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ABSTRACT  

This paper focuses on a nonlinear modelling for a time

by employing a polynomial Nonlinear Auto

structure based on Binary Parti

identification time-varying steam temperature data was collected from 

Pilot Plant. Three models’ criterion were implemented

Descriptor Length (MDL) and Final Prediction Error (FPE) for optimization process of 

NARX-based BPSO modelling. The results demonstrated that the FPE criterion model was 

presented a slightly better model with lowest CRV from 

and a  minimum number of parameter in the output model. The accuracy was evaluated by 

the high R-squared, small MSE value and passed all the correlation and histogram tests.

Keywords: identification; distillation column; temperature; NARX; particle swarm 

optimization. 
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1. INTRODUCTION 

A system identification involves linear and nonlinear modelling [1-3]. A distillation column 

has reported by a broad application of the nonlinear dynamic behaviour [4-8].  

Unfortunately, a linear modelling for the nonlinear system  demonstrated some limitation 

due to the robustness and accuracy of the system [9]. Moreover, greater presentation and 

potentiality for the nonlinear model was obtained compared to lesser correctness and 

inadequate fit resulted in linear model modelling for nonlinear system representation [10-11]. 

The adequacy of nonlinear dynamic behaviours of the nonlinear system is demonstrated 

substantially and can be simply applied to control design. Furthermore, a time-varying and 

nonlinearity behaviour of the real system such as distillation column has been a serious matter 

in such cases like loss detection which most existing formulated models have a limitation in 

identifying this physical progression [12-13].  

However, there is still a need for time-varying NARX modelling for a distillation column 

[13-15]. Furthermore, Binary Particle Swarm Optimization (BPSO) algorithm has not been 

practiced for the mentioned distillation column using polynomial time-varying NARX model 

[16-17, 28]. 

Time-varying dynamic behaviour is a progressively vital area in nonlinear system 

identification. Previous studies have magnificently developed the nonlinear and time-varying 

NARX model for semisubmersible platform, dielectric elastomer actuators and human EEG 

data [13-14, 18]. Recently, time-varying modelling has proven the strength and accuracy 

finding of the nonlinearity process. These highly nonlinear responses were revealed through 

the accurate nonlinear model by selecting the significant terms in the model. 

The structure selection aim is model parsimony which it should capable of clarifying the data 

dynamics by means of the last regressor terms number [19]. Model parsimony aims the best 

model with the to the lowest degree complexity between multiple model structures. 

Information criteria such as AIC, FPE and MDL are used to impose parsimony by integrating 

difficulty drawbacks in accession to residual fit [20-21]. Not only better precision but also 

skilful in the model fit enhancement and correlation violations (CRV) number decline were 

reported in the proposed BPSO method [22-24]. Additionally, for structure selection 
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optimization, BPSO needed the least iterations with well fitness values for convergence [25]. 

NARX model with BPSO offered a reliable model fit for essential oil identification and 

appropriately concealed the dynamics of the time invariant system [26]. Subsequently, the 

previous study also presented optimal swarm size for convergence using BPSO-based NARX 

for DC Motor [27]. 

The purpose of this study is to presents a time-varying polynomial NARX for steam 

temperature by utilizing a BPSO algorithm for SDPP using PRBS input signal. AIC, FPE and 

MDL were employed for a fitness assessment. 

 

2. METHODOLOGY 

The NARX model: 

y(t) = f � ��
y(t − 1), y(t − 2), … . , y�t − n��,

u(t − n�), u(t − n� − 1), … . , u(t − n� − n�)
�� + ε(t)             (1)            

The output y(t), the input u(t) and n� and n� are their corresponding maximum lags with the 

estimated model f �. Typical value 1 is set for the input signal time delay n�. 

2.1. Polynomial NARX 

NARX polynomial model: 

 y(t) =  ∑ P�θ� +  ε(t)
��

���                                    (2) 

P� = 1 for the m-th regression P� term, the m-th regression parameter θ� and the number of 

terms in the polynomial expansion n�. 

