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ABSTRACT

This paper deals with the problems of detecting a chirp signal of motion target against a

strong undesired signal from the transmitter in radar. We use Generalized Almost-

Cyclostationary (GACS) signal processing method to determine the rate and initial frequency

of the chirp signal in presence of the strong undesired signal. This technique which exploits

the second order cyclostationary to detect features of the chirp signal in low SNR has

desirable properties. The study utilized a method to determine and characterize signals for

highly adverse signal to interference plus noise and explain how using cyclostationary

properties can extract features of chirp signal from the mixture received signal. The theory

and simulation of this method indicated that the chirp rate depends on the lag parameter and

the cycle frequency.
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1. INTRODUCTION

The performance of Continuous Wave (CW) radar and pulsed radar is limited in the presence

of clutter by the phase and amplitude noise. Local Oscillator (LO) used for frequency

conversion to Intermediate Frequency (IF) has an important effect on the phase noise. The
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phase noise is the most important degradation effect radar and it influences the performance

of the radar in several ways. The main issue is that the radar transmits and receives

simultaneously. Thus, the signal will leak directly from the transmitter to the receiver. This

will happen through space and even more severely through the substrate if the transmitter and

the receiver share the same circuit board. The undesired signal may be so strong that it may

saturate either the Low-Noise Amplifier (LNA) or mixer. However, a more common problem

is that the phase noise that leaks as well will have a tendency to mask out targets as the targets

are detected at frequency offsets of the carrier. The same is the case for the strong nearby

clutter.

The performance of these radars can be improved by elimination or reduction of noise.

Different noise cancellation methods are presented in radar system, in 0 the author has

developed a method of characterizing the effect range correlation on phase noise spectrum. As

a stochastic process formulation was employed, the method was unique and made for a

characterization that clearly illustrated various factors that constitute the spectrum at signal

processor input. Based on 0 master oscillator requirements for coherent radar application are

derived from consideration of mainlobe width and sidelobe. These techniques measured

oscillator stability characteristics that are useful for radar system by taking periodic and

random phase modulation into account.

In the method used in [1] the effects on the receiver sensitivity of transmitter phase noise

reflected from very large radar (pulse radar) targets are taken into account. This paper looked

briefly at representing the detection of small targets against a high density clutter background

and considered the phase noise cancellation equation. At last, it is shown that the phase noise

can be minimized by matching path length around the reception mixer. Detection methods

based on Maximum Likelihood (ML) and Maximum M Posterior (MAP) are very convenient

methods although they have complicated computations in low SNR [2]. In this paper, chirp

rate and initial frequency are determined in presence of the undesired signal using feature of

generalized almost-cyclostationary method. Detection of low SNR signal in presence of the

perturbation signals can be improved by extracted features.

The rest of the paper is organized as follows: section II presents the system model; section III

formula and analyses the method; section IV presents the simulation results; and section V

summarizes the conclusions.
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Fig.1. System model with undesired path and desired path

2. SYSTEM MODEL

A block diagram of radar configuration considered in this paper is shown in Fig.1. The

amplitude and phase noise are what give rise to amplitude and phase noise sideband on

transmitted signal, and cause spectral spreading of the transmitted signal that was discussed in

introduction. The transmitter elements modulator, amplifiers, power tube, etc. also add noise

to transmitted signal but their contributions are usually negligible in comparison with the LO.

A normalized signal that is transmitted can be represented by

(1) ( ) Re ( )exp( 2 )cx t x t j f 

Where Re{.} denotes real part, cf is the carrier frequency, and ( )x t is a complex signal that

has amplitude noise. As mentioned, the phase noise causes the spectral spreading of the

transmitted signal. For simplicity, the phase noise is considered in ( )x t .

3. FORMULA AND ANALYSES

In the model presented in this paper for the case of relative motion between target and

receiver when the relative radial speed v can be constant within the observation interval

0 0( , )t t T and by addressing [3] the following condition should be provided

(2)
|1 |

f
BT

v


Where B is bandwidth of ( )x t and T is the length of observation interval. If condition (2) is

satisfied, it is generally stated that the signal is narrow-band condition. Considering the

system model in Fig.1, the received signal in radar can be represented by

(3)( ) ( ) ( )r d uy t y t y t 

Where uy and dy receive signal from the undesired path and desired path, respectively.
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4. GENERALIZED ALMOST-CYCLOSTATIONARY

Many processes in nature arise from the interaction of periodic phenomena with random

phenomena. The results are processes which lack being periodic but their statistical functions

are periodic functions of time. These processes are called cyclostationary and are an

appropriate mathematical model for signals encountering in radar, sonar, etc. [4]. In

communications, radar and sonar, the cyclostationary properties of signals have been

exploited to counteract the effect of noise and interference in weak signal detection

problems[5].

