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ABSTRACT 

This paper deals with development of computational schemes to solve of system equations 

with lagging argument governing the rainwater runoff along the surface catchment and 

transport of impurity which permeates into the water flow from soil at the certain areas of this 

surface. This system consists of two types of equations: the first of them describes the 

changes of water layer thickness over the slope surface given the precipitation and 

evaporation, and the second one – the mass transfer of impurity coming into the surface water 

during its filtration in zone of incomplete saturation of soil. Computational scheme to solve 

the system of nonlinear differential equations are developed with the finite-difference 

methods using a priori information about the solution behavior. The numerical model is 

implemented in the software for computer simulation of the processes with simultaneous 

graphic visualization of the computing results.  

Keywords: Finite-Difference Schemes, Computational Algorithm, System Equations, 

Lagging Argument, Runoff, Transfer of Contaminant, Catchment  

 

1 INTRODUCTION 

In our previous publications [1] we have developed the mathematical model of runoff along 

the surface catchment taking account precipitation, evaporation, transport of impurity in 
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water, its filtration in zone of incomplete saturation of soil, sorbtion and adsorption of 

pollutant in soil. The total system of equations is subdivided on two sub-systems: the 

differential equations [2, 3] governing the water runoff based on the concept of two-

dimensional kinematic wave [4, 5] and the equations describing the transport of contaminant 

incoming to the water stream from soil. 

The present paper is a continuation of studies [1 – 3] and is devoted to develop the numerical 

and algorithmic models for calculation of the rainwater runoff. But before we begin the 

description of these results, we shall briefly formulate the mathematical model and the main 

notation here for completeness:  
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where x  and y  are spatial coordinates; t  is the time; ( , , )U x y t  is the thickness of the water 

layer at the catchment surface; ( , , )x y t  is water content in coil within zone of incomplete 

saturation («ZIS»); m  is the porosity of this area; ( , , )C x y t  is the impurity concentration in 

water solution of the surface flow; ( , , )sC x y t  is the similar characteristic of the water solution 

in the soil thin boundary layer, by which water enters the soil from earth surface; h  is the 

thickness of boundary layer; ( , , )x y tV  is the velocity vector of the surface flow; ( , )H x y  is 

the ground elevation above sea level; n  is the roughness coefficient of the catchment surface 

D  with boundary w r    , w  is the watershed line; r  is intersection of this line and 

the river surface at its lower course; 
w

nV


 is the normal velocity at the boundary w ; cD  is 

the area of contamination source with the initial concentration  0 ,sC x y ; 1( , , )x y t  is the 

function that specifies amount of precipitation and evaporation;   is the water density; g  is 
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the gravity acceleration; r  is the average radius of pores in zone of incomplete saturation;   

is the surface tension coefficient;   is the wetting angle;   is the viscosity of water solution; 

( , , )x y t  is desorption of impurity from the surface of pores in soil by rainwater; ( , , )s x y t  

is the amount of the desorbed impurity in water, moving in the porous medium, per unit 

volume of soil;   and   are coefficients of desorption; /xZ Z x    ; /yZ Z y    . 

So, the problem is formulated as follows: we need to determine the solution  , , 0U x y t  , 

 , ,x y t ,  , ,C x y t  and  , ,sC x y t  of equations (1) – (4) with initial and boundary 

conditions (5) and estimate the water flow rate in cross-section r  of river at its lower course. 

 

2 FINITE-DIFFERENCE METHODS AND COMPUTATIONAL ALGORITHM 

1. Finite-difference scheme. The system of nonlinear differential equations for the runoff 

along the surface catchment and transfer of impurity coming into the stream from soil is 

solved by the finite-difference methods proposed in [2]. The initial region solution is 

subdivided into the unit cells of the grid hD  with the uniform step xh  and yh  along the axes 

Ox  and Oy  in such a way that the boundaries of cells were located at the boundary  . Let us 

designate boundary of grid and the time step as h  and  . 

