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1. INTRODUCTION 

Watermelon, Citrullus lanatus belongs to the Cucurbitaceae family and has been known for 

centuries to have a positive effect on human health. The fruit shape is most commonly round to 

elongated and has a smooth, hard exterior rind (exocarp) which range from light to dark green 

with a usually red or sometimes yellow juicy, sweet interior flesh (mesocarp and endocarp). 

According to [1], watermelon is a rich source of vitamins (i.e. vitamin A and C) and also serves 

as a good source of phytochemicals (i.e. lycopene and carotenoids). Watermelon is one of the 

most abundant fruit and its juice is commercially produced worldwide for human consumption, 

hence generating a vast amount of solid waste, i.e. rinds and seeds. The rinds remain as one of 

the important food grade agro-wastes generated by many restaurants, cottage fruit juice 

producers and food industries across Southeast Asia and in particularly Malaysia [2]. 

Watermelon rinds constitutes nearly a third of the watermelon weight, thus, development of 

value-added products from these rinds would be of great interest to the industries. The use of 

whole fruit in watermelon processing is essential in order to reduce resource wastage and costs, 

and provide a solution to the pollution associated with this process. Many studies had been 

conducted and show that the rinds has potential for value-added ingredient after processing (i.e. 

drying) and utilization in the pharmaceuticals industries, e.g. in the preparation of bakery 

products or as a natural food additive [2-4].  

Watermelon rinds have a moisture content of 95% (wet basis), thus making it highly perishable 

and susceptible to deterioration when it is in its fresh state [5]. The reduction of moisture 

content and water activity (aw) to safe levels will slow down or inhibits microbial growth and 

enzymatic activity, thereby extending the shelf life of the rinds. The most popular drying 

method used in food industry is conventional hot-air drying due to its low cost of processing 

[6-7]. Apart from conventional air drying, other commonly used drying methods applied in 

food industry include vacuum-, spray- and freeze drying [8]. Freeze drying is one of the most 

sought after dehydration methods, which produces supreme product quality in terms of 

excellent retention of nutrients, flavour and aroma and physical and sensory characteristics. 

However, it is often associated with low production rate and the operational cost of this process 

is often very high. Most pharmaceutical and nutraceutical industries can afford the freeze 
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drying process due to their high cost products. In contrary, food industry tends to look for 

products with desired functional properties with moderate cost [9].  

Though dehydrated products have commonly been obtained by hot-air drying, which allows 

rapid and massive processing, as well as production of a sufficiently shelf stable product. 

Nonetheless, the maintenance of nutritional and commercial quality of such products through 

this process presents some problems [10-11]. The fruit drying conditions in particularly the 

drying temperature, time and methods had been reported to play a significant role in affecting 

the physicochemical properties, functional qualities, nutritional values as well as the 

microbiological qualities of the fruit flour and consequently their overall qualities [9, 12-15]. 

Flour properties and qualities are of great concern, as these ultimately determine the usefulness 

of the flour in industrial applications. 

Taking into account the potential utilization of watermelon rinds in industrial applications and 

the fact that knowledge on the effect of different drying approaches employed on the functional 

and physicochemical characteristics of watermelon rind flour is yet to be available. Therefore, 

the present study aimed to investigate the effect of the drying conditions on the 

physicochemical and functional properties of this flour. As a result of such investigations, 

depending on the desired final product quality and other considerations, a suitable drying 

technique can be chosen. The results should also serve as a guide for the industrial to determine 

the suitability of the watermelon rind flour for their applications based on its functional and 

physicochemical properties. 

 

2. RESULTS AND DISCUSSION   

2.1. Colour  

The average values of the colour parameters of all the watermelon rind flour samples prepared 

by different drying treatments are presented in Table 1. The obtained results indicated that all 

colour values of the flour samples prepared by different drying treatments differed 

significantly from each other (P < 0.05). Comparing the different drying treatments, the L* 

values of flours (both red and yellow varieties) produced by hot-air oven drying at 60°C 

appears to be lower in relation to the other drying treatments employed. Hot-air oven drying 
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at 60ºC had turned the red variety watermelon rind flour slightly darker, redder and yellower 

(L*, a* and b* values of 40.26, 3.41 and 17.67). Considering the more positive value of a* for 

the red variety watermelon rind flour, this indicates that the light greenish colour of the 

watermelon rind disappeared with drying at 60°C. It is well-known that watermelon rind is 

light greenish in colour due to the presence of the naturally occurring pigments, chlorophylls 

(green). Chlorophylls are very sensitive to heat, hence heating at high temperature will cause 

degradation of these pigments and the effect is more prevalence at higher temperature as 

shown in present study. The higher a* values also indicates the occurrence of non-enzymatic 

reaction, e.g. Maillard reaction. The increase in drying temperature led to rise of 

non-enzymatic browning reactions and thus produced darker coloured flour samples [16-17]. 

