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ABSTRACT  

A Bieberbach group is a torsion free crystallographic. In this paper, one Bieberbach group 

with elementary abelian 2-group point group of the lowest dimension three is considered and 

its group presentation can be shown to be consistent polycyclic presentation. The main 

objective of this paper is to compute the nonabelian tensor square of one Bieberbach group 

with elementary abelian 2-group point group of dimension three by using the computational 

method of the nonabelian tensor square for polycyclic groups. The finding of the computation 

showed that the nonabelian tensor square of the group is abelian and the formula of the 

nonabelian tensor square of the Bieberbach group with elementary abelian 2-group of 

dimension 3, 1(3)S  , can be extended in constructing the generalization of the formula of the 

nonabelian tensor square of the group up to dimension n.  
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1. INTRODUCTION 

1.1. Introduction  

A Bieberbach group is a torsion free crystallographic group. This group is an extension of a 

free abelian group L  of finite rank by a finite point group P  which satisfies the short exact 

sequence  

      1 1L G P   

such that ( ) .G L P   New properties of crystallographic groups can be revealed by 

calculating the nonabelian tensor squares of the groups.  

The nonabelian tensor square, G G  of a group G  is generated by the symbols ,g h  

for all , ,g h G  subject to relations  

' ( ' )( )g ggg h g h g h     and ' ( )( ')h hg hh g h g h     [1] 

for all , ', , ' ,g g h h G  where 1' 'g g gg g . Brown and Loday [1] have introduced the 

nonabelian tensor square as a specialization of more general nonabelian tensor products. Since 

then, many studies on computing the nonabelian tensor squares for various groups have been 

conducted. These include the 2-generator nilpotent of class two groups ([2], [3]), the free 

nilpotent groups [4] and the polycyclic groups [5].  

The study of the nonabelian tensor squares of Bieberbach groups with certain point group 

have been started by Masri [6] who focused on Bieberbach groups with cyclic point group of 

order two. Next, other studies related to the computation of the nonabelian tensor squares of 

Bieberbach groups with other point groups have also been done by other researchers such as 

Mohd Idrus [7] and Wan Mohd Fauzi et al. [8] with the dihedral point group, Mat Hassim [9] 

with the cyclic group of order three and five and Tan et al. ([10], [11]) with the symmetric 

point group.  

In this paper, we focus on a Bieberbach group with elementary abelian 2-groups, 2 2C ×C  of 

lowest dimension 3, denoted by 1(3)S . This group is an extension of a finitely generated 

abelian group which is polycyclic. In other word, the group 1(3)S  is a polycyclic group. The 

consistent polycyclic presentation of group 1(3)S  is given as the following [12]: 
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1.2 Preliminaries 

 The computation of the nonabelian tensor square in this study involves a group ( )G  which 

was introduced by Rocco [13] as follows: 

 

Definition 1 [13] 

Let G  be a group with presentation |G R  and let G  be an isomorphic copy of G  via the 

mapping : g g   for all g G . The group ( )G  is defined to be ( ) , | , , [ , ]xG G G R R g h     

[ , ( ) ] [ , ], , , .x x xg h g h x g h G
       

Theorem 1 shows that the group ( )G  is related to the nonabelian tensor square.  

 

Theorem 1 ([13], [14])  

Let G  be a group. The mapping : [ , ] ( )G G G G G     defined by ( ) [ , ]g h g h    

for all ,g h  in G  is an isomorphism. 

Therefore, all the tensor computations can be done through the commutator computation 

within the subgroup  of ( ), [ , ].G G G  Blyth and Morse [5] showed that if G  is polycyclic, 

then ( )G  is also polycyclic as given in the following proposition.  

Proposition 1 [5] 

If G  is polycyclic, then ( )G  is polycyclic.  

