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1. INTRODUCTION 

Statistical process control (SPC) is widely used to monitor, improve and achieve process 

stability in manufacturing industries. Control chart is one of the powerful and promising 

methods in SPC and it was first proposed by Walter A. Shewhart in the 1920’s [1]. Since the 

Shewhart’s pioneering work, the control chart framework has been evolving continuously and 

the application of control charts has greatly increased through a wide variety of research 

publications. For instance, control chart has been successfully applied in applications across 

diverse areas, such as ceramic substrate production line [2], healthcare [3-4], financial service 

[5] and manufacturing industries [6-7]. 

Among different types of chart, control charts like X and Exponentially Weighted Moving 

Average (EWMA) Xcharts are commonly employed in manufacturing industries. However, 

the main shortcoming of X chart is the nominal process standard deviation σ  in setting up 

control limits need to be estimated. The error in estimation of σ  will cause different false 

alarm rates and thus the detection of chart on the changes of the process mean chart becomes 

insensitive. To circumvent this problem,in [8] developed EWMA t chart based on the control 

static having t distribution. The property of t chart does not require any samples from phase 1 

in estimatingσ , thereby the estimation error in process standard deviation can be avoided and 

thus the risk for the occurrence of false alarm can be minimized.  

To avoid the several drawbacks of using average run length metric in EWMA t chart such as 

excessive variations of the run length, unsatisfactory run-length distribution and not suitable 

to evaluate complex detection schemes, in [9] proposed EWMA t chart based on the 

performance measure of median run length. In [10] developed the synthetic t chart and 

synthetic EWMA t chart. The results showed that synthetic t chart always surpasses the t chart 

for larger sample sizes, whereas synthetic EWMA t chart is shown to have better performance 

than EWMA tchart for larger shifts.  

To meet the challenges of the 21st century, adaptive chart which is more efficient in detecting 

the process changes is widely proposed to improve the slow response of conventional control 

charts. The main advantage of the adaptive chart is that it can be used to vary more than one 

chart’s parameters such as sampling interval and sample size. Monitoring the adaptive control 

chart was kick started by [11] by introducing the variable sampling interval (VSI) properties. 
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In [12-13] were then inspired by the VSI idea and developed variable sample size (VSS) 

Xchart. The VSS and VSI properties were then widely integrated into different types of 

control chart. More recent works on VSI-type charts and VSS-type charts were proposed by 

[14-17]. Concerning the adaptive EWMA t chart, in [18] has proposed variable sampling 

interval EWMA t (VSI EWMA t) chart to monitor the process mean recently. The results 

showed that the ATS performance of the VSI EWMA t chart were better than fixed sampling 

EWMA t chart. However, the warning limit parameter (e.g.W) in their proposed VSI EWMA t 

chart is not optimized.  

A fundamental assumption made for most of the control chart construction in the existing 

literature is the shift size is known a priori. In practice, the quality practitioners may not be 

able to determine the actual shift size in situations where the shift size is unknown due to the 

lack of historical data and the shift size is varies and not deterministic due to some unknown 

stochastic models. As indicated by [19], inaccurate specification of the shift size will seriously 

affect the run length properties. For instance, the company will have to bear the cost of the 

early false alarms or large quantity of unwanted products being produced when the shift size 

is estimated wrongly. Thus, it is important to address the problem of random shift size in 

order to obtain the accurate detection of out of control. To the best of our knowledge, the 

adaptive EWMA t chart for unknown shift has not been proposed in the literature. To fill in 

the research gap, we consider the optimization algorithms for the optimality of two sampling 

intervals in the proposed VSI EWMA t chart with unknown shift size. 

The remainder of the paper is structured as follows:An overview of the methodology of the VSI 

EWMA t chart is provided in Section 2. Following that, Section 3 presents the proposed VSI 

EWMA tchart with unknown shift size. The observations drawn from the proposed chart are 

summarized and discussed in Section 4. Lastly, conclusions are drawn in Section 5.  

