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ABSTRACT 

In this article, we aim to propose an algorithm to generate non-dominated vectors in multi-

objective linear programming problems. In other words, in the case where all variables are 

integer, we introduce an algorithm to produce a series of non-dominated vectors. Then in the next 

section, the algorithm is improved. Therefore, two modified versions of the algorithm are 

introduced. The two versions by reducing number of constraints and binary variables result in 

better computational performance. 

Keyword: Integer programming, multi-objective programming, parametric programming 

 

INTRODUCTION 

Generally, finding all non-dominated vectors in multi-objective combinatorial optimization 

problems (MOCO) is a very complex and difficult task. In this section, by fitting smooth super-

surfaces, we try to approximate non-dominated boundaries in MOCO problems. For a given 

problem, we fit the mentioned super-surface using a non-dominated reference vector. Using such 

approximation and by brief calculations, we can find a neighborhood of the preferred area, which 

includes non-dominated vectors. Further arithmetic operations can be found within this area, i.e. 

where the decision maker prefers to continue and obtain non-dominated vectors.  
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Of course, finding all non-dominated vectors, because of the large number of them, can be very 

difficult. One way to solve this problem is combining this method with an interactive decision-

making method so as to achieve a desirable non-dominated vector. However, this interactive 

method can also lead to finding a significant number of non-dominated vectors and therefore, this 

method can be inefficient too. But if the introduced𝐿௣-surface determines well the non-dominated 

boundaries then we can use an interactive surface to find the best decision-making solution on 

this𝐿௣-surface. 

So, first we choose a discrete set on 𝐿௣-surface and after we found the best solution on 𝐿௣-

surface, we solve the combinatorial optimization problem and this way we generate several real 

non-dominated vectors that are close to this best theoretical solution located on 𝐿௣-surfaces. The 

resulting non-dominated vectors can be presented to decision-makers so that after the final 

examination, the desired solution to be selected. 

 

The fitting technique of a super-surface to approximate a non-dominated boundary 

Consider the following multi-objective optimization problem: 

(𝑉𝑀)          𝑀𝑎𝑥        {𝑧ଵ(𝑥), 𝑧ଶ(𝑥), … , 𝑧௤(𝑥)}       𝑠. 𝑡.         𝑥 ∈ 𝑋. 

Suppose(𝑧ଵ
ூ௉, 𝑧ଶ

ூ௉, … , 𝑧௤
ூ௉)represents the ideal point corresponding to the problem VM, i.e.: 

𝑧௜
ூ௉ = max୶∈ଡ଼  𝑧௜(𝑥). 

Suppose also that (𝑧ଵ
ே௉ , 𝑧ଶ

ே௉ , … , 𝑧௤
ே௉) is the corresponding point for the problem VM, which is 

defined as follows: 

𝑧௜
ே௉ = min

୶∈୉
 𝑧௜(𝑥), 

Where Eis the set of efficient solutions. Finding 𝑧௜
ே௉is not an easy task and instead we can use a 

lower bound that results from solvingmin୶∈ଡ଼  𝑧௜(𝑥). 

 

Corresponding to values of(𝑧ଵ, 𝑧ଶ, … , 𝑧௤), we obtained the following scaled values 

൫𝑧ଵ
′ , 𝑧ଶ

′ , … , 𝑧௤
′ ൯ = (

𝑧ଵ − 𝑧ଵ
ூ௉

𝑧ଵ
ே௉ − 𝑧ଵ

ூ௉ ,
𝑧ଶ − 𝑧ଶ

ூ௉

𝑧ଶ
ே௉ − 𝑧ଶ

ூ௉ , … ,
𝑧௤ − 𝑧௤

ூ௉

𝑧௤
ே௉ − 𝑧௤

ூ௉
) 

So that for each for𝑖 = 1, … , 𝑞, we have 0 ≤ 𝑧௜
′ ≤ 1. Thetarget scaled values are better values, 

because 𝑧௜approaches to the ideal target value, i.e.𝑧௜
ூ௉, while𝑧௜

′closes to zero. So we minimize the 
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target  scaled values. These considerations are valid both for minimization and maximization 

problems. 

Non-dominated vectors have the feature that improving each of the objective functions requires 

that at least deteriorate one other objective functions. Due to this feature, we assume a set of non-

dominated vertex vectors as follows: 

𝑆 = {(0,1, … ,1), (1,0,1, … ,1), … , (1,1, … ,1,0)}. 