It is typical of the surface runoff that 0Z  , and, as a rule H U   . Given the high 

uncertainty of the initial data let us assume in third and fourth equations (3) that h u   . It 

would seem that the derivatives xU  , yU   can be ignored in these equations, and one assume 

that x xZ H  , y yZ H  . However, at certain conditions xU  , yU   may have appreciable effects 

on the magnitude of the surface runoff. Therefore, the derivatives xZ  , yZ   in third and fourth 

equalities (6) can be approximately written in the following form x x x xZ H U H     , 

y y y yZ H U H     . This allows to determine the values of these derivatives without error if 

the gradient Z H    is directed along the corresponding coordinate axis, i.e. at 0xZ    or 

0yZ   . Taking account of the characteristic features of the considered problem, we develop 

the implicit difference scheme consisting of linearized algebraic equations in which flows of 

water and of solution across the boundaries of the unit cells are approximated by the 

following relationship: 
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It must be kept in mind that the real profile of the surface catchment can include 

topographical data at , 1,i j i jH H   and , , 1i j i jH H  , so the gradient of inclination is directed 

along the diagonal of the unit cell, and liquid flows from the cell ,i jD  into the one or even two 

cells adjoining to diagonal. In this case we need to determine not only the flows 1/2,i jV 
  and 

, 1/2i jV 
  but also the flows 1/2,i jW 

  from cell ,i jD  into cells 1, 1i jD    and also , 1/2i jW 
  from cell 

,i jD  into cells 1, 1i jD   . To define these flows we introduce a new type of cells instead of the 

rectangular cells. Let , 1, 1i j i jH H   . If both inequalities 1, 1 1,i j i jH H    and 1, 1 , 1i j i jH H    
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are satisfied then the main fluid flow is directed along the diagonal from cell ,i jD  to the cell 

1, 1i jD   , and it is necessary to define the values of 1/2,i jW 
  and , 1/2,c i jW 

 . It should be noted that 

if any one or more of these three conditions is not met, then 1/2, 0i jW    and , 1/2, 0c i jW   . The 

modified cells ,i jD , 1,i jD  , , 1i jD   and 1, 1i jD    are shown in the Fig. 1.  

 

Fig.1. Modification of cells in the case when the runoff is directed along the diagonal from 

the cell ,i jD  to the cell 1,i jD   

 

By the construction of these cells, the boundary 1 2M M  is orthogonal with the segments 1 1C D  

and 2 2C D  which connect the midpoint of the respective sides of the rectangular cells. The 

length l  of the segment 1 2M M  is equal to 2 2/x y x yl h h h h  , and the «diagonal» flows are 

determined by formulas:  
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Let us define the flows 1 , 2 , 3  and 4  through the boundaries 1 1 1AC M , 1 1 1M D B , 2 2 2A C M  

and 2 2 2M D B , respectively. The components of these flows are defined from the relationships 

(6), (8) in segments 1 1AC , 1 1D B , 2 2A C  and 2 2D B , but in doing so, their magnitudes must 

become less by half due to decreasing of length of boundaries. Consider now the other 

segments 1 1C M , 1 1M D , 2 2C M  and 2 2M D . For , 1,i j i jH H   the flow is directed from the cell 

,i jD  into the cell 1, 1i jD    through the cell 1,i jD  . We can assume that boundary 1 1C D  goes 

along the stream-line and the normal flow velocity at this boundary is zero. Hence, the flows 

across the boundaries of 1 1 1AC M  and 1 1 1M D B  is equal to 1/2,0.5 i jV 
  and , 1/20.5 i jV 

 , 

respectively. If , 1,i j i jH H   then the normal and tangent components 1  and 1  of the 

gradient surface inclination at 1 1C D  can be approximated in the following form: 



 A. Chekalin et al.                        J Fundam Appl Sci. 2017, 9(2S), 890-902                        895 

      1/22 2
1 1, , 1, 1, 1 ,y x

i j i j i j i j x y
x y

h h
H H H H h h

h h




   