 

2.THE VSI EWMA t CHART 

Assume the quality characteristic X follows a normal N(u + aσ , bσ )distribution where 

u is the nominal process mean, σ  is the standard deviation, a represents the size of the 

mean shift and b denotes the magnitude of a change (or error) in the process standard 

deviation. The process is statistically in control if a = 0 and b = 1. Otherwise, the process 
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has shifted if a ≠ 0 (u  has changed) or b ≠ 1 (σ  has changed) or both u and σ  have 

changed.  

Suppose we observe subgroups of n observations, {X , , X , , … , X , }, at time i = 1,2, … , i ∈

N  (natural number). Assume X , ∼ N(u + aσ , bσ ), i = 1,2, … ,1 ≤ j ≤ n, and there is 

independence within and between subgroups. The subgroups mean X  and standard deviation 

S  can be calculated by: 

X = ∑ X , ,      S = ∑ (X , − X ) (1) 

As proposed by [8], the control statistics Y  for the EWMA t chart is: 

Y = 0 

Y = λT + (1 − λ)Y  for i = 1, 2, …(2) 

whereλ ∈ (0,1] is the smoothing constant and T  is computed as: 

T =
√⁄

, i = 1, 2, … (3) 

Whereas, the UCL and UCL of VSI EWMA t chart are the function of the smoothing constant 

(lambda), the in control average run length (ARL) and subgroup sizen.  

To compute the ATS values, the Markov chain approach is used in this paper. Suppose that a 

discrete-time Markov chain with p + 2 states is considered in this paperwhere states 1, … , p 

are transient and state p + 1 is an absorbing state. The Markov chain’s transition) probability 

matrix P is provided as:  

P =
Q r

0 1
=

⎝

⎜
⎛

Q , Q , ⋯ Q , r

Q , Q , ⋯ Q , r
,

⋮ ⋮ ⋱ ⋮ ⋮
Q , Q , ⋯ Q , r 

0 0 ⋯ 0 1 ⎠

⎟
⎞

(4) 

where Q  is the p × p matrix of transient probabilities, 0 = (0, 0, … ,0) and the p × 1 

vector r that satisfies r = 1 − Q 1 where 1 is a p × 1 column vector of ones. The number 

of steps L until the process reaches the absorbing stage is a Discrete PHase-type (DPH) 

random variable associated with parameters (Q , d) (see [20-21]) where we let d =

(d , d , … , d )  be the (p × 1) vector of initial probabilities that is associated with the p 

transient states. This vector only contains a single element that is equal to 1, the rest of the 

remaining entries are equal to zero.  
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To obtain the transient probabilities Q ,  from the transition probability matrix P, the interval 

between LCL and UCL is devided into p = 2m + 1 subintervals of width 2δ. Thus, 2δ =

(UCL − LCL)/2p.Let H , j=-m,…,-1,0,1,…m, represent the midpoint of the jth subinterval, 

the probabilities of Q ,  and the d  for the initial probabilities vector d are computed as 

follow: 

Q , = F
( )

n − 1,
√

−  F
( )

n − 1,
√ (5) 

whereF (. . |e, f)refers to the cumulative distribution function of a non-central t distribution 

with e degrees of freedom and non-centrality parameter f.  

d =
1   if H − δ < Y < H + δ

0                            otherwise
 (6) 

By adopting the Equations (4)-(6), the ATS and ASI are derived and shown in the following 

expression [22]: 

ATS = d Qg − d g 

= d (Q − I)g(7) 

where Q = (I − Q )  is the p × p  fundamental matrix, Q  is the p × p  matrix of 

transient probabilities, I is the identity matrix, g is the p × 1 vector of sampling intervals 

(h , h )  corresponding to the discretized states of the Markov chain and the initial 

probabilities vector d is set as d = (1,0, … ,0) [22]. 

ASI = p h + p h  

= 1 + + (8) 

where𝑝 is the probability the sample adopts the long sampling interval while𝑝 is the 

probability the sample adopts the short sampling interval. 

 

3.THE VSI EWMA t CHART WITH UNKNOWN SHIFT SIZE 

In the situation where the exact shift size (𝛿) is known, ATS is used as the performance 

measure in monitoring the statistical performance. On the other hand, if the shift size cannot 

be specified or the 𝛿is not deterministic, the expected average time to signal,𝐸𝐴𝑇𝑆 acts as an 

alternative type of performance measure in measuring the statistical performance [6, 19, 23]. 