Then we fit a super-surface on the scaled vectors of set S. In case of having two objectives, each 

vector in set 𝑆 = {(0,1), (1,0)}corresponds to a real non-dominated vector. But for more than two 

objectives, it is only an approximation and vectors of set S are not necessarily non-dominated 

vectors. 

The super-page passing from of all vectors of the set S is defined as follows: 

൫1 − 𝑧ଵ
′ ൯

௣
+ ൫1 − 𝑧ଶ

′ ൯
௣

+ ⋯ + ൫1 − 𝑧௤
′ ൯

௣
= 1,        𝑝 > 0. 

This super-surface is called 𝐿௣-surface. If we can find an appropriate value for p so that 𝐿௣-

surface is close enough to the non-dominated vectors, then we can approximate the non-

dominated boundary using this super-surface. Let (𝑟ଵ, 𝑟ଶ, … , 𝑟௤)be the non-dominated scaled 

vector that we have chosen it as the reference vector. If you find a value for p satisfying the 

following relation 

(1 − 𝑟ଵ)௣ + (1 − 𝑟ଶ)௣ + ⋯ + ൫1 − 𝑟௤൯
௣

= 1 

, then the 𝐿௣-surface will pass through this reference point. 

To select a central reference vector, we solve an expanded weighted T-Chebyshev problem. In 

other words, we solve the following problem: 

min
୶∈ଡ଼

( max
୧ୀଵ,ଶ,…,୯

ቀ𝑧௜
ூ௉ − 𝑧௜(𝑥)ቁ − 𝜖 ෍ 𝑧௜(𝑥)

௤

௜ୀଵ

), 

Where ε is a positive and enough small value. This problem is equivalent to: 

൫𝑃௥௘௙൯    𝑀𝑖𝑛    𝛼 −  𝜖 ෍ 𝑧௜(𝑥)

௤

௜ୀଵ

    𝑠. 𝑡.    𝑧௜
ூ௉ − 𝑧௜(𝑥) ≤ 𝛼,     ∀𝑖   𝑥 ∈ 𝑋. 

As we know the expanded weighted T-Chebyshev problem, i.e.൫𝑃௥௘௙൯,will produce a non-

dominated vector. 

Whenever we have a reference vector൫𝑟ଵ, 𝑟ଶ, … , 𝑟௤൯, then we will be looking for a value for p so 

that satisfying the relation∑ (1 − 𝑟௜)
௣ = 1

௤
௜ୀଵ . If solving the intended combinatorial problem is 
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not difficult, we can produce several reference vector. This realizes by modifying problem (P୰ୣ୤) 

and solving problem(𝑃௪) as follows: 

(𝑃௪)          𝑀𝑖𝑛      𝛼 −  𝜖 ෍ 𝑧௜(𝑥)

௤

௜ୀଵ

 𝑠. 𝑡.       𝑤௜(𝑧௜
ூ௉ − 𝑧௜(𝑥)) ≤ 𝛼,      ∀𝑖    𝑥 ∈ 𝑋, 

where𝑤 = (𝑤ଵ, 𝑤ଶ, … , 𝑤௤) arethe weight vectors assigned to the objective functions. Examining 

several different weight vectors and solving problem (𝑃௪)for each of these vectors, we can obtain 

the non-dominated vectors from different parts of non-dominated boundary. 

 

2-1 A way to find the set of non-dominated vectors in integer multi-objective linear 

problems 

2-1-1 Basic definitions and propositions 

Generally, an integer multi-objective linear problem is defined in the following forum: 

(𝑃):     𝑀𝑎𝑥 {𝐶𝑥: 𝐴𝑥 = 𝑏, 𝑥 ≥ 0, 𝑥 ∈ 𝑍௡}, 

Where𝐶 ∈ 𝑍௣×௡, ،𝐴 ∈ 𝑅௠×௡and 𝑏 ∈ 𝑅௠. In this problem, Cx represents the objective function p. 

Ax = b contains m linear constraints and x represents ninteger variable. Feasible region of 

problem Pis shown with F (P). 

Usually since objective functions are in conflict with each other, there is no optimal (maximum) 

solution for the above problem. Therefore, for such problems, non-dominated vectors are defined. 

Definition 3-1.Feasible solution 𝑥∗ for problem P is called an efficient solution if there is no 

other feasible solution such as xsuch that𝐶𝑥 ≥ 𝐶𝑥∗and at least one of the inequalities hold as 

strict. In this case, vector 𝐶𝑥∗is called a non-dominated vector. 