The Least Squares (LS) formulation: 

Pθ +  ε = y                                                    (3) 

2.2. Model Structure Selection: Binary Particle Swarm Optimization (BPSO) 

The Vanilla PSO algorithm: 

V�� = V�� + C�(P����− X��) × rand�+ C�(G����− X��) × rand�                                      (4) 

The velocity V�� has been employed for a particle positions alteration: 

X�� = X�� + V��                                             (5) 

where P���� = best particle’s fitness, G���� = best particle’s solution, C� = cognition learning 

rate, C� = social learning rate and rand�, rand� = random numbers (between 0 and 1). 

A bit change process in the BPSO is: 
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bin string= �
1,        X�� ≥ 0.5
0,        X�� < 0.5

�                                      (6) 

X�� has been transmitted for polynomial structure selection in BPSO for each one particle. The 

forecasting of the parameter value, θ�  utilizes QR factorization. 

P�θ� +  ε = y                                                 (7) 

P� =  Q�R�                                                   (8) 

g� = Q�
� y                                                                (9) 

R�θ� =  g�                                                               (10) 

Then, reorganizing and solving Equation (10) leads to prediction of θ�. 

θ� =  R�
� g�                                                                (11) 

2.3. Model Estimation 

The residuals Normalized Sum Squared Error (NSSE), V����(θ, Z�) based on the model 

parameters (θ) is: 

V����(θ, Z�) =  
�

��
∑ ε�(t, θ)�

���                                                   (12) 

The selection of the model order of AIC, FPE and MDL are shown in Equation (13), (14) and 

(15) respectively. 

V��� = �1 + 2
�

�
� V����(θ, Z�)                                 (13) 

V��� = �1 + log (N)
�

�
� V����(θ, Z�)                                              (14) 

V��� = �
��

�

�

��
�

�

� V����(θ, Z�)                                                     (15) 

where d = number of estimated parameters and N = data points amount. The parsimony 

principle with the least model parameters amount is required for the valuable data fit besides 

the lowest V���, V��� and V���. 

The measured steam temperature data from SDPP is divided into both training and testing sets 

for model estimation and model validation respectively. The segmentation of the data for both 

sets is based on interlacing technique that divides the dataset based on the position. Training 

and testing set contains even and odd positions data respectively. 

2.4. Model Validation 

A One-Step Ahead (OSA) prediction is: 
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y� = g��z(t)�                                                              (16) 

The regressors, z(t) and estimated nonlinear model, g� are utilized in OSA. z(t) representation 

for the NARX model is: 

z(t) = �
y(t − 1), y(t − 2), … . . , y�t − n��,

u(t − n� − 1), u(t − n� − 2), … . . , u(t − n� − n�)
�                        (17)             

The Sum Squared Error (SSE) and Mean Squared Error (MSE) are employed for residuals 

magnitude testing and model fitting problems of the regression. The SSE and MSE equations 

for a residual vector ε are: 

SSE =  ∑ (e�)
� = ∑ (y� − y��)

� �
���

�
���                                             (18) MSE =

 
∑ (��)��

���

�
=

∑ (������)��
���

�
                                                 (19) 

where y� = measured value, y�� = predicted value and n = number of samples. 

A low SSE and MSE values from the residuals magnitude indicates a good model fit. The 

performance of fit model is measured using R-Squared technique: 

R� = 1 −
∑ (������)� �

���

∑ (������)� �
���

                                                      (20) 

where y�� is mean value of y. 

The nonlinear model applies cross correlation tests for the fitness exhaustive test. The existing 

data length finite amount in correlation tests aim 95 % confidence limits. The residuals’ 

whiteness model validity for the nonlinear model is executed using the following correlation 

tests. 

θ���(τ) = E[u(t − τ)ε�(t)] = 0, ∀τ                                                (21) 

θ����(τ) = E��u�(t − τ) − u��(τ)�ε(t)� = 0, ∀τ                                       (22) 

θ�����(τ) = E��u�(t − τ) − u��(τ)�ε�(t)� = 0, ∀τ                                      (23) 

where θ����
(τ)  = correlation coefficient between signals x�  and x� , E[∎]  = correlation 

mathematical expectation, ε(t)  = model residuals = y(t) − y�(t) , τ  = lag space and u(t) = 

observed input at time t.  

