5𝜋

1.01
]. The BITM is specifically compared with BTDF10 

because they have the same number of steps. The efficiency curve and the accuracy curve of 

BITM are presented in Figures 6 and 7 respectively. 
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Fig.6. Efficiency curve for Example 3  Fig.7. Accuracy curve for Example 3 

 

As revealed by the results in Figure 6, the BITM is a more efficient integrator for nonlinear 

duffing equation within the considered interval of integration than other methods it compares 

with which are direct integrators for this problem even a higher order method BTDF10 in [11]. 

Example 4: Undamped Duffing Equation 

Consider the periodically forced nonlinear IVP  

{
𝑦′′ = (cos(𝑡) + 𝜖 sin(10𝑡))3 − 99𝜖 sin(10𝑡) − 𝑦3 − 𝑦,         0 ≤ 𝑡 ≤ 1000 

𝑦(0) = 1,   𝑦′(0) = 10𝜖
 

with 𝜖 = 10−10  and whose analytic solution 𝑦(𝑡) = cos(𝑡) +  𝜖 sin(10𝑡)  describes a 

periodic motion of low frequency with a small perturbation of high frequency. In this problem, 

𝜔 = 1  is selected and the numerical results of BITM in comparison with Block Hybrid 

Trigonometrically-Fitted Method (BHTM), Trigonometrically-Fitted Adapted Runge-Kutta-

Nyström (TFARKN) and Exponentially Fitted Runge-Kutta-Nyström (EFRKN) in [32], [35] 

and [12] respectively are displayed in Figure 8 while the results of BITM in comparison with 

the exact solution is presented in Figure 9. 
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Fig.8. Efficiency curve for Example 4  Fig.9. Accuracy curve for Example 4 

 

As expected, the BITM is more efficient than the respective methods in [32], [35] and [12] since 

it is of higher order as shown in Figure 8. 

Example 5: Kepler’s Problem 

As our fifth test, we consider the following system of coupled differential equations which is 

well known as the two body problem: 

𝑦1
"(𝑥) = −

𝑦1

𝑟3
,     𝑦1(0) = 1 − 𝑒 , 𝑦1

′(0) = 0 

𝑦2
"(𝑥) = −

𝑦2

𝑟3
 ,   𝑦2(0) = 0 , 𝑦2

′(0) = √
1 + 𝑒

1 − 𝑒
 

where 𝑟 = √𝑦1
2 + 𝑦2

2 , 𝑥 ∈ [0 , 50𝜋], 𝑒( 0 ≤ 𝑒 < 1)  is an eccenticity and whose analytical 

solution is given by 𝑦1(𝑥) = cos(𝑘) − 𝑒   ,   𝑦2(𝑥) = √1 − 𝑒2 sin(𝑘), where 𝑘 is the solution 

of the Kepler’s equation 𝑘 = 𝑥 + 𝑒 sin(𝑘). For any value of 𝑒, the solution of this problem is 

periodic with period 2𝜋 and when 𝑒 = 0, the problem is purely sinusoidal [25]. It is worthy of 

mentioning that this problem has widely been considered in the literature using methods with 

lower order. However, we choose to compare BITM with Enright Second Derivative Method 

of order six and seven (EM4 and EM5) respectively in [30] because they are all variants of 

Backward Differentiation Formula (BDF), both EM4 and BITM are of the same step size (EM4 

is of Adams type while BITM is of the general linear multistep), they required the problem 
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being reduce to system of first order IVP cum they are implemented in block by block fashion. 

Thus we integrate the problem with 𝑒 = 0.005  and 𝜔 = 1 , and the results obtained are 

displayed in Figures 10, 11a and 11b respectively. 

 

Fig.10. Efficiency curve for Example 5 Fig.11a. Accuracy curve for Example 5 

 

 

Fig.11b. Accuracy curve for Example 5 

 

Although EM5 is an integrator with 5 steps and uses fewer function evaluation per step compare 

to the BITM, our method is more accurate. Nevertheless, as shown in Figure 6, the BITM is an 

efficient integrator for this problem. 
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5. CONCLUSION 

A self-starting, more accurate and more efficient integrator of nonlinear second order IVP with 

periodic solutions is proposed and applied in this paper. The advantage of BITM in terms of 

accuracy and efficiency are presented in Figures 2-6. 
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