 

Proposition 3-2. If 𝑥∗ is an optimal solution for the following single objective problem  

𝑀𝑎𝑥  {𝜆்𝐶𝑥: 𝑥 ∈ 𝑆} 

Then there is a 𝜆 ∈ 𝑅௣ (λ>0), for which 𝑥∗ is an efficient solution to the following problem 

𝑀𝑎𝑥  {𝐶𝑥: 𝑥 ∈ 𝑆} 

Efficient solutions that are optimal for the corresponding parametric problem (for a𝜆 ∈

𝑅௣and 𝜆 > 0), are called supported efficient solutions. Unlike multi-objective linear 

programming, in integer multi-objective linear programming, solutions are not necessarily 

supported and efficient. In other words, there are efficient solutions that are not optimal for 

any 𝜆 > 0.However, as we see in the next proposition, by eliminating the known efficient 
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solutions and also solution get dominated by them, new efficient solutions (supported or non-

supported) can be generated. 

Proposition 3-3. Let𝑥ଵ, 𝑥ଶ, … , 𝑥௟ , are efficient solutions for problem (P) and 

𝐷௦ = {𝑥 ∈ 𝑍௡: 𝐶𝑥 ≤ 𝐶𝑥௦}. 

If 𝑥∗ is an efficient solution to the following integer multi-objective problem 

(𝑀𝑂𝑃௟):     𝑀𝑎𝑥 {𝐶𝑥: 𝑥 ∈ 𝐹(𝑃) −∪௦ୀଵ
௟ 𝐷௦} 

then 𝑥∗ is an effective solution to problem P. In addition, if the problem (𝑀𝑂𝑃௟)is infeasible, 

then {𝐶𝑥௦}௦ୀଵ
௟  is the set of all non-dominated vectors of problem P. 

Proof. Let a solution 𝑥 ′ ∈ 𝐹(𝑃)exists such that 𝐶𝑥∗ ≤ 𝐶𝑥 ′and at least one of the inequalities is 

hold as strict. Since 𝑥∗is an efficient solution to the problem(𝑀𝑂𝑃௟), then 𝑥 ′ does not belong to 

the set 𝐹(𝑀𝑂𝑃௟)andwe have𝑥 ′ ∈∪௦ୀଵ
௟ 𝐷௦.Thus, for a𝑘 ∈ {1, … , 𝑙}, we have 𝑥 ′ ∈ 𝐷௞and according 

to definition of𝐷௞, we have 𝐶𝑥 ′ ≤ 𝐶𝑥௦. But since𝐶𝑥∗ ≤ 𝐶𝑥 ′ ≤ 𝐶𝑥௞, thus we have𝑥∗ ∈ 𝐷௞, which 

is in contradiction with 𝑥∗ ∈ 𝐹(𝑃) −∪௦ୀଵ
௟ 𝐷௦x. 

On the other hand, if(𝑀𝑂𝑃௟), is infeasible then 𝐹(𝑃) ⊆∪௦ୀଵ
௟ 𝐷௦, and for each 𝑥 ∈ 𝐹(𝑃), there 

exists a 𝑥௞ so that 𝐶𝑥 ≤ 𝐶𝑥௞ .Therefore either 𝐶𝑥 = 𝐶𝑥௞ , which results in 𝐶𝑥 = 𝐶𝑥௞ , or 𝐶𝑥 ≤

𝐶𝑥௞ so that at least one of the inequalities hold as strict, which in this case, vector Cx is 

dominated by 𝐶𝑥௞ .So, proof of the proposition is complete. 

 

Result 3-4. Let 𝑥ଵ, 𝑥ଶ, … , 𝑥௟are efficient solutions to the problem (P) and 

𝐷௦ = {𝑥 ∈ 𝑍௡: 𝐶𝑥 ≤ 𝐶𝑥௦}. 

If 𝑥∗ for a 𝜆 ∈ 𝑅௣, which (𝜆 > 0), is the efficient solution of the following problem 

(𝑃𝑁௟):     𝑀𝑎𝑥 {𝜆்𝐶𝑥: 𝑥 ∈ 𝐹(𝑃) −∪௦ୀଵ
௟ 𝐷௦} 

then𝑥∗ is the efficient solution to the problem (P). 

In the next section, in order to implement the above ideas, alinear version of problem (𝑃𝑁௟)is 

considered. 