 
     
  

       1/22 2
1 1, 1 , .i j i j x yH H h h



       

Similarly, the approximations for the normal and tangent components 2 , 2  of this gradient 

at the boundary 2 2C D  for , , 1i j i jH H   are: 

      1/22 2
2 , 1 , , 1 1, 1 2 1,   .yx

i j i j i j i j x y
y x

hh
H H H H h h

h h
  



   

 
      
  

 

Since the segments 1 1C M , 2 2C M  have the same length 2 2 2
1 0.5 x x yl h h h  , and 

1 1M D = 2 2M C = 2l = 2 2 20.5 y x yh h h , the flow 1 , 2 , 3 , 4  across the boundaries 1 1 1AC M , 

1 1 1M D B , 2 2 2A C M , 2 2 2M D B  are determined by the relationships: 

    2/3 1/42 2
1 1, 1, 1, 1/2, 1 1 10.5 ,t t

i j i j i jU U V l  


      (10) 

    2/3 1/42 2
2 1, 1, 1, 1, 1/2 2 1 10.5 ,t t

i j i j i jU U V l  


       

    2/3 1/42 2
3 , 1 , 1 1, , 1/2 1 2 20.5 ,t t

i j i j i jU U V l  


       

    2/3 1/42 2
4 , 1 , 1 1 1/2, , 1 2 2 20.5 .t t

i j i j i jU U V l  


       

Thus, instead of the formulas (6) we have: 

1 1/2 2 1 1/2

1/2, 1, 1/2
1/2 1 1/2

, , , , , ,
  

0

( ) ( )

( ) (, , , 0 , , ) ,
i j h i j h

i j i j
i j h i j h

x y D x y D
V V

x y x y

   
  

  

  
    

   

3 1/2 4 1/2 1

, 1/2 1/2, 1
1/2 1/2 1

, , , , , ,
  

0

( ) ( )

( ) (, 0, .), , ,
i j h i j h

i j i j
i j h i j h

x y D x y D
V V

x y x y

   
  

  

  
    

   

It is obvious that area of four modified unit cells are changed, namely, 

, 1, 1 9 / 8i j i j x yS S h h   , 1, , 1 7 / 8i j i j x yS S h h   . Note that if all the diagonal flows are equal 

to zero in the cell ,i jS , then this cell doesn't change and its area is ,i j x yS h h . The values of 

other the «diagonal» flows 1/2,i jW 
  and , 1/2i jW 

  are determined in a similar way. It should be 

noted also that, given the great uncertainty of the input data, we can use more simple 

approximation for the flows across these boundaries, neglecting the second term in the 

brackets in (10), i.e. ignoring the flows across the boundaries 1 1 1C M D  and 2 2 2C M D .  
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As is known, the derivatives in the convective terms of the transfer equations should be 

approximated by the upstream finite differences, using the values of the unknown function at 

the unit cell from which the liquid flows out: 
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The conservative finite-difference scheme, approximating differential equations (1), (2) in the 

grid-points of the discrete domain hD  can be written as: 

 , , , , , 1, ,,
,t t

i j i j i j i j i j i ji j
V W S U U           
    (12) 

    1, , 1 , , , , , , , , ,,

1
,        ,

t
t t t t t t t t

i j c c i j i j i j i j i j i j i j i j i ji j
t

d V W S C U C U C


        



               (13) 

    , , , , , , ,1 ,t t t t
s i j s i j s i j i jh m C C h            (14) 

where , 1/2, 1/2, , 1/2 , 1/2[ ] .i j i j i j i j i jY Y Y Y Y             It is convenient to rewrite the equations (13) 

and (14) in the following form: 

 , , , , , , , t t t t
s i j i j c s i j i jC C b C C              ,

1cb
m





 

 (15) 

   , , , , , , , , ,,
,t t t t t t t

i j i j i j i j c i j i j c s i j c c i ji j
C U a C U a C V W S                   (16) 

