
 

 

 

THE IMPLEMENTATION FRAMEWORKS OF META-HEURISTICS 

HYBRIDIZATION WITH DYNAMIC PARAMETERIZATION  

 

S. Masrom1,*, A. S. A. Rahman2, S. Z. Z. Abidin3, N. Omar3 and Z. I. Rizman4 

 
1Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA, Perak, 

Malaysia 
2Faculty of Science and Information Technology, UniversitiTeknologi PETRONAS, Perak, 

Malaysia 
3Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA, Shah Alam, 

Selangor, Malaysia 
4Faculty of Electrical Engineering, UniversitiTeknologi MARA, Dungun, Terengganu, 

Malaysia 

 

Published online: 10 November 2017 

 

ABSTRACT 

The hybridization of meta-heuristics algorithms has achieved a remarkable improvement from 

the adaptation of dynamic parameterization. This paper proposes a variety of implementation 

frameworks for the hybridization of Particle Swarm Optimization (PSO) and Genetic 

Algorithm (GA) and the dynamic parameterization. In this paper, taxonomy of the PSO-GA 

with dynamic parameterization is presented to provide a common terminology and 

classification mechanisms. Based on the taxonomy, thirty implementation frameworks are 

possible to be adapted. Furthermore, different algorithms that used the implementation 

frameworks with sequential scheme and dynamic parameterizations approaches are tested in 

solving a facility layout problem.  
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The results present the effectiveness of each tested algorithm in comparison to the single PSO 

and constant parameterization. 

Keywords: hybridization; PSO; GA; implementation frameworks; dynamic parameterization. 

 

1. INTRODUCTION 

One promising way to effectively solve optimization problem is by using meta-heuristics 

algorithms. In this paper, the concern is to introduce a set of implementation frameworks that 

can be used for the design of meta-heuristics hybridizations involving two well-known 

meta-heuristics namely Particle Swarm Optimization (PSO)[1-2] and Genetic Algorithm 

(GA)[3-4]. These two meta-heuristics have gained widespread appeal amongst researchers to 

solve optimization problems in a variety of application domains.  

Research that combine PSO and GA algorithms is very progressing[5-7]. As a kind of 

meta-heuristics algorithm, PSO and GA hybrid techniques can be generally classified as 

high-level or low-level hybridization [4-5]. In high-level hybridization (HLH), the 

components from the different algorithms are not strongly connected because the hybrid 

algorithms can be independently run from each other. The interaction among the different 

algorithms can be accomplished through a well-defined interface or protocol [8]. However, 

the low-level hybridization (LLH) involves original structure modifications of the different 

algorithms [9-10]. In other words, LLH creates a new algorithm that combines the 

components from the different hybrid algorithms. These components are strongly 

interdependent and need to fit well together to solve a particular problem. As a result, the 

implementation of LLH tends to be more difficult than HLH in terms of the algorithm design. 

Responding to the difficulty, the attempt of this paper is to introduce a set of simple 

implementation frameworks that can be used to design a variety of PSO-GA with the LLH 

techniques. In addition, since research has identified that dynamic parameterization provides 

benefit for improving the PSO performance[11], the implementation frameworks also been 

designed to allow different set of dynamic parameterization setting. 
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2. BACKGROUND OF THE STUDY 

2.1. Meta-Heuristics Implementation Framework 

In order to establish a common understanding from the implementation variant of 

meta-heuristics for the purpose of consistency and repeatability experiment [12], many 

researchers have introduced different implementation frameworks, models or taxonomies. In 

this research, the frameworks are defined as an abstraction of techniques that are derived 

based on the proposed taxonomy. Therefore, in this section, the existing works that attempt to 

generalize and to classify the implementation variant of meta-heuristics in a form of taxonomy, 

models [36-37] or implementation frameworks are reviewed in accordance to the type of 

meta-heuristics paradigm and classification elements. 