The histogram examination shows the residuals distribution which necessitates a white noise 

symmetric bell-shaped dispersion. The most frequency amounts are expected to narrow off 

equally at the end of the tails and to cluster in the central. 
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2.5. Experimental Design 

SDPP system uses an immersed coil-type heater in water for steam generation. The water and 

steam temperature are supervised by the application of two resistive temperature detectors 

(RTD) PT-100 in the column. A 1 to 5 V is utilized for the resistance sensors output 

conversion for selected temperature range. Submersion heating component transmits 1.5 kW, 

240 V and 50 Hz power signal modulation with specific sampling time. All the temperature 

data are integrated through Data Acquisition (DAQ) card with the MATLAB as illustrated in 

Fig. 1.  

 

Fig.1. Steam distillation pilot plant (SDPP) system 

Fig. 2 demonstrated 18, 000 of the nonlinear steam temperature dataset using PRBS input 

from the SDPP system.  

 

Fig.2. SDPP dataset 
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Several maximum iterations, swarm sizes and random seeds parameters for optimization 

purposes have been tested. The maximum iterations discovery for each experiment leads to 

PSO search termination. Bigger potentiality in global minima searching is formed with 

greater swarm sizes based on computational rate and optimization period by the number of 

agents. Besides that, the final optimization PSO result is determined by each  V�� and X�� 

particles of the preliminary random seed. Dissimilar random seeds for repetitive tests decides 

the results consistency. Thus, the selected parameter values as in Table 1 for the fitness 

function optimal convergence searching are tested as been executed by [25, 27]. 

Table 1. BPSO parameter settings for structure selection 

Parameter Value 

Fitness Criterion AIC, FPE, MDL 

Swarm size 10, 20, 30, 40, 50 

Maximum Iterations 500, 1000, 1500 

Initial Random Seed 0, 10 000, 20 000 

Xmin 0 

Xmax 1 

Vmin -1 

Vmax +1 

C1 2.0 

C2 2.0 

 

3. RESULTS AND DISCUSSION 

As presented in Table 2, the models were compared based on the model's selection criteria as 

in Equation (13)-(15). High R-squared and low MSE values have been reported by all the 

criterion designated to the acceptable fitting results. Not only that, the small number of CRV 

was presented for the residuals of all criterion. Consequently, the FPE model was found to be 

slightly better compared to AIC and MDL models because of the lowest fitness values and the 

least CRV on the testing set.   
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Table 2. Model validation summary 

Fitness Criterion Evaluation Criterion Training Set Testing Set 

AIC 

Times Found 3 

AIC 8.0429×10-3 8.1621×10-3 

FPE 8.3150×10-3 8.4383×10-3 

MDL 7.7357×10-3 7.8503×10-3 

R-squared (%) 99.9972 99.9973 

CRV 22 23 

MSE 1.2639×10-2 1.2826×10-2 

FPE 

Times Found 2 

AIC 8.4391×10-3 8.6166×10-3 

FPE 8.7246×10-3 8.9081×10-3 

MDL 8.1167×10-3 8.2874×10-3 

R-squared (%) 99.9970 99.9970 

CRV 22 20 

MSE 1.3261×10-2 1.3540×10-2 

MDL 

Times Found 3 

AIC 8.0429×10-3 8.1621×10-3 

FPE 8.3151×10-3 8.4385×10-3 

MDL 7.7357×10-3 7.8505×10-3 

R-squared (%) 99.9972 99.9971 

CRV 22 23 

MSE 1.2639×10-2 1.2827×10-2 

In addition, a minimum number of parameters as in Table 3 was also obtained for all models’ 

criterion. In this search, the NARX-based BPSO model managed to cut down the CRV 

numbers, maintained low fitness value and the smallest quantity of parameters. The steam 

temperature NARX-based BPSO models for AIC, FPE and MDL models are reported next.  
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Table 3. Output model 

Criterion Output Model 

AIC 

y(t) = 1.0011 y(t-4) + 4.9199×10-5  u(t-4)*y(t-2) 

– 1.1082×10-2  y(t-4)*y(t-4) + 1.0624×10-3  y(t-2)*y(t-4) 