 
1

 .
1 /c

m
a

m hh   



  

 

As it is shown in our paper [1], in the initial time the surface layer water is not formed as 

precipitation is completely absorbed into the zone of incomplete saturation and in this case the 

lag time 0t  at the arising of surface runoff water and the retarded argument d  are determined 

from equations:  
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 
   

1 0
1 2 2

1 0 1 0

1 ,
2 2

t ab
t

a t a t



 

   
  

         
   

1 0
0 2

1 0 1 0

1
2 2

tb
A t

a t a t



 

 
   
  

  

in each cell. Here 1 0 dt t   . It should be noted that the intensity 1  of precipitation and 

evaporation of water is usually determined by its approximate average value over the area and 

time. Therefore, the lag time 0t  and the retarded argument , ,d i j  can be obtained at 1 2a   

from equalities [1]:  

1
0 2

1 1 1

1 ,
2 2

b
t

a a


  

 
   
  

      0 1 2
1 1

2
1 1

2d

b a a
t t

a


 
 

       
 

. (17) 

If parameters a , b  and 1  in Eq. (17) are functions of the coordinates ( , )x y  then the values 

of 0t  and d  depend on the mesh node ( , )i jx y . In this case a minimum value 

 0 0min ,
h

i jD
t t x y  is defined, and from this point on it is assumed by the new initial moment 

in computation. Obviously, 0 0t   if 0a b   in some mesh nodes (e.g., if they located in the 

river bed). In those unit cells where the lag time is greater than 0t , it is required to recalculate 

the values of 0t  with account for possible inflows from the surrounding cells. Actually, in 

computation with the use of the implicit scheme already at the first point of time 0t  , the 

flows of water arise across the boundaries of neighboring grid cells in which 0 0t t . Let, for 

example, 0 0t t  in the unit cell ,i jD  and water enters into it from the surrounding cells. 

Hereinafter, we denote the total amount of all flows coming into the grid cell as w , and the 

intensity of water inflow into the cell at 0 0t t  as 1, ,w i jw   . Since at 0 0t t  water, 

inflowing into the unit cell ,i jD , is completely absorbed by the soil of ZIS, so the water 

amount 0( )A t  in this zone at time 0t  is defined as: 0 0 0 0( ) ( ) ( ) ,wA t A t t t     where 0( )A t  is 

amount of water in ZIS at 0t t . In this case 
0

0 1, ,

0

( ) .
t

i jA t dt   Thus, the new values 0t  and d  

are determined from the same system equations (8) and (9), but with other right-hand parts. 

The solution of this system is: 

0
0 0

( )1
1 .

2 1 2w ww

A tb
t t

a a 

 
      

 (18) 

If 0 0t t    then the retarded argument , ,d i j  is calculated from formula  
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   0
, , 0 2

1 1 2
2d i j w w

w

A tb
t a a

a
  


        (19) 

and the water content ,
t
i j
  in zone of incomplete saturation is defined by equality [1] 

     22
d d da t b t a t           (20) 

at , ,d d i j  . The thickness ,
t
i jU   of water layer is calculated from the algebraic equation (12) 

for discrete time 0 0( )t t    .  

If 0 0t t    then the above procedure computation of values 0t  and , ,d i j  is similarly 

repeated in the next time point. 

In much the same way as reported previously the problem is solved at formation of such 

regions on the surface catchment in which the water layer temporarily disappears in result of 

its absorbtion by soil. Let ,
t
i j
  be the water amount in ZIS, calculated from formula (20). 