In this paper,𝐸𝐴𝑇𝑆 is considered as the expected value of the ATS over the distribution 
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function 𝑓 (𝛿) for the mean shift and it can be computed as follows: 

𝐸𝐴𝑇𝑆 = ∫ 𝑓 (𝛿)𝐴𝑇𝑆(𝑛, ℎ , ℎ , 𝑊, 𝐾, 𝑎, 𝑏)𝑑𝛿, (9) 

where𝑓 (𝛿) denotes the probability distribution function of the shift . In general, 𝛿 is 

assumed to follow a uniform distribution over the interval (𝛿 , 𝛿 )as it is often difficult 

to fit the actual shape of 𝑓 (𝛿), where𝛿  and 𝛿  represent the lower and upper bounds 

of the mean shift, respectively [6, 19, 23]. Note that the integral as shown in Equation (9) 

cannot be obtained easily, thus an approximation of the integra1 is computed by using 

Gauss-Legendre quadrature. In this paper, we consider the various combinations of 

(𝛿 , 𝛿 ) such as (𝛿 , 𝛿 ) = {(0.25,2), (0.25,3), (0.5,2), (0.5,3), (0.75,2), (0.75,3)} 

which are the shift size domains adopted in the studies of [24-25]. For the optimization 

criterion, the objective function of 𝐸𝐴𝑇𝑆 is minimized and mathematically expressed as: 

𝑀𝑖𝑛( , , , , , )𝐸𝐴𝑇𝑆 (𝛿 , 𝛿 )for𝛿 < 𝛿 (10) 

subject to constraints  

ATS0 = 370.4(11) 

and 

𝑝 ℎ + 𝑝 ℎ = 1 + (12) 

 

4. NUMERICAL ANALYSIS 

To illustrate the proposed VSI EWMA t chart with the performance measure of𝐸𝐴𝑇𝑆, suppose 

we consider 𝑛 ∈ {3, 5, 7}, (ℎ , ℎ ) ∈{(0.5 ,1.5)  ,(0.3 ,1.7) ,  (0.1,1.3)  ,  (0.1 ,1.5), (0.1,1.9) , 

(0.1,4)} and various combinations of (𝛿 , 𝛿 )as shown in Table 1.  

 

Table 1.VSI EWMA t chart’s optimal chart parameters (W∗, 𝐾∗, 𝜆∗)  and the corresponding 

EATS1values when 𝐴𝑇𝑆 = 370.4, 𝐴𝑆𝐼 = 1, 𝑛 ∈ {3, 5, 7} and various combinations of 

(𝛿 , 𝛿 ) 

𝒏 𝜹𝒎𝒊𝒏𝜹𝒎𝒂𝒙(hS, hL) (0.5, 1.5) (0.3, 1.7) (0.1, 1.3) (0.1, 1.5) (0.1, 1.9) (0.1, 4.0) 

3 0.

2

2 (𝑊∗, 𝐾∗, 

𝜆∗, 𝐸𝐴𝑇𝑆

(0.184, 

0.757, 

(0.191, 

0.746, 

(0.227, 

0.800, 0.03, 

(0.153, 

0.550, 

(0.351, 

1.310, 0.07, 

(0.246, 

0.971, 
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5 0.03, 

10.209) 

0.03, 

8.728) 

6.275) 0.02, 

6.638) 

7.227) 0.06, 

10.240) 

 0.

2

5 

3 (𝑊∗, 𝐾∗, 

𝜆∗, 𝐸𝐴𝑇𝑆

(0.184, 

0.757, 

0.03, 

7.421) 

(0.191, 

0.746, 

0.03, 

6.319) 

(0.372, 

1.300, 0.06, 

4.508) 

(0.316, 

1.143. 

0.05, 

4.810) 

(0.351, 

1.310, 0.07, 

5.035) 

(0.273, 

1.088, 

0.07, 

7.117) 

 0.