Table 1. Effect of different drying conditions on the colour properties of watermelon rind 

flours 

Sample1 
Colour 

L* a* b* 

R40 50.76b ± 0.57 -2.79b ± 0.09 14.29a ± 0.21 

R60 40.26a ± 0.28 3.41c ± 0.05 17.67c ± 0.19 

RFD 57.83c ± 0.81 -3.47a ± 0.04 15.40b ± 0.35 

Y40 49.71b ± 0.15 -2.60c ± 0.11 14.03a ± 0.36 

Y60 45.06a ± 0.49 -1.91b ± 0.10 16.49c ± 0.11 

YFD 53.43c ± 0.08 -4.84a ± 0.04 14.85b ± 0.24 

1R40 and R60 represent red-fleshed watermelon rind flour produced by drying at 40 and 60°C 

respectively. Y40 and Y60 represent yellow-fleshed watermelon rind flour produced by 

drying at 40 and 60°C respectively. RFD and YFD represent red and yellow-fleshed 

watermelon rind flour respectively produced by drying in a freeze dryer. 

Presented data are mean values of three replications ± standard deviation. 

Mean values in the same column with different superscript letters are significantly different (p 

< 0.05). 

The freeze dried flours practically present the highest degree of lightness and the lowest 

degree of redness (L* = 57.83, a* = -3.47 for red variety; L* = 53.43, a* = -4.84 for yellow 
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variety). Similarly, in [18] also demonstrated that when comparing the different drying 

treatments, freeze drying produced lighter colour of pumpkin flours as indicated by higher L* 

values (as compared to hot air-drying technique). Therefore, it can be concluded that freeze 

drying is the best drying method to preserve the colour of the watermelon rind flours without 

causing major colour deterioration and non-enzymatic browning when compared with 

convective drying methods tested. This is expected as non-enzymatic browning reaction is 

minimized by the low temperature used in the freeze drying. 

2.2. Water Activity (aw) 

Water activity (aw) is one of the most critical factors in determining quality and safety of the 

foods. This value indicates how tightly water is bound, structurally or chemically within a 

substance. Thus, aw is a better indicator of perishability than moisture content, which simply 

determines the total amount of water present in a sample [19]. Table 2 shows the average 

values obtained for the aw of all the watermelon rind flour samples prepared by different 

drying treatments in this study.  

Table 2. Effect of different drying conditions on the water activity of watermelon rind flours 

Sample1 Water Activity 

R40 0.49b ± 0.00 

R60 0.45a ± 0.00 

RFD 0.49b ± 0.00 

Y40 0.48b ± 0.00 

Y60 0.47a ± 0.00 

YFD 0.48b ± 0.00 

1R40 and R60 represent red-fleshed watermelon rind flour produced by drying at 40 and 60°C 

respectively. Y40 and Y60 represent yellow-fleshed watermelon rind flour produced by 

drying at 40 and 60°C respectively. RFD and YFD represent red and yellow-fleshed 

watermelon rind flour produced by drying in a freeze dryer respectively. 

Presented data are mean values of three replications ± standard deviation. 



L.H Ho  et al.            J Fundam Appl Sci. 2017, 9(2S), 898-923               903 
 

 

Mean values in the same column with different superscript letters are significantly different (p 

< 0.05). 

The aw of all the flour samples produced by different drying treatments was averaged at 0.45 

to 0.48. For majority of the foods, the critical point below which no microorganism can grow 

is in the range of 0.6-0.7 [13]. Hence, all the flour samples can be deemed safe from microbial 

spoilage. No significant difference (P < 0.05) were found between the water activity of flour 

samples made from air drying at 40°C and those of freeze dried (0.48-0.49), while a 

noticeable difference was observed for the drying at 60°C (0.45-0.47). Freeze drying involves 

the removal of water from a frozen product by a process called sublimation when a frozen 

liquid goes directly to the gaseous state without passing through the liquid phase. It is also 

clearly seen in that incremental increase in air drying temperature, aw decreases (Table 2). 