In this study, the nonabelian tensor square of 1(3)S  is obtained by using the computational 

method for polycyclic group developed by Blyth and Morse [5]. Next, list of commutator 
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identities in ( )G  with left conjugation are given as in the following. Let ,x y  and z  be 

elements of a group G . Then 

[ , ] [ , ] [ , ]
x

xy z y z x z          (2) 

                 [ , ] [ , ] [ , ]
y

x yz x y x z           (3) 

            [ , ] [ , ]
z z z

x y x y               (4) 

Definition 2 

The abelianization of a group ,G  'abG G G  is the quotient of group G  by its derived 

subgroup, '.G   

The next proposition shows the close relationship between the structure of the central 

subgroup of the nonabelian tensor square of group G, ( )G  and .abG  

Proposition 2 [15]  

Let G  be a group such that abG  is finitely generated. Assume that .abG  is the direct product 

of the cyclic groups 'ix G , for 1, ,i s   and set ( )E G  to be [ , ] | [ , ' ]i jx x i j G G   . Then 

the following hold: 

(i) ( )G  is generated by the elements of the set {[ , ],[ , ][ , ] |1 };i i i j j ix x x x x x i j s        

(ii) [ , ] ( ) ( )G G G E G   .   

The following propositions and theorem are some another commutator identities used in this 

paper. 

 

Proposition 3([5], [13]) 

Let G  be a group. Then the following relations hold in ( )G : 

(i) [ , ]g g  is central in ( )G for all g  in G ; 

(ii) [ , ] 1g g   for all g in 'G . 
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Proposition 4[5]  

Let 1 2 3, ,g g g and 4g  be elements of group G. Then in ( )G , 

1 2 3 4 1 2 3 4[[ , ],[ , ] ] [[ , ],[ , ]]g g g g g g g g   . 

 

Proposition 5 [15] 

Let G  be any group. Then the following hold: 

(i) If 1 'g G  or 2 ',g G  then 1
1 2 2 1[ , ] [ , ].g g g g     

(ii) [ ( ), ( ') ] 1.Z G G    

Proposition 6 [5] 

Let g  and h  be elements of G  such that [ , ] 1g h  . Then, in ( )G , 

(i) [ , ] [ , ] [ , ( ) ]n n ng h g h g h     for all integers n ; 

(ii) [ , ( ) ][ , ( ) ] ([ , ][ , ])n m m n nmg h h g g h h g     ; 

Proposition 7 [16] 

Let A  and B  be abelian groups. The properties of the ordinary tensor product of two abelian 

groups are given as in the following. 

(i) 0 ,B A A   

(ii) 0 0 0 ,B B B                                                         

  where B0 is a cyclic group of infinite order. 

Proposition 8 [6] 

Let G  be any Bieberbach group of dimension n  with point group P  and lattice group .L  Let 

ab
mB G F   where ab

mF  be a free abelian group of rank .m  Then B  is a Bieberbach group of 

dimension n m  with point group .P  

Theorem 2 [17] 

Let G  be a group. Then there exists a commutator mapping : 'G G G    which is defined 

by ( ) [ , ]g h g h   . The kernel of   is in the centre of G G . 

 



R. Masri et al.            J Fundam Appl Sci. 2017, 9(7S), 111-123               116 
 

When G  is abelian, G G  is just an ordinary tensor square for abelian groups. The 

following proposition gives the nonabelian tensor square of two abelian groups.  

Proposition 9 [17] 

Let G  be any group such that .G A B   Then, 

( ) ( )G G A B A B       

         ( ) ( ) ( ) ( )ab ab ab abA A A B B A B B         

where 'abA A A  and 'abB B B  are the abelianizations of A  and B  respectively. 

 

The derived subgroup, the abelianization and the central subgroup of the nonabelian tensor 

square of 1(3)S  are given in the following proposition.  

Proposition 10 [18] 

For group 1(3),S   

(i) The derived subgroup 2 2 1
1 2 1 2 31(3) ' , ,S l l l l l   

(ii) The abelianization, 0 1 1 11(3) (3)', (3)'abS a S a S  2
.