Among the works that has been widely acknowledged is a taxonomy for meta-heuristics 

hybridization introduced by[13]. In the classification scheme, the researcher has divided 

meta-heuristics hybridizations according to High-level Teamwork, High-level Relay, 

Low-level Teamwork and Low-level Relay. The term level is used to describe the 

combination or cooperation strength among components from the hybrid algorithms. In a 

more general view, in[14] have divided the hybrid meta-heuristics schemes into three general 

forms, which are component exchange among meta-heuristics, cooperative search from 

different meta-heuristics and integration with other methods. The researchers described that 

the component exchange among meta-heuristics is identical to the LLH while the cooperative 

search is a kind of HLH. Similarly, in addition to the hybridization level, other types of 

classification of hybrid meta-heuristics introduced by [9] are hybrid algorithms, order of 

execution and control strategy. In this taxonomy, major implementation techniques for the 

HLH are classified by the order of execution and the control strategy. Parallel meta-heuristics 

are also considered as meta-heuristics hybridization as there is occurrence of cooperation 

among different meta-heuristics[4, 6]. Several taxonomies for parallel meta-heuristics have 

been proposed, but they are more significant to HLH. For examples, a taxonomy that 

categorized the implementation as operation parallelization, search space decomposition and 

multi-search threads [15-16]. In [17], the researchers have introduced a new taxonomy 

specific for cooperative search algorithm under the parallel meta-heuristics. The classification 

is divided according to the algorithm types and the space decomposition. 
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To summarize, the following Table 1 lists the existing frameworks in relation to the 

meta-heuristics and its paradigm (Single, LLH, HLH). In addition, it is significant to this 

paper to review each of the related works with the element of dynamic parameterization. 

Table 1. Meta-heuristics implementation framework 

Research Meta-Heuristics Single LLH HLH Dynamic 

Parameterization 

[9] All / / / x 

[10] All x / x x 

[12] PSO / x x x 

[13] All / / / x 

[14] All / / / x 

[15] All x / x x 

[16] All x / x x 

[17] All x / x / 

[18] Tabu Search x / x x 

[19] PSO and DE x / / x 

[20] ACO / x x x 

[21] EAs /   / / / 

[22] PSO x / / x 

[23] EAs / / x / 

[24] EAs / x x x 

As seen in Table 1, the majority of researchwere focused on the HLH rather than HLH for the 

meta-heuristics hybridization. In the works of [13-14, 9], the researchers have generally 

classified the meta-heuristics paradigms not to specific for the PSO and GA. The introduction 

of taxonomy that is specific for PSO and Differential Evolution (DE) in [19] has been found 

to be a worthwhile for users [34]. Due to the specific meta-heuristics, the taxonomy can be 

directly used as a tool to analyze the hybridization strategies between the PSO and DE. It is 

also useful as a reference for designing new optimizers that combines the two meta-heuristics. 

Furthermore, the specific PSO taxonomy with the HLH and LLH introduced in [22] is only 

beneficial for the homogeneous implementation. A main drawback of the meta-heuristics 
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frameworks listed in the Table 1 is the limitation to address dynamic parameterization as one 

of the implementation elements. In [24] has found that even after many years of research into 

the Evolutionary Algorithms (EAs), there are no straightforward parameterization guidelines 

have been provided for the meta-heuristics. The researcher consequently has proposed 

dynamic parameterization frameworks specific for the EAs.  

2.2. Dynamic Parameterization 

The achievement of an algorithm like PSO in solving a particular problem domain is always 

subjected to the suitability of parameters properties, which can be constant or changeable 

along the iteration of search. Dynamic parameterization refers to the changeable value of 

parameters, which is derived from different approaches, namely random, time-vary or 

adaptive. The time-vary approach use iteration number as a main factor of formulation while 

adaptive approach relies more on the PSO performances indicators such as particle fitness, 

global fitness and particle position. Details about the time-vary and adaptive formulations 

used in this papers are described in [25-26] respectively. 

 

3. THE IMPLEMENTATION FRAMEWORKS 

The composition of implementation frameworks was created based on a general taxonomy. 

The taxonomy for LLH of PSO-GA is generally divided into two main groups of elements, 

namely component and implementation. Fig. 1 shows the taxonomy. 

 

Fig.1.The taxonomy of LLH 
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3.1. Component 

As meta-heuristics, PSO and GA have general and proprietary components. The general 

components include problem to be solved, a group of solutions for the problem and the 

solutions constraints. The problem is defined through one or more objective functions while 

solutions constraints can be derived with constraint functions. The solutions for the problems 

in the search space are represented according to the algorithm. PSO uses particle for 

representing solutions while in GA in the form of chromosome.  