Similarly, in 20] also reported that the aw of dried banana decreases with increase in drying 

temperature. This might be due to the decrease in the moisture content of the flour sample 

with the increase in air drying temperature. As water is removed from the samples, mainly by 

evaporation in air dryer, at higher temperatures, the water evaporation rate is higher, 

influencing the moisture content and consequently aw of the samples. In [21] obtained similar 

results when they studied potato isotherms at temperatures of 30, 45 and 60°C and found that 

aw decreased with reduction in moisture content. The aw of a food is however not the same 

thing as its moisture content. Although moist foods are likely to have greater aw than dry 

foods, this is not always so. A variety of foods may have exactly the same moisture content 

and yet have different aw. The aw values of such foods depending upon the degree to which 

water is free or otherwise bound to food constituents, for example sugar. 

2.3. pH, Total Titratable Acidity (TTA) and Total Soluble Solid (TSS) 

Total titratable acidity (TTA) and pH are interrelated in terms of acidity, but have different 

impacts on food quality. However, the impact of acid on food flavour is much more 

determined by TTA than pH [22] since the pH of food gives an indication of its resistance to 

microbial attack [23]. The pH, total titratable acids (TTA) and total soluble solids (TSS) of all 

the watermelon rind flour samples prepared by different drying treatments are shown in Table 

3. From the results obtained, it is clearly seen that all the TSS of the flour samples prepared 
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by different drying treatments do not differ significantly (P > 0.05) but in contrast, TTA and 

pH differ significantly (P < 0.05). 

Table 3. Effect of different drying conditions on the pH, total titratable acidity and total 

soluble solid of watermelon rind flours 

Sample1 pH TTA2 (% Acidity) TSS3 (Brix) 

R40 5.29c ± 0.01 0.13a ± 0.00 2.43a ± 0.06 

R60 5.26b ± 0.01 0.15b ± 0.00 2.30a ± 0.10 

RFD 4.71a ± 0.01 0.17c ± 0.00 2.37a ± 0.06 

Y40 5.53c ± 0.02 0.16a ± 0.00 2.43a ± 0.06 

Y60 5.31b ± 0.01 0.18b ± 0.00 2.40a ± 0.10 

YFD 4.66a ± 0.01 0.23c ± 0.01 2.50a ± 0.00 

1R40 and R60 represent red-fleshed watermelon rind flour produced by drying at 40 and 60°C 

respectively. Y40 and Y60 represent yellow-fleshed watermelon rind flour produced by 

drying at 40 and 60°C respectively. RFD and YFD represent red and yellow-fleshed 

watermelon rind flour respectively produced by drying in a freeze dryer. 

2TTA represents total titratable acids 

3TSS represents total soluble solids 

Presented data are mean values of three replications ± standard deviation. 

Mean values in the same column with different superscript letters are significantly different (p 

< 0.05). 

The decrease in moisture content in the fruits is usually accompanied by an increased 

percentage of TSS, since TSS is the major component of dry matter [24]. Thus, the value of 

TSS will always increase significantly after drying. Results from determination of TSS of 

flour samples show no significant difference (P > 0.05) in the TSS value between the three 

different drying treatments (2.30-2.43 °Brix for red variety; 2.40-2.50 °Brix for yellow 

variety). Similarly, in [25] also reported that there was no significant difference in the TSS 

value of the dried tomato samples between the three levels of drying temperature (55, 65 and 

75°C). 
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Comparing the results between the different drying treatments, freeze dried sample had higher 

value for TTA (0.17% for red variety; 0.23% for yellow variety), followed by hot-air oven 

drying at 60°C (0.15% for red variety; 0.18% for yellow variety) and 40°C (0.13% for red 

variety; 0.16% for yellow variety). In [26] also reported that the freeze drying method resulted 

in a significantly higher titratable acidity than the hot-air oven drying, in mango kernel and 

peel powder. It is due to the nature of the freeze drying method, carried out at a relatively low 

temperature which able to preserve the organic acid presence in the fruits and thereby resulting 

in a significantly higher TTA value. Similarly, in [27] also pointed out that more organic acids 

may occur in the lyophilizates than in the thermally dried material. Results from determining 

acidity of air dried flour samples indicated that by increasing dryer air temperature, TTA 

increased. However, the pH showed a decreasing trend. This result is in agreement with 

several previous studies [6, 17, 25, 28], whereby the rise of drying temperature is accompanied 

by the decrease in pH and increase in acidity. According to [28], the increase in TTA with 

drying temperature may be due to the organic acids becoming more concentrated while the 

reduction in pH with drying temperature may be due to increased dissociation of the organic 

acids with temperature. 