 

2-1-2 Implementation method 

The results obtained in the previous section can be used to create an algorithm for multi-objective 

integer-bounded linear problems. After selecting a weight vector such as λ> 0, the first step in the 

algorithm is solving the following integer linear problem: 
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(𝑃଴):     𝑀𝑎𝑥 {𝜆்𝐶𝑥: 𝐴𝑥 = 𝑏, 𝑥 ≥ 0, 𝑥 ∈ 𝑍௡}. 

If the problem is infeasible, then problem (P) is infeasible. Otherwise, an optimal solution like 

𝑥ଵcan be found that according to Proposition 3.2 is an efficient solution to the problem (P). Then 

a series of problems (𝑃௟)will be solved, in which gradually the number of constraints will be 

increased. After performing lsteps of the algorithm, if problem (𝑃௟ିଵ)is infeasible, then the 

algorithmwill stops; otherwise, a new efficient solution like𝑥௟is obtained and the problem (𝑃௟) 

creates by eliminating all the solution satisfying 𝐶𝑥 ≤ 𝐶𝑥௟in the feasible area of 

problem(𝑃௟ିଵ).Removal of a solutions realizes by adding the following constraints to Problem 

(𝑃௟ିଵ): 

(𝐶𝑥)௞ ≥ ((𝐶𝑥௟)௞ + 1)𝑦௞
௟ − 𝑀௞൫1 − 𝑦௞

௟ ൯,             𝑘 = 1,2, … , 𝑝, 

෍ 𝑦௞
௟ ≥ 1

௣

௞ୀଵ

, 

𝑦௞
௟ ∈ {0,1}, 𝑘 = 1,2, … , 𝑝, 

where, −𝑀௞ is a lower bound for the k-th objective function on the feasible area, e.g. if all the 

objective functions are non-negative, value of 𝑀௞ for each k can be equal to 0. Adding these 

constraints is equivalent to removing area of 𝐷௟ from the feasible area and thus Problem (𝑃௟)is a 

linear version of(𝑃𝑁௟), and each optimal solution of the problem is also an efficient solution to 

the problem (P): 

(𝑃௟):     𝑀𝑎𝑥      𝜆்𝐶𝑥 

                𝑠. 𝑡.      

 𝐴𝑥 = 𝑏, 

(𝐶𝑥)௞ ≥ ((𝐶𝑥௦)௞ + 1)𝑦௞
௦ − 𝑀௞(1 − 𝑦௞

௦), 𝑠 = 1, … , 𝑙,    𝑘 = 1, … , 𝑝, 

෍ 𝑦௞
௦ ≥ 1

௣

௞ୀଵ

,        𝑠 = 1, … , 𝑙, 

𝑦௞
௟ ∈ {0,1}, 𝑠 = 1, … 𝑙,    𝑘 = 1,2, … , 𝑝, 

                            𝑥 ≥ 0,        𝑥 ∈ 𝑍௡. 

 

For large-scale problems, it may be infeasible to find all non-dominated vectors. Inthese cases, a 

subset of non-dominated vectors can be created as representative. To do so, problem (𝑃௟)can be 

modified as follows: 
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(𝑃௟):     𝑀𝑎𝑥      𝜆்𝐶𝑥 

                𝑠. 𝑡.      𝐴𝑥 = 𝑏, 

(𝐶𝑥)௞ ≥ ((𝐶𝑥௦)௞ + 𝑓௞)𝑦௞
௦ − 𝑀௞(1 − 𝑦௞

௦), 𝑠 = 1, … , 𝑙,    𝑘 = 1, … , 𝑝, 

෍ 𝑦௞
௦ ≥ 1

௣

௞ୀଵ

,        𝑠 = 1, … , 𝑙, 

𝑦௞
௟ ∈ {0,1}, 𝑠 = 1, … 𝑙,    𝑘 = 1,2, … , 𝑝, 

                            𝑥 ≥ 0,        𝑥 ∈ 𝑍௡, 

 

where, 𝑓௞represents the minimum benefit that must be applied on the k-objective function to the 

new non-dominated vector to be considered. 

If 𝑓௞ = 1for every k = 1, ...,p, and entries of the cost matrix Call are integer, then the generates all 

the non-dominated vectors, but does not generates necessarily all the efficient solutions. 

However, the algorithm can be used in the case that all entries of matrix are real numbers, 

provided that for the difference between each pair of the objective a lower bound is given. 

 

2-1-3 Computational results 

Results obtained for the allocation problem show that although the special structure of allocation 

problem is not used, the algorithm in this problem has a better performance than in the knapsack 

problem so that the number of simplex iterations as well as some other criteria have decreased 

compared to the number of non-dominated vectors. 