The PSO proprietary components are based on blackboard type while GA components 

comprised of evolution and selection categories. The evolution approach uses operators (e.g., 

mutation and crossover) to reproduce new population of solutions while blackboard type uses 

shared memory concept to generate new population. PSO uses its shared memory in the form 

of personal and global best. Selection technique is common to the GA algorithm. It is a 

process to choose different solutions probabilistically for being crossover usually in 

proportion to their fitness. 

3.2. Implementation 

Implementation refers to the execution methods for the LLH components. For example, the 

solutions component in the search space can be composed into several sub-search spaces 

which can be explored in parallel or sequential. If the encoding method for the solutions 

representation is identical in each sub-search spaces, it is categorized as explicit. Otherwise, it 

is classified as implicit decomposition. Furthermore, each algorithm might solve on global or 

partial problem. The problem is global if both PSO and GA solve the same optimization 

problem while partial problem occurs if the problem is different for each algorithm. Fig. 2 

shows the elements of implementation. 

3.3. Parameterization 

Other than the components and its implementation, consideration should be given on 

parameter configurations of the algorithm. The proposed framework allows dynamic 

parameterization as described in the section 2.2. 
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Fig.2. The implementation elements 

3.3. The Composition of Implementation Frameworks 

This part shows the composition of several implementation frameworks from the previous 

taxonomy as illustrated in Fig. 3. 

 
Fig.3. The composition of implementation frameworks 
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There are 30 implementation frameworks (from SEGMutation to SGCrossMutation) are 

possible to be prepared. The composition begins with relatively match each general 

component into each implementation element, which creates ten different LLH schemes (a-j). 

Each scheme is categorized relatively to search space exploration (parallel or sequential), 

solution decomposition (explicit or implicit) and problem (global or partial).  

Then, each scheme can be adapted with the proprietary components of GA, either with 

mutation, crossover and the combination as well. In the basic GA paradigm, selection 

component was used for selecting potential individual for crossover process. Based on the 

literature, the implementation frameworks with sequential global (SG) scheme is the most 

widely used in many kinds of optimization problem. Fig. 4 provides general abstraction of the 

SG scheme.  

 

Fig.4. The abstraction of SG scheme 

The dotted represent optional to be included in the algorithm. It can be PSO with crossover, 

PSO with mutation or PSO with both crossover and mutation. The examples of configurations 

for the SGMutation is presented in the following Fig. 5. 

 



S. Masrom et al.            J Fundam Appl Sci. 2017, 9(6S), 558-576          566 
 

 
Fig.5. Example of configuration for SGMutation 

The search space configuration consists of sequential configuration without percentage of 

division. Since PSO is master-metaheuristic [35], particle is the only solutions representation 

in the search space. The following Fig. 6 is the example of configurations for SGCrossover. 

 

Fig.6. Example of configuration for SGCrossover 

Then, the SGCrossoverMutation that includes both crossover and mutation with the SG 

scheme is drawn in the following Fig. 7. 

 

Fig.7. Example of configuration for SGCrossmutation 

The crossover between particles are chosen probabilistically in proportion to their fitness. 

Each position between the first and the maximum are then swapped according to the dynamic 

crossover probability Cp with adaptive parameterization. Inspired by [27], the periodic 

crossover was replaced with the adaptive crossover probability. Based on the above 

configurations, Fig. 8 presents the algorithm. 

The threshold value r and r1 are set to random number in the interval [0,1]. It is compared to 

each particle’s probability Cp of crossover to decide whether this particle’s randomly chosen 

position d should be altered using pbest crossover. As defined in [27], the adjustment to 
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dimension d is made using an average of two particles’ relevant pbestvalues. In the 

algorithmic listing at Fig. 8, the crossover probability Cp and the mutation probabilityMp of 

all particles are adapted at line 2 and line 3 respectively. The mutation operation used a 

Gaussian function that returns a random value within the range of the particle dimension. The 

α is bounded within 0.1 times of the particle dimension.  

 

 

 

 

 

 

 

 

 

 

Fig.8. Algorithm of the dynamic crossover and mutation 

 

4. EMPIRICAL EXPERIMENTS 

Many experiments have been carried out to observe the performances of different LLHs of 

PSO-GA with dynamic parameterization in accordance to the implementation frameworks. 