2.4. Bulk Density, Water Absorption Capacity (WAC) and Oil Absorption Capacity 

(OAC) 

The bulk density, water absorption capacities (WAC) and oil absorption capacities (OAC) of all 

the watermelon rind flour samples prepared by different drying treatments is presented in Table 

4.  
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Table 4. Effect of different drying conditions on the bulk density, water absorption capacity 

and oil absorption capacity of watermelon rind flours 

Sample1 Bulk Density (g/ mL) WAC2 (g Water/ g) OAC3 (g Oil/ g) 

R40 0.36c ± 0.07 10.57b ± 0.05 3.42c ± 0.11 

R60 0.34b ± 0.02 11.04c ± 0.17 3.27b ± 0.03 

RFD 0.09a ± 0.01 7.36a ± 0.14 3.08a ± 0.02 

Y40 0.38c ± 0.04 8.78b ± 0.08 3.44c ± 0.04 

Y60 0.33b ± 0.03 10.92c ± 0.08 2.69b ± 0.06 

YFD 0.10a ± 0.04 5.92a ± 0.09 2.32a ± 0.05 

1R40 and R60 represent red-fleshed watermelon rind flour produced by drying at 40 and 60°C 

respectively. Y40 and Y60 represent yellow-fleshed watermelon rind flour produced by 

drying at 40 and 60°C respectively. RFD and YFD represent red and yellow-fleshed 

watermelon rind flour produced by drying in a freeze dryer respectively. 

2WAC represents water adsorption capacity 

3OAC represents oil adsorption capacity 

Presented data are mean values of three replications ± standard deviation. 

Mean values in the same column with different superscript letters are significantly different (p 

< 0.05). 

From the results obtained, it is shown that all the assessed functional properties of the 

watermelon rind flour samples differed significantly (P < 0.05) from one another. Comparing 

the different drying treatments, freeze drying method had the lowest value obtained for bulk 

density (0.09 g/mL for red variety; 0.10 g/mL for yellow variety). Conversely, the bulk 

densities of flours made from air drying method were significantly higher (P < 0.05) 

(0.34-0.36 g/mL for red variety; 0.33-0.38 g/mL for yellow variety). High bulk density is 

desirable for reducing shipping and packaging costs as it implied that lesser packaging 

material would be required, as bulk density gives an indication of the relative volume of 

packaging material required [29]. The results obtained in this research resembled a mirror 

image of the study conducted by [14], whereby bulk density of the hot-air oven dried banana 

flour was significantly higher than that of the freeze dried. This might be attributed to the 
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higher porosity of the freeze dried flour. When comparing with hot-air oven drying at 40 to 

60°C, the bulk density value of flour samples hot-air oven dried at 40°C was found to be the 

highest (0.36 g/mL for red variety; 0.38 g/mL for yellow variety) whilst the lowest 

corresponds to the flour samples made from air drying at 60°C (0.34 g/mL for red variety; 0.33 

g/mL for yellow variety). This observation has been in accordance with earlier study 

conducted by who demonstrated that the cocoyam flour sample dried at 50°C had the highest 

bulk density value, inversely, sample dried at 85°C had the lowest value. This was due to the 

decrease in the moisture content of the flour samples with the increase in drying temperatures. 

It noted that bulk density of a food sample is related with its moisture content. 

The water absorption capacity (WAC) indicates the mass of the water uptake per unit mass of 

dried powder. Comparing hot-air oven drying to freeze drying method, WAC of air dried flours 

(10.57-11.04 g of water/g of sample for red variety; 8.78-10.92 g of water/g of sample for 

yellow variety) was significantly higher (P < 0.05) than that of freeze dried (7.36 g of water/g 

of sample for red variety; 5.92 g of water/g of sample for yellow variety). Similarly, in [14] 

also reported that the WAC of the freeze dried green banana flour was found to be lower than 

that of hot-air dried flour. Results from determining WAC of flour samples dried by using 

hot-air oven dryer at temperatures of 40 and 60°C indicated that an increase in air dryer 

temperature, the WAC increases. The same observation has been reported by [30], whereby 

the WAC of the apple pomace powder increases when the tray dryer temperature increased 

from 60 to 80°C. This was attributed to the increase in drying temperature and hydrophilic 

tendency of the starch increased alongside. In [31] reported that at higher temperature, starch 

expands rapidly especially in the amorphous region. Expansion of the starch enables more 

water to be absorbed in the amorphous space of starch, which leads to a swelling phenomenon. 