Then from the inequality  

, , , , 1, ,/ 0t
i j i j i j i j i jw S U         

it follows that at , 0i jU   the rainwater is completely adsorbed and , 0i jU  . Therefore, ,
t
i j
  

should be calculated not from formula (20) but from equation 

, , , 1, , ,/ .t
i j i j i j i j i jU w S         (21) 

If , 0i jU   then the lag time 0t  is defined from formula (18) at 0 ,( ) i jA t    and, if it is 

necessary the values , ,d i j  are also recomputed from relationship (19). As well as we do 

earlier, at 0 0t t    the retarded argument , ,d i j  is computed from formula (19), the amount 

of water ,
t
i j
  in ZIS – in accordance with equality (20) for the current value of , ,d i j , and the 

thickness of the water layer ,
t
i jU   – from the difference equations (12) at the time point 

0 0( )t t    . At 0 0 )t t    the thickness , 0t
i jU   , the mesh function ,

t
i j
  is defined from 

formula (21), and the values of 0t  and , ,d i j  are calculated all over again at the next point in 

time. 

With the appearance of region crD  with vanishing water layer the concentration of 

contaminant becomes equal to zero: , 0t
i jC   . However, the impurity can flow into the grid 

cells located at the boundary cr  of this region from the adjacent unit cells. This contaminant 

is completely absorbed by soil of ZIS. Let us denote the total quantity of all the incoming 
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flows with the impurity into the cell ,i jD  as cw , and the impurity concentration of in the 

water solution which enters into the zone of incomplete saturation over time   as C . Now we 

can write the following relationship for C :    , , , , , ,t
i j i j c i j i j i jC C U w S        where 

, ,( )t
i j i j
   is calculated from equation (21). Then the function , ,

t
s i jC   is defined as: 

 , , , , , , .
1

t t t
s i j s i j s i jC C C C

m
 


   

 
 (22) 

2. Computational algorithm. Difference scheme (6) – (22) consists of two systems of linear 

algebraic equations. The first of them is obtained in result of linearization of the implicit 

difference scheme in respect to the functions U  and does not depend on concentration C . 

The second one is used to determine of C  from system of linear equations after computation 

of U . Both systems can be transformed to diagonal form by renumbering the grid cells in a 

different way: either in descending order of Z  or of H . This allows us to solve equations 

sequentially starting with the first equation corresponding to the maximum height of the 

catchment relief. 

The first procedure requires the transformation of the system matrix at every time point. The 

second approach allows us to do such transformation only once in the beginning of the 

problem solution, that significantly reduces the calculations required and overall computation 

time. However, in those situations when 1, , 1, ,( )( ) 0i j i j i j i jH H Z Z    , the runoff can goes 

upslope (e.g. at flooding of the river banks during the period of overflow), so that the 

coefficient matrix of a system of linear algebraic equations loses its diagonal form. To avoid 

this, we impose an additional conditions on 2/3
1/2, 1/2,·( )t t

i j i jU U
  , 2/3

, 1/2 , 1/2·( )t t
i j i jU U

  , 1/2,
t
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, 1/2
t
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The computational algorithm is the following. Let the values of the difference functions ,
t
i jU , 

,
t
i j , ,

t
i jC  and , ,

t
s i jC  are determined in the mesh nodes ( , )i jx y  at the time point t . With these 

values the flows 1, 1/2,i jV  , 1, , 1/2i jV  , 1, 1/2,i j  , 1, , 1/2i j   and the water flow rate of river through its 

cross-section r  are calculated at the boundaries of unit cells from relationships (6), (8). 

Then, starting with the first cell, we calculate the water amount ,
t
i j
  in zone of incomplete 

saturation, the thickness ,
t
i jU   of the water layer on the catchment surface and the values of 

the fluid flows going out from the unit cells. If , 0t
i jU  , then the lag time 0t  and the retarded 
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argument d  are additionally computed. The total amount of water crossing the boundary r  

is determined as sum of the corresponding flow-rates with time in the nodes of the shifted grid 

located at r . After this the flows , 1/2,
t

c i jV  , , , 1/2
t

c i jV   and , 1/2,
t

c i jW  , , , 1/2
t

c i jW   are calculated from 

(7), (9). At last, the impurity concentration ,
t
i jC   in the rainwater runoff is determined from 

the system equations (16) and the contaminant concentration , ,
t
s i jC   in fluid moving in the soil 

– from the formulas (15). 