5

0 

2 (𝑊∗, 𝐾∗, 

𝜆∗, 𝐸𝐴𝑇𝑆

(0.328,1.40

6, 0.07, 

6.506) 

(0.340, 

1.357, 

0.07, 

5.256) 

(0.372, 

1.300, 0.06, 

3.723) 

(0.359, 

1.230, 

0.06, 

4.055) 

(0.351, 

1.310, 0.07, 

4.131) 

(0.444, 

1.872, 

0.14, 

5.477) 

 0.

5

0 

3 (𝑊∗, 𝐾∗, 

𝜆∗, 𝐸𝐴𝑇𝑆

(0.328, 

1.406, 

0.07, 

4.707) 

(0.340, 

1.357, 

0.07, 

3.791) 

(0.372, 

1.300, 0.06, 

2.705) 

(0.359, 

1.230, 

0.06, 

2.941) 

(0.351, 

1.310, 0.07, 

2.958) 

(0.525, 

2.230, 

0.18, 

3.673) 

 0.

7

5 

2 (𝑊∗, 𝐾∗, 

𝜆∗, 𝐸𝐴𝑇𝑆

(0.328, 

1.406, 

0.07, 

4.954) 

(0.340, 

1.357, 

0.07, 

4.029) 

(0.372, 

1.300, 0.06, 

2.898) 

(0.574, 

2.137. 

0.11, 

3.022) 

(0.587, 

2.300, 0.14, 

2.998) 

(0.613, 

2.828, 

0.23, 

3.536) 

 0.

7

5 

3 (𝑊∗, 𝐾∗, 

𝜆∗, 𝐸𝐴𝑇𝑆

(0.328, 

1.406,  

0.07, 

3.645) 

(0.340, 

1.357, 

0.07, 

2.947) 

(0.372, 

1.300, 0.06, 

2.133) 

(0.574, 

2.137. 

0.11, 

2.161) 

(0.587, 

2.300, 0.14, 

2.092) 

(0.675, 

3.256, 

0.27, 

2.233) 

𝑛 𝛿 𝛿 (hS, hL) (0.5, 1.5) (0.3, 1.7) (0.1, 1.3) (0.1, 1.5) (0.1, 1.9) (0.1, 4.0) 

5 0.

2

5 

2 (𝑊∗, K∗, 

𝜆∗, 𝐸𝐴𝑇𝑆

(0.214, 

0.925, 

0.10, 

3.681) 

(0.271, 

1.035, 

0.12, 

3.089) 

(0.265, 

0.809, 0.08, 

2.300) 

(0.290, 

0.924, 

0.10, 

2.390) 

(0.280, 

0.954, 0.11, 

2.570) 

(0.244, 

0.952, 

0.13, 

3.450) 

 0.

2

3 (𝑊∗, 𝐾∗, 

𝜆∗, 𝐸𝐴𝑇𝑆

(0.214, 

0.925, 0.1, 

(0.271, 

1.035, 

(0.265, 

0.809, 0.08, 

(0.310, 

0.988, 

(0.280, 

0.954, 0.11, 

(0.244, 

0.952, 
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5 2.531) 0.12, 

2.073) 

1.535) 0.11, 

1.575) 

1.681) 0.13, 

2.226) 

 0.

5

0 

2 (𝑊∗, 𝐾∗, 

𝜆∗, 𝐸𝐴𝑇𝑆

(0.278, 

1.242, 

0.15, 

2.071) 

(0.342, 

1.332, 

0.17, 

1.573) 

(0.436, 

1.230, 0.16, 

1.155) 

(0.540, 

1.760, 

0.24, 

1.146) 

(0.502, 

1.809, 0.26, 

1.141) 

(0.386, 

1.696, 

0.28, 

1.254) 

 0.

5

0 

3 (𝑊∗, 𝐾∗, 

𝜆∗, 𝐸𝐴𝑇𝑆

(0.289, 

1.302, 

0.16, 

1.419) 

(0.342, 

1.332, 

0.17, 

1.045) 

(0.436, 

1.230, 0.16, 

0.739) 

(0.540, 

1.760, 

0.24, 

0.722) 

(0.502, 

1.809, 0.26, 

0.714) 

(0.386, 

1.696, 

0.28, 

0.774) 

 0.