Flours with high WAC find useful applications as functional ingredients in bakery products as 

this could prevent staling by reducing moisture loss [32]. WAC is also important in the 

development of ready-to-eat foods and a high absorption capacity may assure product 

cohesiveness as reported by [33]. The result obtained shows that the hot-air oven dried 

watermelon rind flours; red and yellow-fleshed variety has a good ability to bind water. This 

result suggests that they could be used in the bakery industry. 
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Comparing the different drying treatments, the hot-air oven drying method had the higher value 

obtained for the oil absorption capacity (OAC) (3.27-3.42 g of oil/g of sample for red variety; 

2.69-3.44 g of oil/g of sample for yellow variety), while the lowest value was corresponded 

with freeze dried flour (3.08 g of oil/g of sample for red variety; 2.32 g of oil/g of sample for 

yellow variety). The same observation has been reported by [14], whereby that the OAC of 

hot-air oven dried green banana flour was higher than that of freeze dried. The results 

obtained in this study are however, in contrast with the study by [26], whereby it is reported 

that the freeze dried mango kernel powder had the highest OAC values whereas the hot-air 

oven drying dried had lower values. The disparities observed could be attributed to the method 

used as well as the varietal differences. Comparing the results from determining the OAC of 

flour samples dried by using hot-air oven dryer at temperatures of 40 and 60°C, it is clearly seen 

that an increase in air dryer temperature leads to the decrease in OAC. Proteins influence the 

OAC of food matrices, with increased non-polar amino acid residues enhancing 

hydrophobicity and fat binding through capillary action. In [34] reported that thermal 

treatment slightly decreased the OAC of heat treated samples, possibly due to the unfolding of 

proteins when exposed to heat, thereby decreasing the surface hydrophobicity of the proteins. 

The effect is more prevalence at high temperature as observed in the present study, resulting 

in a significantly lower OAC value of flours produced by air drying at 60°C. Hydrophobic 

proteins have higher preference for binding to lipids [35]. The absorption of oil by protein 

surfaces increases the hydrophobic interaction of proteins with flavour compounds as well as 

the binding of food to the inner walls of the mouth during mastication. Thus, OAC of food 

determines the mouth-feel, flavour retention as well as shelf stability of baked or fried foods 

and meat products especially [36].  

2.5. Total Sugar, Total Starch, Resistant Starch and Digestible Starch 

The total sugar, total starch, resistant starch, and digestible starch of all the watermelon rind 

flour samples prepared by different drying conditions are depicted in Fig. 1 (A), (B), (C) and 

(D) respectively. Freeze drying methods had the highest value obtained for total sugar content 

(30.12% for red variety; 55.72% for yellow variety), followed by hot-air drying at 60°C (25.91% 
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(A) 

for red variety; 49.67% for yellow variety) and 40°C (21.20% for red variety; 31.13% for 

yellow variety) (Fig. 1 (A)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. (A) Effect of different drying conditions on total sugar of watermelon rind flours. 

Error bars indicate the mean values of three replications ± standard deviation. Different letters 

on top of each same colour bar indicate significant different (P < 0.05) from other bars 

The total sugar of flour treated with hot-air drying and freeze-drying was observed similar to 

those found in the present work. In [37] pointed out that the freeze drying originated products 

with less reduction in sugars as compared to that of hot-air oven drying. From the result 

obtained, it is also apparent that the total sugar content increased with an increase in drying 

temperature. This is in-line with that finding reported by [38]. This trend can be partially 

explained by a higher degree of starch damage and the fact that both amylose and amylopectin 

can be hydrolyzed by amylolitic enzymes, which produces an increment in the amount of 

depleted sugars as glucose [39]. However, the relationship between starch and sugar content is 

not clear and difficult to establish because several factors influence the enzymatic process, 

such as presence of damaged starch, crystalline structure and amylose/amylopectin ratio, as 

well as other non-enzymatic processes can be simultaneously developed [39]. Contrary to this, 
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(B) 

in [37] stated that the total sugar content decreased with increasing drying temperature. They 

also concluded that the higher losses were corresponding to treatments with the higher 

temperature (60°C) and more thermal degradation. 