Solution of a problem at the time point t   is finished after the calculation of disbalances to 

check the computation accuracy, data preparation for computation at next time point and 

checking the condition of the end of simulation. 

 

3 RESULTS AND DISCUSSIONS 

The developed numerical model and computational algorithms were implemented in the 

program package SURFLOW-C to simulate the rainwater runoff along with simultaneous 

graphic visualization of the computational results. The surface flow and migration of 

contaminant in the Mesha river basin of Tatarstan Republic are numerically studied with the 

use of natural data. In particular, the change of the water layer thickness in the intersection of 

the watershed line and river surface at its lower course has been studied. It is shown that at the 

initial stage the water level smoothly increases due to the catchment slope in the vicinity of 

this site of the river. But very soon this level begins sharply rises. After this it gradually 

stabilizes because of water flow from more outlying sites of the river network and its feeders. 

The maximal level is reached after stopping of precipitation. In what follows, the thickness of 

water layer over entire surface catchment gradually decreases. 

 

4 SUMMARY 

We have developed the finite-difference scheme and the corresponding software to solve the 

system of nonlinear differential equations with provision for a priori information about the 

solution behavior. The principal feature of this scheme is the use of the modified grid cells for 

computation of «the diagonal flows» between the neighbor cells.  

In detail the features of the water runoff and the impurity migration in the river basin will be 

investigated with the use of natural data and presented in our future publications. 

 



 A. Chekalin et al.                        J Fundam Appl Sci. 2017, 9(2S), 890-902                        902 

5 ACKNOWLEDGEMENTS 

The work is performed according to the Russian Government Program of Competitive 

Growth of Kazan Federal University. 

 

BIBLIOGRAPHY 

[1] V.M. Konyukhov, A.A. Saveliev, M.G. Khramchenkov, A.N. Chekalin, N.E. Galiullina, 

“Mathematical and Numerical Model of the Rainwater Runoff along the Catchment Surface 

in the River Basin”, Scientific and Technical J. Voprosy Atomnoy Nauki i Tekhniki (VANT), 

Seriya: Mathematical Modeling of Physical Processes, №. 3, pp. 41–54, 2013 (in Russian). 

[2] V.M. Konyukhov, A.A. Saveliev, M.G. Khramchenkov, A.N. Chekalin, “Numerical 

Modeling of the Water Runoff along the Surface Catchment”. In: XIV International 

Conference. Supercomputing and Mathematical Modeling. (Sarov, Russia, 2012, October, 1 – 

5), Sarov: RFNC-VNIIEF, pp. 374–382, 2013 (in Russian). 

[3] A.N. Chekalin, M.G. Khramchenkov, V.M. Konyukhov, I.V. Konyukhov, A.N. Garaeva, 

“Mathematical Modeling of Rainwater Runoff over Catchment Surface and Mass Transfer Of 

Contaminant Incoming To Water Stream From Soil”, J. of Fundamental and Applied 

Sciences, vol. ??, pp. ??–??, 201?. 

[4] S.N. Antontsev, G.P. Epihov, A.A. Kashevarov, “System mathematical modeling of water 

exchange”, Science, Siberian Branch, Novosibirsk, 1986 (in Russian). 

[5] P.S. Eagleson, “Dynamic Hydrology”, McGraw-Hill, New York, 1970. 

[6] B. Ambroise, J. Freer, K.J. Beven, “Generalization of the topmodel concepts: topographic 

indices of hydrological similarity”, Water Resources Research, vol. 32, pp. 2135–2145, 1996. 

 

How to cite this article: 

Chekalin A, Khramchenkov M, Konyukhov V, Konyukhov I, Garaeva A. Numerical model of 
rainwater runoff over the catchment surface and transport of contaminant incoming to water 
stream from soil. J. Fundam. Appl. Sci., 2017, 9(2S), 890-902. 

 