4
C   

Proposition 11 [18] 

The central subgroup of the nonabelian tensor square of 1(3)S  is given as the following: 

1( (3))S  2
0 1 0 10 1 1 0 4 8

[ , ],[ , ],[ , ][ , ] .a a a a a a a a C C       

 

2. RESULTS AND DISCUSSION   

In this section, the nonabelian tensor square of 1(3)S , denoted as 1 1(3) (3)S S  is computed. 

Theorem 3  

The nonabelian tensor square of 1(3)S  is isomorphic to 2 3
4 8 0C C C  , that is,  

2 3
1 1 1 1 4 8 0(3) (3) ( (3)) ( (3)) .S S S E S C C C        

Proof. By Proposition 10, 2 2 1
1 2 1 2 31(3) ' , ,S l l l l l  and by Proposition 2, 1( (3))E S   

0 1 1 1[ , ] [ (3), (3) ' ]a a S S    where 1 1[ (3), (3) ' ]S S   is generated by generators 2
0 1

[ , ],a l    
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2
1 1

[ , ],a l  2
1 1

[ , ],l l  2
2 1

[ , ],l l  2
3 1

[ , ],l l  2
0 2

[ , ],a l  2
1 2

[ , ],a l  2
1 2

[ , ],l l  2
2 2

[ , ],l l  2
3 2

[ , ],l l 

1
1 2 30

[ ,( ) ],a l l l   1
1 2 31

[ ,( ) ],a l l l  1
1 2 31

[ ,( ) ],l l l l  1
1 2 32

[ ,( ) ],l l l l   and 1
1 2 33

[ ,( ) ].l l l l   However, some 

of these generators can be expressed as a product of powers of other generators.  

2
1 1

[ , ]a l   1
1 1 1 1[ , ] [ , ]la l a l       by (3) 

   2
1 1 1 1 1[ , ][ , ]a l a l l       since 1 2

1 1 1
l a a l    

   1 2
1 1 1 1 1 1[ , ] [ , ][ , ]aa l l l a l     by (2) 

   2 2
1 1 1 1[ , ] [ , ]a l l l   

   2 2 1
1 1 1 1[ , ] [ , ]a l l l       by Proposition 6(i) 

   2
1 1[ , ]a l        since 2

1 1[ , ] 1l l    

2
0 2

[ , ]a l   2
0 2 0 2[ , ] [ , ]la l a l       by (3) 

   2
0 2 0 2 2[ , ][ , ]a l a l l      since 2 2

0 0 2
l a a l    

   0 2
0 2 2 2 0 2[ , ] [ , ][ , ]aa l l l a l     by (2) 

   2 2
0 2 2 2[ , ] [ , ]a l l l   

   2 2 1
0 2 2 2[ , ] [ , ]a l l l       by Proposition 6(i) 

   2
0 2[ , ]a l        since 2

2 2[ , ] 1l l    

 

By using similar arguments, 1 2 1 2
1 2 30 0 1 1 1 0 1 1 0

[ , ( ) ] [ , ] [ , ] ([ , ][ , ]) ,a l l l a a a l a a a a          

1 2
1 2 31 0 1 0 2

[ , ( ) ] [ , ] [ , ],a l l l a a a l          1
1 2 33

[ , ( ) ]l l l l   1 1
1 2 31

[ , ( ) ]l l l l   1
1 2 32

[ , ( ) ]l l l l   and 

1 2
1 2 3 0 11

[ , ( ) ] [ , ],l l l l a l    1 2
1 2 3 1 22

[ , ( ) ] [ , ].l l l l a l    However, 2 4
0 1 0 0[ , ] [ , ]a l a a    and 

2 4
1 2 1 1[ , ] [ , ] .a l a a    Next, it is can be shown that 

 2
1 1 1 1 1 1

[ , ] [ , ][ , ]l l l l l l         by (3) 

            2 2
0 1 1 0

[ , ][ , ]a l l a       since 2 1
0 1a l  

            2 1 2 1
0 1 1 0

[ , ] [ , ]a l l a       by Proposition 6(ii) 
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            2 1 2 1 1
0 1 0 1

[ , ] [[ , ] ]a l a l       by Proposition 5(i) 