Fig. 1 (B) indicates that drying treatments as well as drying temperature had exert a marked 

effect on the total starch content. Based on the findings of this study, the starch content of the 

freeze dried flour was found to be significantly higher (P < 0.05) (4.72% for red variety; 5.45% 

for yellow variety) and the lowest total starch corresponds to the flour made from hot-air oven 

drying at higher temperature, i.e. 60°C (3.28% for red variety; 4.24% for yellow variety). The 

results obtained from the present study also show that the starch content decreases with the 

increase in the drying temperature. This finding could be explained by the degradation of 

starch by amylases during hot-air oven drying [40] and this is more evident for drying 

temperatures at 60°C, corresponding to the enzymatic optimum temperatures [12].  

Fig.1. (B) Effect of different drying conditions on total starch of watermelon rind flours 
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Error bars indicate the mean values of three replications ± standard deviation. Different letters 

on top of each same colour bar indicate significant different (p < 0.05) from other bars 

Fig. 1 (C) demonstrated that the resistant starch content of the freeze dried flour was found to 

be the lowest (2.24% for red variety; 2.38% for yellow variety). The highest resistant starch 

content was associated with flour prepared by drying at a 60°C (2.42% for red variety; 2.68% 

for yellow variety) and it dropped significantly (P < 0.05) with decreasing drying temperature. 

Similarly, in [41] also show that the resistant starch of acorn flours increased with drying 

temperature up to 60°C. In [42] mentioned that the major commercial source of resistant 

starch is that of high amylose starch and resistant starch increased by heating process. In the 

studies of [43-44], the thermal processing induces an increase in resistant starch values mainly 

due to amylose retrogradation. According to [42], type III resistant starch comprises 

retrograded starch and can be found in the food samples that undergone heating process. 

Therefore, it is assumed that, type III resistant starch (retrograded starch) was present in the 

watermelon rind flour prepared by hot-air drying at 60°C. The resistant starch content present 

in freeze dried flour however, is found to be the lowest among all the drying condition tested. 

This event might be attributed to the watermelon rind was frozen and the sample temperature 

decreased to -20°C within a short period of time. Under such conditions, it is expected that the 

mobility of gelatinized starch or arrangement of the gelatinized starch molecules to a more 

ordered structure did not occur or in a lesser amount [45].  
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Fig.1. (C) Effect of different drying conditions on resistant starch of watermelon rind flours. 

Error bars indicate the mean values of three replications ± standard deviation. Different letters 

on top of each same colour bar indicate significant different (p < 0.05) from other bars. 

In general, a noticeable difference was observed between the digestible starch content of all 

the watermelon rind flour samples prepared by different drying treatments (Fig. 1D). The 

digestible starch content of the freeze dried flour was significantly higher (P < 0.05) (2.48% 

for red variety; 3.07% for yellow variety) than those produced by the air drying methods 

(0.86-1.56% for red variety; 1.57-2.28% for yellow variety). It is also apparent that 

incremental increase in hot-air drying temperature, digestible starch content decreases. This 

event could be attributed to the lower resistant starch content of the freeze dried flour and 

flour made from air drying at 40°C. The overall results obtained showed that good quality 

flour in terms of total amount of sugar, starch and digestible starch can be produced by 

utilising the freeze drying treatment method. However, freeze dried flour contains a low 

amount of resistant starch compared to flour made using the hot-air oven drying process.  



L.H Ho  et al.            J Fundam Appl Sci. 2017, 9(2S), 898-923               913 
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Fig.1. (D) Effect of different drying conditions on digestible starch of watermelon rind flours 

Error bars indicate the mean values of three replications ± standard deviation. Different letters 

on top of each same colour bar indicate significant different (p < 0.05) from other bars. 

 

3. EXPERIMENTAL 

3.1. Materials 

Watermelon (Citrullus lanatus) samples (both red and yellow variety) were obtained from 

commercial growers in Tembila, Besut, Terengganu, in October 2015. The watermelons were 

selected according to the guidelines as described by [46] whereby the characteristics of ripe 

watermelons should include the yellowish-cream ground spot, shining skin, dispersed stripes 

and producing hollow sound when flicked. All the chemicals used in this study were of 

analytical grade. 

3.2. Watermelon Rind Flour Preparation 

The watermelon samples were washed and the flesh, rind, and peel were separated. The 

peeled melons were cut transversely between the bloom and stem ends. Cut watermelon 

samples were sliced to obtain the rind (white area part). The rind samples were sliced into 
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uniform pieces using industrial fruit slicer (Santos Vegetable slicer 48, Lyon, France), and 

then dried in laboratory dryers (Tech-Lab, FDD-720, Selangor, Malaysia) for overnight. 