7

5 

2 (𝑊∗, 𝐾∗, 

𝜆∗, 𝐸𝐴𝑇𝑆

(0.335, 

1.545, 

0.20, 

1.433) 

(0.432, 

1.742, 

0.24, 

1.021) 

(0.666, 

2.032, 0.28, 

0.708) 

(0.683, 

2.300, 

0.34, 

0.653) 

(0.573, 

2.140, 0.32, 

0.623) 

(0.470, 

2.382, 

0.42, 

0.558) 

 0.

7

5 

3 (𝑊∗, 𝐾∗, 

𝜆∗, 𝐸𝐴𝑇𝑆

(0.356, 

1.663, 

0.22, 

0.977) 

(0.443, 

1.798, 

0.25, 

0.668) 

(0.748, 

2.300, 0.33, 

0.430) 

(0.683, 

2.300, 

0.34, 

0.396) 

(0.636, 

2.474, 0.38, 

0.376) 

(0.470, 

2.382, 

0.42, 

0.332) 

𝑛 𝛿 𝛿 (hS, hL) (0.5, 1.5) (0.3, 1.7) (0.1, 1.3) (0.1, 1.5) (0.1, 1.9) (0.1, 4.0) 

7 0.

2

5 

2 (𝑊∗, 𝐾∗, 

𝜆∗, 𝐸𝐴𝑇𝑆

(0.226, 

0.982, 

0.14, 

2.275) 

(0.218, 

0.800, 0.11, 

1.817) 

(0.351, 

0.991, 0.14, 

1.403) 

(0.339, 

1.022, 

0.16, 

1.434) 

(0.304, 

0.996, 0.15, 

1.495) 

(0.293, 

1.184, 

0.22, 

1.933) 

 0.

2

5 

3 (𝑊∗, 𝐾∗, 

𝜆∗, 𝐸𝐴𝑇𝑆

(0.246, 

1.079, 

0.16, 

1.535) 

(1.107, 

0.297, 

0.17, 

1.216) 

(0.369, 

1.038, 0.15, 

0.911) 

(0.339, 

1.022, 

0.16, 

0.930) 

(0.317, 

1.041, 0.16, 

0.967) 

(0.293, 

1.184, 

0.22, 

1.239) 

 0.

5

2 (𝑊∗, 𝐾∗, 

𝜆∗, 𝐸𝐴𝑇𝑆

(0.319, 

1.436, 

(0.392, 

1.495, 

(0.583, 

1.612, 0.28, 

(0.576, 

1.760, 

(0.517, 

1.797, 0.34, 

(0.384, 

1.756, 
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First, we compute the optimal charting parameters (𝜆∗, 𝑊∗, 𝐾∗) that minimizes the 𝐸𝐴𝑇𝑆  

by using the methodology presented in Section 3. Then, we provide the overall effectiveness 

of the chart within a mean shift domain by computing the 𝐸𝐴𝑇𝑆  values based on the 

corresponding optimal parameters ( 𝜆∗, 𝑊∗, 𝐾∗) obtained from the Scilab optimization 

program. Subsequently, the comparisons are made between the VSI EWMA t chart with three 

others charts such as the t chart, the VSI t chart and the EWMA t chart with unknown shift 

size. 

Table 1 presents the optimal parameters of (𝜆∗, 𝑊∗, 𝐾∗) and their corresponding 𝐸𝐴𝑇𝑆  

values of the VSI EWMA t chart for various combinations of (𝑛, 𝛿 , 𝛿 ). Based on Table 

1, the combination of (ℎ , ℎ ) = (0.1, 1.3) results in the lowest 𝐸𝐴𝑇𝑆 values (refer to the 

values in bold) for 𝑛 = 3, whereas the VSI EWMA t chart tends to generate a lower 

𝐸𝐴𝑇𝑆 for higher shift domain for the combinations of (ℎ , ℎ ) = (0.1, 1.9)and (ℎ , ℎ ) =

(0.1, 4) (see values in bold). In addition, we also observe that the spread between ℎ and ℎ  

significantly impact the value of 𝐸𝐴𝑇𝑆 and the larger spread between ℎ and ℎ  does not 

necessarily result in smaller 𝐸𝐴𝑇𝑆  as different combinations of (ℎ , ℎ ) result in different 

optimal 𝐾 and 𝑊 values. These observations are supported by the studies of [18, 26]. The 
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choiceof the sample size 𝑛 also has a large impact on the 𝐸𝐴T𝑆 . As expected, a larger 