The experiments are divided into three different sets of applications. Each application consists 

of three different LLHs that are developed based on the three selected implementation 

frameworks (SGMutation, SGCrossover, SGCrossMutation) and one single PSO. All the 

algorithms in the first two applications employ dynamic parameterization (time-vary and 

adaptive) while all the algorithms in the third application employ constant parameterization. 

The algorithms have been previously tested on several benchmark functions[25-26] and the 

Vehicle Routing Problem with Time Windows (VRPTW)[28]. At this time, the interest has 

been coined to test the algorithms in Facility Layout Problem (FLP)[29].  

The FLP is a well-studied combinatorial optimization problem that emerged in a variety of 

problems such as layout design of hospitals, schools, airports, networking and backboard 

1 forEach particle in the population do 

2 calculate dynamic crossover probability, Cp 

3 Calculate dynamic mutation probability, Mp 

4 Set r to a uniform random number [0,1] 

5 Set r1 to a uniform random number [0,1] 

6 Set d to a uniform random integer [0, dimension] 

7 Set d1 to a uniform random integer [0, dimension] 

8 Choose pbest1, pbest2 uniformly randomly among all n particles 

9 ForEach particle in the population do 

10 If r < Cp then 

11 xid = xid + pbest1d + pbest2d / 2 

12 If r < Mp then 

13 xid1 = xid1 + Gaussian(α); 
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wiring. The most common objective in FLP is to minimize the facility resources costs that are 

determined based on the flow between the facilities and the distance between each facilities 

location. Due to the dynamic and impulsive environment in today’s industry operations, 

dynamic FLP appears to be very important. The dynamic FLP extends the static FLP by 

involving the changes in resources flow over multiple periods as well as the costs of 

rearranging the layout. 

4.1. Particle Encoding 

Based on particle encoding introduced by [29], each particle represents a valid permutation 

where each dimension of the particle represents a location and each value represent the 

corresponding facility. For example, for n=4, the particle {3 4 2 1} indicates that the third 

facility is assigned to the first location, fourth facility to second location, second facility to 

third location and first facility to fourth location. The solution encoding involves the 0-1 

binary integer decision variables, enabling a randomly generated solution. Fig. 9 illustrates the 

definition of particles. 

 

Fig.9. Particles encoding 

4.2.Experiment Setting 

Each experiment was repeated for 30 times with 2000 iterations. Therefore, regardless of each 
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algorithm, each of the 30 trials was allowed an equal number of 60000 evaluations (30 

particles X 2000 iterations). As to create a fair comparison of all the algorithms, the same seed 

has been fixed for random number generation so that the initial population is same for all the 

algorithms. The algorithms were tested on 16 sets of problem obtained from[29]. In this paper, 

only the datasets with facility M=6 and Period P=10 are used for comparisons. Based on the 

preliminary experiment, the ranges of parameter values were tested as in the following Table 

2. 

Table 2. Parameter setting 

Parameter Value 

Number of iteration 2000 

Number of particles 30 

PSO personal and social learning rate, (c1, c2) 1.25 

Inertia weight 0.6 

 

5. RESULTS AND DISCUSSION 

The result of each algorithm in each application are compared with single PSO algorithm as 

well as with the result obtained by [29] that used Dynamic Programming (DP) approach. The 

name of each algorithm is SGM for SGMutation, SGC to denote SGCrossover and SGCM as 

to present SGCrossMutation. 

5.1. Adaptive Parameterization 

The results in Table 3 and Table 4 show that all the PSO hybrids obtained the best solutions 

for all the 16 problems with 6 numbers of facility at 5 periods. It is constantly shown in the 

results that PSO hybrids with adaptive mutation (mainly from SGM) outperforms other 

algorithms for the 16 test problems. Although SGM mostly outperforms single PSO (problem 

3,4, 5, 6, 8), it never performs as well as adaptive mutation-based hybrids either with SGM or 

with SGCM.  
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Table 3.Solution results for problems with M=6, P=5 

Prob. SGM SGC SGCM Single PSO DP[31] 