Drying temperature was set by the built-in dial thermostat and maintained at temperature of 

40 or 60°C for the preparation of both red and yellow variety watermelon rind flour produced 

by drying at 40 and 60°C respectively (R40 and Y40 are the abbreviations for red and 

yellow-fleshed watermelon rind flour produced by drying at 40°C respectively; R60 and Y60 

are the abbreviations for red and yellow-fleshed watermelon rind flour produced by drying at 

60°C respectively). 

To prepare freeze dried watermelon rind flour (RFD and YFD are the abbreviations for red 

and yellow-fleshed watermelon rind flour produced by drying in a freeze dryer respectively), 

the watermelon rind samples were frozen overnight at -18°C and lyophilized in a freeze dryer 

(SP Scientific, 25 L Genesis SQ Super ES-55 Pilot, Pennsylvania, USA) for 2 days. The dried 

watermelon rind samples were ground using a laboratory mill and sieved into fine powder by 

using mechanical sieve shaker (250 μm). All samples were kept in an airtight plastic container 

and stored in chiller prior to analysis. 

3.3. Colour Measurement  

Colour measurement of the flour sample was done in terms of the Commission Internationale 

de L’Eclairage (CIE) L* a* b* scale where L* represents the degree of lightness (0° = black, 

100° = white), a* denotes the red/green value (+value = redness, -value = greenness) and b* 

represents the yellow/blue value (+value = yellowness, -value = blueness). The colourimeter 

(Konica Minolta, CR-400/410, Tokyo, Japan) was calibrated with white calibration tiles 

provided with the instrument prior to analysis.  

3.4. Water Activity (aw) Measurement  

Water activity (aw) of the flour sample was measured by using water activity meter 

(Decagon’s AquaLab Series 3, Pullman, USA) at 25°C. Samples (about 2 g) were evenly 

placed into plastic cells and were allowed to equilibrium within the headspace of the sealed 

chamber. The reading was then recorded when equilibrium was achieved [19].  
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3.5. pH Measurement  

A benchtop pH meter (Thermo Scientific Orion 3-Star, Massachusetts, USA) was calibrated 

with standard buffer solution of pH 4.0, 7.0 and 10.0. Flour sample (0.5 g) was weighed into a 

100 mL beaker and 10 mL of distilled water was added to obtain slurry. The pH was then 

measured by inserting directly the electrode that had been pre-rinsed with distilled water into 

10 mL of slurry in a beaker. The pH electrode was allowed to stabilize before recording. 

3.6. Total Titratable Acidity Analysis 

Total titratable acidity of the flour sample was determined according to the method as 

described by Bainbridge et al [47] with slight modifications. Flour sample (0.5 g) was 

weighed into a 100 mL beaker and 10 mL of distilled water was added to obtain slurry. The 

slurry was then added with 5 drops of phenolphthalein indicator and titrated against 0.1 N 

sodium hydroxide (NaOH) solution until the mixture turns pink. The titre volume was 

recorded and the total titratable acidity in the sample was expressed as percentage of malic 

acid (acid factor used: 0.067).  

3.7. Total Soluble Solid Measurement  

Flour sample (0.5 g) was diluted with 10 mL of distilled water and the total soluble solids 

content was determined using refractometer (measurement range of 0-2 °Brix) (ATAGO, 

MASTER-50H, Tokyo, Japan) that come with an automatic temperature compensation 

function. The result was expressed as °Brix.  

3.8. Bulk Density Measurement  

Bulk density of the flour sample was determined using the method of [48]. A graduated 

cylinder tubes were weighed and flour sample filled to 5 mL by constant tapping until there 

was no further change in volume. The contents were weighed and the difference in weight 

was determined. The bulk density was expressed as gram per mL of the sample (g/mL).  

3.9. Total Sugar Determination 

Total sugar content of the flour sample was evaluated based on phenol sulphuric acid method 

as described by [49] with slight modifications. Flour sample (50 mg) was extracted with 80% 

ethanol (5 mL) and then boiled in a water bath at 95°C for 10 min. The extraction process was 

repeated for three times. After each extraction, the tube was centrifuged at 2,500 rpm for 5 
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min and the supernatants of the three extractions were combined for sugar analysis. To 0.5 

mL of the ethanol extract, 1 mL of 2% phenol solution and 2 mL of concentrated sulphuric 

acid (H2SO4) were added. The capped tubes were then incubated in a water bath at 22°C for 

30 min. The absorbance of the sample was read at 490 nm using a UV-VIS spectrophotometer 

(Shimadzu, UV mini-1240, Kyoto, Japan). The amount of sugars was determined by reference 

to a standard curve prepared with working standards containing up to 100 mg/ L of 

D-glucose.  