𝐸𝐴𝑇𝑆  is obtained for smaller values of 𝑛 , e.g. in Table 1 the 𝐸𝐴𝑇𝑆 = 10.209  for 

(𝑛, ℎ , ℎ , 𝛿 , 𝛿 ) = (3, 0.5,1.5,0.25,2) is larger than 𝐸𝐴𝑇𝑆 = 3.681 for 

(𝑛, ℎ , ℎ , 𝛿 , 𝛿 ) = (5,0.5,1.5,0.25,2) and 𝐸𝐴𝑇𝑆 = 2.275 for (𝑛, ℎ , ℎ , 𝛿 , 𝛿 ) 

= (7,0.5,1.5,0.25,2)respectively. Thus, a larger sample size is recommended to monitor the 

process mean.   

Additionally, it is apparent from Table 1 that the EATS  value for shift domain is impacted 

by the values of  δ  and the range of the shift (δ , δ ). The higher the δ , the 

smaller is the EATS  values regardless of the values of δ . For example, by considering 

the case of𝑛 = 5and (ℎ , ℎ ) = (0.5, 1.5), the 𝐸𝐴𝑇𝑆  value is 3.681 for (𝛿 , 𝛿 ) =

(0.25, 2), while for the higher 𝛿  such as (𝛿 , 𝛿 ) = (0.5, 2) and (𝛿 , 𝛿 ) =

(0.75, 2), the 𝐸𝐴𝑇𝑆  are only 2.071 and 1.433 respectively. For different range of the shifts 

(𝛿 , 𝛿 ) but with the same 𝛿 , we observed that larger range of shift generates 

smaller 𝐸𝐴𝑇𝑆 value. For instance, by considering 𝑛 = 5, (ℎ , ℎ ) = (0.5, 1.5), the 𝐸𝐴𝑇𝑆  

for ( 𝛿 , 𝛿 ) = (0.25, 2)  is 3.681 which is larger than 𝐸𝐴𝑇𝑆 = 2.531  for 

(𝛿 , 𝛿 ) = (0.25, 3). Thus, it is apparent that the selection of (𝛿 , 𝛿 ) plays an 

important role in impacting the EATS1 values. 

To evaluate the robustness of VSI EWMA t chart against errors in estimating the changes in 

the process standard deviation, σ , we calculate the EATS for different values of b such 

as𝑏 ∈ {0.9, 0.95, 1, 1.05, 1.1}. Note that 𝑏 ≠ 1 indicates that the process has shifted due to 

the change in standard deviation, 𝜎 . In this section, we consider (ℎ , ℎ )= (0.1, 1.3) for the 

VSI t and VSI EWMA t charts. The shift domain is set as (𝛿 , 𝛿 ) = (0.25, 2), the 

𝐴𝑅𝐿 = 𝐴𝑇𝑆 = 370.4 are attained for t, VSI t, EWMA t and VSI EWMA t charts so that a 

fair comparison can be made.  
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Table 2. EATS1 values for t, VSI t, EWMA t and VSI EWMA t charts when 𝑛 ∈ {3, 5, 7} and 