 

2-1-4 Generating all the efficient solutions for binary problems 

Although the algorithm proposed in Section 2.1.1 generates all the non-dominated vectors, but 

does not generate all of its efficient solutions. Whenever a new efficient solution like 𝑥∗is found, 

the set of all x that hold 𝐶𝑥 ≤ 𝐶𝑥∗,must be removed from the feasible area. With this action, not 

only inefficient solution will be deleted, but also efficient solutions such as 𝐶𝑥 = 𝐶𝑥∗will also be 

deleted. Nevertheless, for each target non-dominated vector, an efficient solutionon behalf of a 

class of equivalent solutions generates. To generate all efficient solutions,more complex 

operations will be required. In the following, one way is presented for the case in which all the 

decision variables are binary. 
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For every efficient solution like𝑥∗, we define the following sets: 

𝐾଴(𝑥∗) = {𝑗: 𝑥௝
∗ = 0} 

, and 

𝐾ଵ(𝑥∗) = ൛𝑗: 𝑥௝
∗ = 1ൟ. 

 

Then, we solve the following problem: 

 

(𝑄):     𝑀𝑎𝑥      0 

                𝑠. 𝑡.      𝐴𝑥 = 𝑏, 

                            𝐶𝑥 = 𝐶𝑥∗, 

෍ 𝑥௝

௝∈௄భ(௫∗)

− ෍ 𝑥௝

௝∈௄బ(௫∗)

≤ |𝐾ଵ(𝑥∗)| − 1, 

                            𝑥 ≥ 0,       𝑥 ∈ 𝑍௡. 

 

Lemma 3-5. All the binary vectors satisfy the constraint 

෍ 𝑥௝

௝∈௄భ(௫∗)

− ෍ 𝑥௝

௝∈௄బ(௫∗)

≤ |𝐾ଵ(𝑥∗)| − 1 

except than 𝑥∗. 

 

Result 3-6. To generate all the efficient solutions,we do as follows: in each iteration of the 

algorithm, after generating the efficient solution of𝑥∗, we solve Model (Q). Thus, a new efficient 

solution (from the same class) like 𝑥∗∗, if available, would be generated. Then we add 

theconstraint 

෍ 𝑥௝

௝∈௄భ(௫∗∗)

− ෍ 𝑥௝

௝∈௄బ(௫∗∗)

≤ |𝐾ଵ(𝑥∗∗)| − 1 

to the Problem (Q), and continue the process until the model (Q) become infeasible. In this 

step,allthe efficient solutions like x that satisfy 𝐶𝑥 = 𝐶𝑥∗ are obtained. Now we return to the next 

step of the algorithm (Section 2.1.1) and we run the next iterations. 
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2-2 Modified techniques of finding all non-dominated vectors in multi-objective integer 

linear problems  

In this section, two exact algorithm are presented to findthe set of non-dominated vectors in 

multi-objective integer linear problems. The algorithms can be considered as modified versions 

of the algorithm presented in Section 2.1. 

Consider the following the general multi-objective programming problem: 

(𝑃):     𝑀𝑎𝑥   {𝑧ଵ(𝐱), 𝑧ଶ(𝐱), … , 𝑧௣(𝐱)} 

 s.t.𝒙 ∈ X 

 

where, z୧(x)are the functions, p is the number of criteria or objective functions, xis a decision 

variable, and X represents the feasible region. The set of all the non-dominated vectors of 

problem is called non-dominated boundary. 

The algorithm presented in Section 2.1, with a positive weight vector such as λ, ran and solved 

the following problem: 

(𝑃ఒ):     𝑀𝑎𝑥   ෍ 𝜆௝

௣

௝ୀଵ

𝑧௝(𝐱) 

s.t.𝐱 ∈ X. 