3.10. Total Starch Determination 

Total starch in the sample was determined according to the method as described by [50]. 

Flour sample (50 mg) was added with 6 mL of 2 M potassium hydroxide (KOH) and then 

incubated in a shaking water bath at 27°C for 30 min. After this, 3 mL of 0.4 M sodium 

acetate buffer (pH 4.75) and 60 μL of amyloglucosidase were added to the suspension and 

then further incubated for 45 min at 60°C. A standard curve of glucose solution was prepared. 

The absorbance of the sample was read against a reagent blank (glucose oxidase/peroxidase 

reagent) at 500 nm. Total starch was calculated as mg of glucose × 0.9 (conversion factor). 

3.11. Resistant Starch and Digestible Starch Determination 

Resistant starch was determined according to the direct method as described by [51]. In brief, 

100 mg of sample was added with 10 mL of potassium chloride-hydrochloric acid (KCl-HCl) 

buffer (pH 1.5) and 0.2 mL of pepsin solution. The mixture was then incubated in a water 

bath (at 40°C for 60 min), followed by the addition of 9 mL of 0.1 M Tris-maleate buffer (pH 

6.9) and 1 mL of α-amylase. The mixture was further incubated for 16 h in a water bath at 

37°C. Followed by this, the sample was washed twice with distilled water and 3 mL of 

distilled water was added to the obtained residue. To this, 3 mL of 4 M KOH was added and 

incubated for 30 min at room temperature with constant shaking. Approximately 5.5 mL of 2 

M HCl, 3 mL of 0.4 M sodium acetate buffer (pH 4.75) and 80 µL of amyloglucosidase were 

added into the mixture. This mixture was then placed in a water bath at 60°C for 45 min. A 

standard curve of glucose solution was used. The absorbance of the sample was read against a 

reagent blank (glucose oxidase/peroxidase reagent) at 500 nm. Resistant starch was calculated 
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as mg of glucose × 0.9 (conversion factor). The digestible starch of the samples was obtained 

by calculation (Digestible starch = Total starch-Resistant starch) [50]. 

3.12. Functional Properties 

Water absorption capacity (WAC) and oil absorption capacity (OAC) of flour sample were 

determined in accordance to [52], but with slight modifications. Flour sample (0.5 g) was 

weighed into a 50 mL graduated conical centrifuge tubes and about 10 mL of water (for WAC 

analysis) or refined vegetable oil (for OAC analysis) was added. The suspensions were 

allowed to stand at room temperature (30 ± 2°C) for about 1 h and then centrifuged at 4,000 

rpm for 30 min. The supernatant was then decanted and discarded. The weight of water or oil 

absorbed by the flour sample was calculated and expressed as grams of water or oil absorption 

based on the original sample weight, i.e. g of water/g of sample and g of oil/g of sample 

respectively. 

3.13. Statistical Analysis 

Statistical analyses were conducted using Statistical Package for the Social Sciences version 

17.0 software. The results obtained from the present study are represented as the mean values 

of three individual replicates ± the standard deviation (S.D.). Significant differences between 

the mean values were determined using Duncan’s multiple range tests at a significance level 

of P < 0.05. 

 

4. CONCLUSION 

Different drying conditions had a significant effect (P < 0.05) on the physicochemical and 

functional properties of the watermelon rind flour, except for total soluble solid content. In a 

comparison of hot-air oven drying and freeze drying processes, the latter resulted in flour with 

better quality in terms of colour parameters, pH, total titratable acidity, total sugar, total starch 

and digestible starch. However, freeze dried flour had significantly lower amount of resistant 

starch when compared to those of hot-air dried flour samples. When the amount of resistant 

starch present is not a critical factor in the end product, freeze drying may be considered the 

best method to be utilized for the production of watermelon rind flour. In contrary, when high 

resistant starch end products are of interest, hot-air oven drying at 60°C would be the suitable 
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drying method. Although freeze drying produced watermelon rind flour with better quality, 

however flour produce through hot-air oven drying at 60°C is more economical. With their 

relatively lower aw and pH values, these watermelon rind flours are expected to have a long 

shelf life. Reduction in packaging and transportation cost due to their low bulk density value 

also makes hot-air oven drying at 60°C to be more economical, hence lowering the cost of the 

end product.  
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