            1  

2
2 1 2 1 2 1

[ , ] [ , ][ , ]l l l l l l         by (3) 

           0

2 1 2 1
[ , ][ , ]a l l l l     

           1
2 1 2 1

[ , ][ , ]l l l l       since 0 1
2 2

a l l   

           1
2 1 2 1

[ , ] [ , ]l l l l             by Proposition 6(i) 

           1  

By using similar arguments 2[ , ] 1
i j

l l    for all 1 , 3.i j   Therefore, 

01 1 1 1 0 10[ (3), (3) ' ] [ , ], [ , ], [ , ],S S a a a a a a   0 2 1 1[ , ], [ , ] .a l a l   However, 0 0[ , ]a a  and 

1 1[ , ]a a  are the elements of 1( (3)).S  Thus,  

1 0 1 0 2 1 1( (3)) [ , ],[ , ],[ , ] .E S a a a l a l     

By Proposition 2(ii), 

1 1[ (3), (3) ]S S 
1 1( (3)) ( (3))S E S    

           0 0 1 1 0 1 1 0[ , ], [ , ], [ , ][ , ],a a a a a a a a    0 2 1 10 1[ , ],[ , ], [ , ] .a a a l a l    

Next, the order of the six generators of 1 1[ (3), (3) ]S S   will be determined. By Proposition 11, 

both  0 0[ , ]a a  and 1 1[ , ]a a  have order 8 while 
0 1 1 0

[ , ][ , ]a a a a   has order 4.  By Theorem 2, 

1
0 1 0 1 1 2 3([ , ]) [ , ] ,a a a a l l l      2

0 2 0 2 2([ , ]) [ , ]a l a l l    and 2
1 1 1 1 1([ , ]) [ , ] .a l a l l     Since 

0 1[ , ],a a   
0 2

[ , ]a l   and 
1 1

[ , ]a l   are all in  1(3) 'S  and all the element in 1(3) 'S  have infinite 

order, hence 0 1[ , ],a a   
0 2

[ , ]a l   and 
1 1

[ , ]a l   have infinite order.  

Next, the six generators of  1 1[ (3), (3) ]S S   will be shown to be independent. By Theorem 2, 

the generators of 0 1[ , ],a a 
0 2

[ , ]a l   and 
1 1

[ , ]a l   are not in the kernel of .  Hence, 

0 1[ , ],a a 
0 2

[ , ]a l   and 
1 1

[ , ]a l   cannot be a product of others or it is a contradiction that it 

would be in the kernel of .  By order restrictions, 0 0[ , ]a a  1 1[ , ]a a  and 
0 1 1 0

[ , ][ , ]a a a a   are 
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independent generators of 1 1[ (3), (3) ]S S  . 

By Proposition 2, 1 1[ (3), (3) ]S S 
1 1( (3)) ( (3))S E S   Since 1( (3))S  is normal then all the 

generator commute to each other. Hence, 1( (3))S  is abelian. In order to show 1( (3))E S  is 

abelian, we need to show that all elements commute in 1( (3)).E S   

0 1 0 2[[ , ],[ , ]]a a a l 
0 0 21

[[ , ],[ , ] ]a a a l   

    1 2
1 3 22

[( ), ]l l l l   

0 12 2 1 2
1 2 2 2 3 2[ , ][ , ] [ , ]a al l l l l l   2 2 1 2

1 2 2 2 3 2[ , ][ , ] [ , ]l l l l l l    

2 2 1 1 2
1 2 2 2 3 2[ , ][ , ] [ , ]l l l l l l     2 2 1 2

1 2 2 2 3 2[ , ][ , ] [ , ]l l l l l l    

2 1 2 1 2 1
1 2 2 2 3 2[ , ] [ , ] [ , ]l l l l l l     2 2 1 2

1 2 2 2 3 2[ , ][ , ] [ , ]l l l l l l    

2 2
2 2[ , ]l l    

2 2 1
2 2[ , ]l l    

1   

 