 

After finding a new non-dominated vector, Problem (𝑃ఒ)by adding a binary variable p and p + 1 

new constraints become updated. If n non-dominated vector was found then Problem(𝑃ఒ
௡),which 

was defined as follows, is solved and generates n+1-th non-dominated vector (assuming all𝑧௧௝ for 

each𝑡 = 1, … , 𝑛 andj = 1, … , p have integer values): 

(𝑃ఒ
௡):     𝑀𝑎𝑥      ෍ 𝜆௝

௣

௝ୀଵ

𝑧௝(𝐱) 

                  𝑠. 𝑡.      𝐴𝑥 = 𝑏, 

𝑧௝(𝐱) ≥ ൫𝑧௧௝ + 1൯𝑦௧௝ − 𝑀൫1 − 𝑦௧௝൯, ∀𝑗    ∀𝑡, 

෍ 𝑦௧௝ ≥ 1

௣

௝ୀଵ

,       ∀𝑡, 

𝑦௧௝ ∈ {0,1}, 𝑗 = 1, … , 𝑝,    𝑡 = 1,2, … , 𝑛, 

  ∈ X. 
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The Problem(  
 ), vector  t = ൫zt1, zt2, … , ztp൯indicates t-thnon-dominated vector. M is a 

positive constant with enough large value that is a lower bound for   ( )and    is a binary 

variable that taking value of 1 causes the constraint   ( ) ≥ (    + 1) to be satisfied. 

Constraints ∑     ≥ 1 
 ୀ1 cause at least one of the entries of the new obtained target vectors to 

be greater in its t-thcorresponding entry than the non-dominated vector and this causes that the 

new obtained non-dominated vector to differ from all the previous non-dominated vectors. The 

mentioned algorithm continues adding new binary variables and constraints, i.e. updating 

Problem(  
 )), until the feasible region of the Problem gets empty. 

 

2-2-1 The first modified algorithm 

In this section, the algorithm presented in Section 2-1is modifiedby reducing the number of 

binary variables and new constraints that were used to update the Problem(  
 ). 

In this algorithm, first, one of the objective functions is selected randomly. Let, for example, the 

m-th objective function is selected; consider the following problem: 

൫  
0 ൯:             ( ) +   ෍   ( )

 ஷ 

 

s.t.  ∈ X, 

 

whereε is a positive constant with a small enough value. The problem generates a non-dominated 

vector in which, m-th objective function is maximized. In addition, the positive value of ε 

prevents generation of a poor non-dominated vector. 

Let  1 = (z11, z12, … , z1p) is the non-dominated vector corresponding to the optimal solution of 

Problem൫  
0 ൯. According to the structure of the Problem, the m-th component of vector 1, i.e. 

the 1 , is equal to value of the m-th objective function on the feasible region. Assuming that 

now n-1 non-dominated vector are found, which the m-thcomponent of each of them is greater 

than or equal   , let  n = (zn1, zn2, … , znp)is the non-dominated vector thatis obtained in n-th 

iteration. Vectors t for   = 1, … ,   − 1include all of the non-dominated vectors that their m-

component is strictly greater than   , but it is feasible that it may not include all non-dominated 

vectors that their m-component is equal to   .The rest of non-dominated vectors that their m-

component is equal to    will be generated in the next iterations and before producing any of 

non-dominated vector that its m-thcomponent is smaller than of   .Finally, all non-dominated 
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vectors n for   = 1, … ,  , with an ascending order with respect to the value of m-th objective 

function will be generated. The set of non-dominated vectors that are obtained in the first n 

iterations are shown by   = { t: 1 ≤   ≤  }. 

By solving Problem൫  
0 ൯, non-dominated vectors in which m-th objective function has their best 

value would obtain. The following proposition asserts that having nnon-dominated vectors with 

the best m-th objective function value, we can obtain the non-dominated vector that provides 

n+1-th good value for the objective function. 

 

Proposition 3-7. Let ε is a positive and small enough value and M is a positive and large enough 

value. If we have all the non-dominated vectors belonging to the set   = { t: 1 ≤   ≤  }, then 

Problem(  
 )is defined as follows so as to generate the non-dominated vector  nା1 =

(z(nା1)1, z(nା1)2, … , z(nା1)p)so thatz(nା1)m ≤ ztmfor each   = 1, … ,  .If Problem (  
 ) is 

infeasible, then    includes all non-dominated vectors of the main Problem. 

(  
 ):             ( ) +   ෍   ( )

 ஷ 

 

s.t.  ( ) ≥ (    + 1)    −  (1 −    ), ∀  ≠       ∀ , 

෍     = 1
 ஷ 

,       ∀ , 

    ∈ {0,1},   = 1,2, … ,  ,   = 1, … ,         ≠  , 

  ∈ X. 