Continuous signal ( )x t with zero mean is called second order cyclostationary if its time

varying autocorrelation function * ( , )
xx

R t  is defined as

(4) *

*( , ) ( ) ( )
xx

R t E x t x t  

For each lag parameter  is periodic in time t and it can be represented as Fourier series

(5) * *( , ) ( ) exp 2
xx xx

R t R j t



  

In (5), the real number  and the complex-valued functions * ( , )
xx

R t  referred to as cycle

frequency and cyclic autocorrelation, are frequencies and coefficients of the Fourier series

expansion of * ( , )
xx

R t  , for which cyclic autocorrelation function is defined as [5]

(6)
 * *

/2

/2

1
( ) lim ( , ) exp 2

T

xx xxT
T

R R t j t dt
T

   




 

The Fourier transform of * ( )
xx

R  is called the cyclic spectrum (CS) which is defined as [5]

(7)
 * *( ) ( ) exp 2

xx xx
S f R j d    





 

Under the “narrowband” approximation, the time-varying component of the delay in the

complex envelope ( ( ))x t D t can be neglected [5]. In the proposed model to obtain cyclic

autocorrelation and cyclic spectrum, the received signal is assumed as follows

(8)( ( )) ( ( ))r d d u uy b x t D t b x t D t   

Where in radar delay can be defined

(9)2 2
0 0( ) 2 ( ) / 2( ) / ( )D t R t c R vt at c D t t t         

In the delay expression, 0R , v and a are initial location, velocity and accelerate of target,

respectively. In real time systems, the delay caused by the undesired is much less than the

desired delay; in other words ( ) ( )u dD t D t , and can be taken constant. So ( )ry t received
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signal is a mixture of the transmitted signal ( )x t and a chirp modulated version of ( )x t and

can be written (8) as

(10)
2(2 )( ) ( ) j t t

r u dy b x t b x t e      

Where  0exp 2u u c ub a j f R   is the complex gain from the undesired path,

 0exp 2d d c db a j f R   is the complex gain from the target path, 0 uD  is interpreted

as the difference between the constant part of ( )dD t , the constant  uD t , 2 /cf v c  the

frequency shift, and 4 /cf a c  the chirp rate. Thus, the autocorrelation function of ( )y t is

given by

(11)

*

2 2

2

*

* * * * 2 2 ( ) ( )

2 * * * 2 * * 2 2

( , ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

{ }
{( )( )}
{

r ryy

j t j t j t j t
u d u d

j t j t j j t
u d u u d

R t E y t y t

E b x t b x t e e b x t b x t e e

E b x t x t b b x t x t e e b b x t x t e e

     

   

 

   

    

   

 

 

      

       
22 * 2( ) ( ) }j j j t

db x t x t e e e       

We assume ( )x t is almost-cyclostationary (ACS) [6], that is

(12)   *

* ( )( ) ( ) ( ) exp 2
xx

E x t x t R j t



  


  

where  is the countable set of cycle frequencies and *n xx
  Using (12) in (11) we have

(13)

   

   

2

* *

2

2 (2 )* 2 2 (2 )

* * 2 2 * * 2

( ) ( ) ( ) ( )

   ( ) ( ) ( ) ( )

n n n nj t j tj
u dxx xx

n n

j j t j t j t
u d d u

E y t y t b R e b R e e

b b E x t x t e e b b E x t x t e e

       

   

  

   

 

 

  

     

 

If in the presented model, we assume 0 and 2n n    and address [7] as well, then

equation (13) can be written as

(14)
 

2

* **

2 ( )2 2 (2 )

2* * 2

( , ) ( ) ( )

   ( ) ( )

n n n n

n

j t j tj
u dxx xx

n n

j tj
u d

yy
b R e b R e e

b b E x t x t e e

R       



   

 

  

  

 

Where in (13), n n   and 2n n    . The signal ( )y t has three cyclic frequencies,

one of which depends on the lag or in other words, *

(1)

yy
  , *

(2) / 2
yy

  and

*

(2) 0
yy

  .
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Fig.2. Cyclic correlogram mixture signal ( )y t in (10), undesired signal 10uSNR  and

desired signal 5dSNR  

5. SIMULATION AND RESULT

In this section, the simulation experiments are explained through taking the theoretical results

of the previous sections into consideration. The discrete-time sequences are obtained by

uniformly sampling with period 1/s sT f as

(15)( ) ( )               ( ) ( )
s st nT t nTx n x t y n y t  

Where, ( )x t and ( )y t are continuous Sinwave signals. The cyclic cross-correlation of the

discrete-time sequence ( )y n and ( )x n at cycle frequency
1 1

[ , )
2 2

   are represented in [6].

The signal ( )y t passes through a Rayleigh Doppler Channel which produces a delay

0 4000 sT  , frequency shift 0.04 / sT . Cycle frequency is dependent on lag

*

(2) / 2
xx
  intercept in the point ( , ) (0,0)   . By taking the mixture signal ( )y t in (13)

with the effect of ()x t ACS into account, the effect of the chirp is rotated by angle  , where

tan / 2  and a chirp rate 3 22 10 / sT   that is shown in Fig.2. When | |t  , its

cyclic autocorrelation functions are summable. So by increasing time, the best results will be

obtained. If SNR of the undesired path increases, the peak of spectral increases as well,

consequently if SNR desire path increases, the tail of spectral increases too and if the noise

increases the whole surface increases.
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Fig.3. Contour plane ( , )  of cyclic spectrum, undesired signal 10 dBuSNR  and desired

signal 5 dBdSNR  

Fig.2 shows the simulation of Monte Carlo. The obtained results from the simulation approve

equation (13). In this simulation, the delay of 610dt
 has been set and the total simulation

time of 1000 dt has been taken into account. As it is clear, the chirp rate of the initial

frequency has been shown. Finally, if the noise level increases, the obtained slope becomes

less clear and the signal level reduces to a level under the noise level.

6. CONCLUSION

This paper aimed to detect chirp rate and initial frequency of low signal in presence of the

leakage signal using second-order statistical function of generalized almost-cyclostationary

process. It was shown that cyclostationary methods compared to other methods, have less

complexity in implementation and high precision. It was shown that the cyclostationary

method in contrast with noise and interference has better performance in determining chirp

signal feature.
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