+ 2.5963×10-3  y(t-2)*y(t-3) 

+ 7.4095×10-3  y(t-1)*y(t-4) + ε(t) 

FPE 

y(t) =1.0011 y(t-4) + 4.9238×10-5  u(t-4)*y(t-2) – 2.1099×10-2  y(t-2)*y(t-4) 

+ 2.5967×10-3  y(t-2)*y(t-3) 

+ 7.4104×10-3  y(t-1)*y(t-4) 

+ 1.1078×10-2  y(t-2)*y(t-2) + ε(t) 

MDL 

y(t) = 1.0007 y(t-2) – 1.7632×10-3  u(t-2) 

+ 4.7610×10-4  u(t-1)*u(t-2) + 5.5021×10-5  u(t-4)*y(t-3) 

– 8.6475×10-3  y(t-2)*y(t-4) 

+ 8.6386×10-3  y(t-1)*y(t-4) + ε(t) 

Based on Table 3, the output models selected using different criteria were reported. 

Consequently, all the three models were found to be effective with the minimum number of 

parameters of the output model. The parsimonious model structures are an indication of good 

model fit as the minimum parameter in the output model were necessary. 

The BPSO-based NARX justification results representing the FPE model are presented. Fig. 3 

shows good model resulted by high R-squared. Additionally, small MSE value is 

demonstrated in Fig. 4. The FPE model recorded little violations in the correlation plots (Fig. 

5 until Fig. 7) and well distributed of the white noise in histogram tests (Fig. 8).  

 

Fig.3. BPSO steam temperature model fit 



M. H. F. Rahiman et al.         J Fundam Appl Sci. 2017,9(4S), 94-110             103 
 

 

 

Fig.4. BPSO steam temperature residual plot 

 

Fig.5. BPSO steam temperature correlation test (1/3) 

 

Fig.6. BPSO steam temperature correlation test (2/3) 
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Fig.7. BPSO steam temperature correlation test (3/3) 

 

Fig.8. BPSO steam temperature histogram of residuals 

Thus, the FPE model’s residual displayed small correlation as indicated within 95 % 

confidence limit in the correlation plots with low deviations number. Therefore, all criterion 

models generated for BPSO-based NARX were measured efficient and exact illustrations of 

the nonlinear system. 

The parameters adjustment for BPSO as in Table 1 was investigated. Fig. 9 reported that 

swarm size 20 showed the lowest fitness values for FPE compared to other swarm sizes and 

model criterion. Subsequently, the insignificant outcome on the fitness for the maximum 

iterations parameter was indicated in Fig. 10. As well as a small number of iterations in Fig. 
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11 which is lesser than 14 for convergence of iteration was obtained. In addition, few random 

seed values in Fig. 12 produced similar average fitness values with FPE recorded slightly 

better fitness compared to AIC and MDL.  

 

Fig.9. Average fitness vs. swarm size 

 

Fig.10. Average fitness vs. maximum iteration 

 

Fig.11. Iteration to convergence vs. maximum iteration 
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Fig.12. Average fitness vs. random seed 

 

4. CONCLUSION 

The nonlinear modelling for steam temperature using NARX-based BPSO algorithm structure 

was presented for the SDPP identification. The effects of BPSO parameter adjustment on the 

fitness was also identified. The nonlinear models recorded not only better combination due to 

its low total CRV from both training and testing sets, and small fitness value but also obtained 

lesser parameter number of the output model. Subsequently, the FPE model was observed to 

be a slightly greater model because it had low fitness values, besides the least CRV on the 

testing set compared to AIC and MDL. Subsequently, for the parameter adjustment, swarm 

size 20 showed the lowest fitness values for FPE. Another essential point, there is no 

significant outcome with the maximum iterations and random seed modification on the fitness. 

Overall, all criterion models generated for NARX-based BPSO were considered valid and 

accurate representations of the system with FPE model presented as a slightly better model 

[29]. This optimization of the nonlinear modelling is encouraging and suggest the 

opportunities for future research with another type of perturbation input signals for instance, 

Multi-level Pseudo Random Sequence (M-level PRS), Multi-Sine (M-Sine) and Random 

Gaussian Signal (RGS). 
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