𝑏 ∈ {0.9, 0.95, 1, 1.05, 1.1} 

  t VSI t EWMA t VSI 

EWMA t 

𝑛 𝑏 𝐸𝐴𝑇𝑆  % 

increase 

𝐸𝐴𝑇𝑆  % 

increase 

𝐸𝐴𝑇𝑆  % 

increase 

𝐸𝐴𝑇𝑆  

3 0.9 95.90 1707.1 94.897 1688.1 13.52 154.7 5.31 

 0.95 102.04 1647.1 101.064 1630.3 14.39 146.4 5.84 

 1 108.08 1622.4 107.119 1607.2 15.25 143.0 6.28 

 1.05 113.99 1595.2 113.058 1581.3 16.12 139.7 6.72 

 1.1 119.79 1566.0 118.879 1553.3 17.00 136.5 7.19 

𝑛 𝑏 𝐸𝐴𝑇𝑆  % 

increase 

E𝐴𝑇𝑆  % 

increase 

𝐸𝐴𝑇𝑆  % 

increase 

𝐸𝐴𝑇𝑆  

5 0.9 35.78 1785.7 22.00 1070.0 5.77 203.9 1.90 

 0.95 39.27 1769.5 24.96 1088.4 6.17 193.6 2.10 

 1 42.81 1761.1 27.72 1108.9 6.58 185.9 2.30 

 1.05 46.39 1748.9 30.72 1124.5 7.00 179.0 2.51 

 1.1 49.99 1733.4 33.69 1135.7 7.42 172.1 2.73 

𝑛 𝑏 𝐸𝐴𝑇𝑆  % 

increase 

𝐸𝐴𝑇𝑆  % 

increase 

𝐸𝐴𝑇𝑆  % 

increase 

𝐸𝐴𝑇𝑆  

7 0.9 18.60 1574.9 14.34 1191.4 4.05 265.0 1.11 

 0.95 20.76 1557.6 16.29 1200.7 4.34 246.3 1.25 

 1 23.00 1540.0 18.33 1206.7 4.63 230.26 1.40 

 1.05 25.30 1523.3 20.43 1210.8 4.93 216.2 1.56 

 1.1 27.66 1510.0 22.60 1215.6 5.23 204.7 1.72 

As presented in Table 2, we can see slight changes in EATS values across different values of 

b for VSI EWMA t chart. The VSI EWMA t chart also results in the best performance as it has 

the smallest EATS value compared to t chart, VSI t chart and EWMA t chart. For an example, 

when n = 5 , and b = 0.9, the EATS1 value for VSI EWMA t chart, EWMA t chart, VSI t 
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chart and t chart are 1.9, 5.77, 22 and 35.78 respectively. Furthermore, Table 2 also shows the 

percentage of increase in the EATS  values of the adopted competing charts. Note that the 

percentage of increase in the EATS  is reducing when b is larger. However, it is not 

surprising that different values of b  have minimal impact on the EATS values of the 

different types of t charts as σ  does not need to be estimated in setting up the control limits 

of t type charts and thus, the problem of getting an inappropriate estimate of σ can be 

avoided [18]. 

 

5. CONCLUSION  

This paper allows practitioners to select the suitable sample size n, spread of (h , h )and 

shift domain (δ ,δ ) in determining the optimal chart parameters and their expected 

average time to signal EATS  when the shift size is unknown and when the process standard 

deviation σ  has changed.  

Comparisons show that the VSI EWMA t chart outperforms the t chart, VSI t chart and 

EWMA t chart for different spread when the process is statistically in control and when the 

process has shifted due to the changes of σ . 

 

6. ACKNOWLEDGEMENTS 

The research is supported by the UniversitiSains Malaysia, Research University Grant number 

1001/PMATHS/811263.     

 

7. REFERENCES 

[1] Montgomery D. C. Statistical quality control: A modern introduction. New York: John 

Wiley and Sons, 2009 

[2] Luo H, Wu Z.Optimal np control charts with variable sample sizes or variable sampling 

intervals. Economic Quality Control, 2002, 17(1):39-61 

[3] WoodallWH.The use of control charts in health-care and public-health surveillance. 

Journal of Quality Technology, 2006, 38(2):89-104 

[4] Moscarelli M, Athanasiou T, SevdalisN, VescoviF, Fattouch K, Nasso G, Speziale 

G.Controlled exponentially weighted moving avarage chart in cardiac surgery: A simulation 



P. S. Ng et al.              J Fundam Appl Sci. 2017, 9(5S), 542-555              554 

study across nine Italian cardiac centers. Seminars in Thoracic and Cardiovascular Surgery, 

2016, 28(2):253-258 

[5] Tsung F, Zhou ZH, Jiang W. Applying manufacturing batch techniques to fraud detection 

with incomplete customer information. IIE Transactions, 2007, 39:671-680 

[6] Khaw KW, Khoo MBC, Yeong WC, Wu Z. Monitoring the coefficient of variation using 

a variable sample size and sampling interval control chart. Communications in 

Statistics-Simulation and Computation, 2016, 46(7):5772-5794 

[7] Teoh WL, Khoo MBC, Castagliola P, Yeong WC, TehXY. The. Run-sum control charts 

for monitoring the coefficient of variation. European Journal of Operational Research, 2017, 