 

Proof. Let n = 1, where we have only non-dominated vector  1 = ൫z11, z12, … , z1p൯at our 

disposal. Since ∑  1  = 1 ஷ  , exactly one of p-1 constraints   ( ) ≥ ( 1  + 1)will hold as 

equality or would be active, and given the sufficiently large value of M, the rest of constraints 

will be redundant. Thus, in the new non-dominated vector, at least value of one of the objective 

functions in vector  1will be strictly larger, which guarantees variety of non-dominated vectors 

obtained. Since our goal is to maximizem-th objective function we believe that one different non-

dominated vector will be obtained, therefore we obtain the non-dominated vector 2, which 

among the feasible solution of Problem൫  
1 ൯, its m-thobjective function value is the highest. 

Since the feasible region of Problem ൫  
1 ൯ is the subset of the feasible region of Problem൫  

0 ൯,so 
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the optimal value of Problem൫  
1 ൯is smaller or equal to the optimal value of Problem൫  

0 ൯.Since 

ε is small enough, so 2  ≤  1 . If ൫  
1 ൯is infeasible, then, we conclude that there is only one 

non-dominated vector. Now let  > 1. In this case, similarly, the first and second class of 

constraints of Problem(  
 ) guarantee that the generated efficient vector is different from all 

non-dominated vectors belonging to set  .Thus, the non-dominated vector  nା1 will obtain that 

among the feasible solutions of Problem(  
 ),its m-thobjective function value is the highest. 

Since the feasible region of Problem(  
 ) is a subset of the feasible region of Problem൫  

 ି1൯, 

thus the optimum of Problem(  
 )is smaller or equal to the optimal value of 

Problem൫  
 ି1൯andsimilar to before, since ε is small enough, thus,  ( ା1)  ≤    . If 

(  
 )infeasible, then, we conclude that the set    = { t: 1 ≤   ≤  } includes all non-

dominated vectors of the main problem. This way, proof of the proposition is complete. 

The above results indicate thatto generate all non-dominated vectors of the original Problem (P), 

it is enough to solve Problem (  
 )in an iterative manner until the stop condition, i.e. infeasibility 

of the Problem, is established. 

Proof. Let n = 1, where we have only non-dominated vector  1 = ൫z11, z12, … , z1p൯at our 

disposal. Since ∑  1  = 1 ஷ  , exactly one of p-1 constraints   ( ) ≥ ( 1  + 1)will hold as 

equality or would be active, and given the enough large value of M, the rest of constraints will be 

redundant. Thus, in the new non-dominated vector, at least value of one of the objective functions 

in vector  1will be strictly larger, which guarantees variety of non-dominated vectors obtained. 

Since our goal is to maximize m-th objective function we believe that one different non-

dominated vector will be obtained, therefore we obtain the non-dominated vector 2, which 

among the feasible solution of Problem൫  
1 ൯, its m-th objective function value is the highest. 

Since the feasible region of Problem ൫  
1 ൯ is the subset of the feasible region of Problem൫  

0 ൯,so 

the optimal value of Problem൫  
1 ൯ is smaller or equal to the optimal value of Problem൫  

0 ൯. 

Since ε is small enough, thus, we have 2  ≤  1 . If ൫  
1 ൯ is infeasible, then, we conclude that 

there is only one non-dominated vector. Now suppose that n> 1. In this case also, the first and 

second class of constraints of Problem (  
 )guarantee that the generated efficient vector is 

different from all non-dominated vectors belonging to set  . Thus the non-dominated 

vector nା1 will be obtained so that among the feasible solutions of Problem(  
 ), its m-the 
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objective function value is the highest. Since the feasible region of Problem(  
 ) is a subset of 

the feasible region of Problem൫  
 ି1൯, thus the optimum of Problem(  

 ) is smaller or equal to 

the optimal value of Problem൫  
 ି1൯ and as before, since ε is small enough thus we 

have ( ା1)  ≤    . If(  
 ) is infeasible, then, we conclude that the set of   = { t: 1 ≤   ≤

 } includes all non-dominated vectors of the main Problem. This way, the proof of the 

proposition is completed. 

The above results indicate that in order to generate all non-dominated vectors of the main 

Problem (P), it is enough to solve Problem (  
 )in an iterative manner until the stop condition, 

i.e. infeasibility of the Problem, is established. 

 

The first modified algorithm 

Step zero. Choose one of the objective functions like m that its value through the algorithm 

become maximized. Let n equal to zero. If X is empty, then there is no non-dominated vector. 

Stop. 

Step one. Solve Problem(  
 ). If (  

 )infeasible, then go to the second step. Otherwise, name 

the non-dominated vector corresponding to the optimal solution of (  
 )as  ା1. Increase n by 

one and repeat the first step from the beginning. 