0 1 1 1[[ , ],[ , ]]a a a l 
0 1 11

[[ , ],[ , ] ]a a a l   

    1 2
1 3 12

[( ), ]l l l l   

    0 12 2 1 2
1 1 2 1 3 1[ , ] [ , ] [ , ]a al l l l l l   2 2 1 2

1 1 2 1 3 1[ , ][ , ] [ , ]l l l l l l    

    2 1 2 1 1 2
1 1 2 1 3 2[ , ][ , ] [ , ]l l l l l l     2 2 1 2

1 1 2 1 3 1[ , ][ , ] [ , ]l l l l l l    

    2 2 2 1
1 1 2 1 3 1[ , ][ , ][ , ]l l l l l l    2 2 1 2

1 1 2 1 3 1[ , ][ , ] [ , ]l l l l l l    

    2 2
1 1[ , ]l l   

    2 2
1 1[ , ]l l   

    1   

 

0 2 1 1[[ , ],[ , ]]a l a l 
0 1 12

[[ , ],[ , ] ]a l a l   
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  2 2
2 1[ , ]l l   

  2 2
2 1 2 1[ , ][ , ]l l l l    

  0 2 2
2 1 2 1[ , ][ , ]a l l l l   

  1 2 2
2 1 2 1[ , ][ , ]l l l l   

  2 1 2
2 1 2 1[ , ] [ , ]l l l l   

  1   

By similar arguments, 0 2 0 1[[ , ],[ , ,]] 1a l a a    1 1 0 1[[ , ],[ , ]] 1a l a a    and 1 1 0 2[[ , ],[ , ]] 1.a l a l    

Since 1 1 2 2[[ , ],[ , ]] 1x y x y    for all 1 1 2 2[ , ],[ , ]x y x y   in 1( (3)),E S then we can conclude that 

1( (3))E S  is abelian. Therefore, we can conclude that  

2 3
1 1 1 1 4 8 0
(3) (3) ( (3)) ( (3)) .S S S E S C C C       

is abelian.                      

Next, Theorem 4 gives the generalization of the nonabelian tensor square of Bieberbach group 

with elementary abelian 2-group point group up to dimension n. 

Theorem 4 

For the Bieberbach group of 1( ),S n  

24 11 2 6 12
1 1 4 8 0( ) ( ) n n nS n S n C C C       for 4.n    

Proof. By Proposition 8, 1 1 3( ) (3) ab
nS n S F    for 3.n    Then by Proposition 9,  

1 1 1 1 1 3( ) ( ) ( (3) (3)) ( (3) )ab
nS n S n S S S F       3 1 3 3( (3) ) ( ).ab ab ab ab

n n nF S F F      

 By Theorem 3, 2 3
1 1 4 8 0
(3) (3) .S S C C C     Then, by Proposition 10 (ii), we have 

1 4 4
(3) .abS C C   By using Proposition7(i),  

                     3
1 3 4 4 0(3) ( )ab ab n

nS F C C C 
     

            3 3
4 0 4 0( ) ( )n nC C C C      

                           3 3
4 4
n nC C    
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And by symmetry,  

3 3
3 1 4 4(3) .ab ab n n

nF S C C 
     

 

Finally,  by Proposition 7(ii) we have, 

2( 3)3 3
3 3 0 0 0 .nab ab n n

n nF F C C C  
      

 

By collecting terms, then 1 1( ) ( )S n S n  

     
2( 3)2 3 3 3 3 3

4 8 0 4 4 4 4 0
nn n n nC C C C C C C C              

           
21 ( 3) ( 3) ( 3) ( 3) 3 ( 3)2

4 8 0
n n n n nC C C              

24 11 2 6 12
4 8 0

n n nC C C      

which completes the proof.                  

 

3. CONCLUSION  

In this paper, the nonabelian tensor square of a Bieberbach group with elementary abelian 2-

group point group, 1 1(3) (3)S S  is computed and is shown to be abelian. Then, the 

generalization of the nonabelian tensor square of 1(3)S  of dimension n is constructed. The 

findings of this research can be used for further research in computing and generalizing the 

other homological functors of this group. 
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