1 106401 106411 106401 106411 106419 

2 104799 104838 104818 104838 104834 

3 104291 104301 104291 104309 104320 

4 106382 106380 106382 106491 106509 

5 105621 105614 105651 105678 105628 

6 103885 103921 103885 103993 103985 

7 106396 106405 106396 106405 106447 

8 103619 103619 103628 103631 103771 

 

Table 4.Solution results for problems with M=6, P=10 

Prob. SGM SGC SGCM Single PSO DP[31] 

9 214299 214310 214301 214311 214313 

10 21221 21230 21225 212340 21234 

11 207985 207987 207985 207986 207987 

12 212702 212711 212702 212730 212741 

13 211012 211012 211012 211019 211022 

14 209928 209932 209928 2099302 209932 

15 214232 214252 214238 214252 214252 

16 2125811 2125868 2125811 212585 2125888 

5.2. Time-Vary Parameterization 

Similar with adaptive parameterization, all PSO hybrids with time-vary parameter setting in 

Table 5 and Table 6 have obtained better output than the single PSO.  

Table 5.Solution results for problems with M=6, P=5 

Prob. SGM SGC SGCM Single PSO DP[31] 

1 106401 106405 106398 106411 106419 

2 104789 104734 104712 104838 104834 

3 104278 104267 104208 104309 104320 

4 106355 106357 106357 106491 106509 

5 105602 105600 105523 105678 105628 

6 103712 103714 103727 103993 103985 

7 106396 106387 106304 106405 106447 

8 103666 103653 103791 103631 103771 
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Table 6.Solution results for problems with M=6, P=10 

Prob. SGM SGC SGCM Single PSO DP[31] 

9 214200 214215 214201 214311 214313 

10 212218 212308 212243 212340 21234 

11 207985 207945 207912 207986 207987 

12 212711 212711 212719 212730 212741 

13 211023 211022 211022 211019 211022 

14 209788 209788 209782 2099302 209932 

15 214054 214051 214054 214252 214252 

16 2121671 2121651 2121531 212585 2125888 

In this case, the inclusions of single mutation or crossover, either SGM or SGC do not have 

too much different results with the SGCM for all problems 1 to problem 16. In addition, 

almost all algorithms of PSO-GA hybrids with time-vary parameterization have produced 

better results than the adaptive parameterization.  

5.3. Constant Parameterization 

It is clearly presented in Table 7 and Table 8 that all algorithms with constant parameterization 

have produced larger values than the previous dynamic parameterizations. The results have 

very slight different with single PSO [30].  

Table 7.Solution results for problems with M=6, P=5 

Prob. SGM SGC SGCM Single PSO DP[31] 

1 106418 106411 106401 106411 106419 

2 104799 104838 104818 104838 104834 

3 104291 104301 104300 104309 104320 

4 106481 106488 106489 106491 106509 

5 105621 105677 105669 105678 105628 

6 103917 103985 103999 103993 103985 

7 106400 106405 106400 106405 106447 

8 103628 103619 103625 103631 103771 
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Table 8.Solution results for problems with M=6, P=10 

Prob. SGM SGC SGCM Single PSO DP[31] 

9 214305 214310 214298 214311 214313 

10 212338 212337 212334 212340 21234 

11 207985 207987 207985 207986 207987 

12 212702 212711 212702 212730 212741 

13 211012 211012 211012 211019 211022 

14 209928 209932 209928 2099302 209932 

15 214232 214252 214238 214252 214252 

16 2125811 2125868 2125811 212585 2125888 

 

6. CONCLUSION 

In this paper, the composition of a set of implementation frameworks for the LLH of PSO-GA 

[31] with dynamic parameterization has been presented. The implementation frameworks are 

developed based on a general taxonomy that classify the common terminology of the LLH. 

Based on the implementation review of the existing LLH of PSO-GA [32], it was found that 

the implementation frameworks with sequential global (SG) scheme is the most widely used 

in practice. This scheme consists of three implementation frameworks namely SGMutation, 

SGCrossover and SGCrossmutation. Several algorithms based on the three-implementation 

framework with different parameter setting have been tested on different datasets of facility 

layout problem. The results have indicated some improvements from the PSO-GA [33] 

hybrids with dynamic parameterizations compared to the constant parameterization. As these 

experiments only focuses on the SG scheme, the future works should extend the evaluations 

to other kinds of implementation frameworks that have been introduced in this paper. 
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