257(1):144-158 

[8] Zhang L, Chen G, Castagliola P. On t and EWMA t charts for monitoring changes in the 

process mean. Quality and Reliability Engineering International, 2009, 25(8):933-945 

[9] Chin WS, Khoo MBC.A study of the median run length (MRL) performance of the 

EWMA t chart for the mean. South African Journal of Industrial Engineering, 2012, 

23(3):42-55 

[10] Calzada ME, Scariano SM.The synthetic t and synthetic EWMA t charts. Quality 

Technology and Quantitative Management, 2013, 10(1):37-56 

[11] Reynolds MR, Amin RW, Nachlas JC. X charts with variable sampling intervals. 

Technometrics, 1988, 30(2):181-192 

[12] Prabhu SS, Runger GC, Keats JB.Xwith adaptive sample sizes.International Journal of 

Production Research, 1993, 31(12):2895-2909 

[13] CostaAFB. X charts with variable sample size. Journal of Quality Technology,1994, 

26(3):155-163 

[14] Chew XY, Khoo MBC, Teh SY, Lee MH.The run sum hotelling'sχ control chart with 

variable sampling intervals. Quality and Reliability Engineering International, 2016, 

32(7):2573-2590 

[15] Ershadi M, Noorossana R, Niaki STA. Economic-statistical design of simple linear 

profiles with variable sampling interval. Journal of Applied Statistics, 2016, 43(8):1400-1418 

[16] Zhou Q, Shu L, Jiang W. One-sided EWMA control charts for monitoring Poisson 

processes with varying sample sizes. Communications in Statistics-Theory and Methods, 

2016, 45(20):6112-6132 

[17] CostaAF, Machado MA.A side-sensitive synthetic chart combined with a VSS chart. 

Computers and Industrial Engineering, 2016, 91:205-214 



P. S. Ng et al.              J Fundam Appl Sci. 2017, 9(5S), 542-555              555 

[18] Kazemzadeh RB, Karbasian M, Babakhani MA.An EWMA t chart with variable 

sampling intervals for monitoring the process mean. International Journal of Advanced 

Manufacturing Technology, 2013, 66(1-4):125-139 

[19] Castagliola P, Celano G, Psarakis S. Monitoring the coefficient of variation using EWMA 

charts. Journal of Quality Technology, 2011, 43(3):249-265 

[20] Neuts M.F.Matrix-geometric solutions in stochastic models: An algorithmic 

approach.New York: Dover Publications Inc., 1981 

[21] Latouche G., Ramaswami V.Introduction to matrix analytic methods in stochastic 

modelling. Philadelphia: ASA SIAM, 1999 

[22] Saccucci MS, Amin RW, Lucas JM. Exponentially weighted moving average control 

scheme with variable sampling intervals.Communications in Statistics-Simulationand 

Computation,1992, 21(3):627-657 

[23] Wu Z, Ou Y, Castagliola P, Khoo MBC.A combined synthetic andX chart for monitoring 

the process mean.International Journal of Production Research, 2010, 48(24):7423-7436 

[24] Khoo MBC, Teoh WL, Castagliola P, Lee MH. Optimal designs of the double sampling 

X chart with estimated parameters. International Journal of Production Economics, 2013, 

144(1):345-357 

[25] Lim SL, KhooMBC, Teoh WL, Xie M. Optimal designs of the variable sample size and 

sampling interval chart when process parameters are estimated. International Journal of 

Production Economics, 2015, 166:20-35 

[26] Liu L, Chen B, Zhang J, Zi X. Adaptive phase II nonparametric EWMA control chart 

with variable sampling interval. Quality and Reliability EngineeringInternational,2015,31(1): 

15-26 

 

How to cite this article: 
Ng P S, Khoo M B C, Yeong W C, Lim S L. A variable sampling interval ewma t control chart 
with unknown shift size. J. Fundam. Appl. Sci., 2017, 9(5S), 542-555. 
 