Second step. Stop. The set   = { t: 1 ≤   ≤  }includes all the n non-dominated vector of 

Problem (P). The above modified algorithm is an improved version of the algorithm introduced 

in Section 2-1. In fact, this algorithm in n-th iteration reduces number of new binary variables 

from np to n(p-1), and the number of new constraints from n(p+1) to np. 

 

2-2-2 The second modified algorithm 

As we have seen, in Problem(  
 ), the number of binary variables added is  (  − 1) and 

number of added constraints is equal to   . But in fact, for each feasible solution, at most one 

constraints is enough to identify the region that compared to existing points for each of the   − 1 

benchmark (objective function) is non-dominated. According to this, the second modified 

algorithm determines the necessary constraints and to find the solution of Problem(  
 ), several 

models with a maximum of   − 1 constraints (for the lower bound) is added. Without reducing 

the generality of Problem and in order to simplify the symptoms, we let  =  . Let  (  ) =
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( 1
൫  ൯

, … ,   
൫  ൯

) is the optimal non-dominated solution of the following corresponding 

problem: 

(  ):             ( ) +   ෍   ( )

 ି1

 ୀ1

 

s.t. 

  ( ) ≥   ,            = 1,2, … ,   − 1, 

x ∈ X, 

, where   = ( 1,  2, … ,   ି1)is the lower bound of each of the first p-1 introduced criteria. If 

the Problem(  ) is infeasible, then we have (  ) = (− , − , … , − ). 

First we will prove that Problem (  
 ) for p = 3 can be divided into several sub models. Then we 

will generalize the results for any p. 

Problem ( 3
 ) is divided into n+1 sub models, i.e. (   , 

) for   = 0,1, … ,   where, different 

bounds for the first and second criteria are set with the help of non-dominated points existed 

in   = { t: 1 ≤   ≤  }.  k,n = ൫b1
k,n

, b2
k,n

൯imply the bound vector corresponding to each of sub 

models(   , 
) for   = 0,1, … ,  ; k> 0, which indicates that we have used from the k-th non-

dominated point, i.e.   , in order to define a lower bound for the first criteria, i.e. 1
 ,  =   1 +

1. By defining this lower bound for the first criterion removes the region by current non-

dominated points, value of their first criterion is less than b1
k,n. When b1

k,nis defined, it is enough 

by considering the current non-dominated points, which value of their first criterion is greater 

than or equal tob1
k,n, we define a bound for the second criterion. In other words, if we define: 

  
  = ൛ t:   1 ≥ b1

k,n
,  t ∈   ൟ, 

 

Then we define: 

b2
k,n

= max
 t∈  

 
{  2} + 1. 

 

If  
  =  , then there is no need to define a bound for the second criterion. 

If   = 0, we will not have a lower bound for the first criterion and   
0 includes all the available 

non-dominated points, i.e.   
0 =   . 
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Proposition 3-8. Let p = 3, k,n = (b1
k,n

, b2
k,n

),  
  = ൛ t:   1 ≥ b1

k,n
,  t ∈   ൟ for every   =

0,1, … ,  , and  ∗ is such that: 

 3

ቆ  k∗,n
ቇ

= max
kୀ0,1,…,n

 3

൬  k,n
൰
 

where 

b1
k,n

= ൜
−M,              k = 0
zk1 + 1,        k > 0

 ,            b2
k,n

= ቊ
−M,                                          

  =  
max t∈  

 {  2} + 1,                o. w.
  

If 3

ቆ  k∗,n
ቇ

= − , then   = { t: 1 ≤   ≤  } includes all non-dominated points of the main 

Problem of (P). Otherwise, we have: 

  ା1 =  
ቆ  k∗,n

ቇ
. 

Proof. Recall from the previous proposition that we can 

obtain nା1 = (z(nା1)1, z(nା1)2, … , z(nା1)p) by solving the Problem(  
 ). A rewrite of the 

Problem(  
 ) for the case with three criteria and m = 3 will be as follows: 

൫ 3
 ൯:            3( ) +   1( ) +   2( ) 

s.t. 

 1( ) ≥ (  1 + 1)   −  (1 −   ),      ∀ , 

 2( ) ≥ (  2 + 1)(1 −   ) −    ,      ∀ , 

   ∈ {0,1},        = 1,2, … ,  , 

X ∈ X 

where   = 1 indicates that  1( ) ≥   1 + 1 and   = 0 result in 2( ) ≥   2 + 1. 

Based on the value of k, one of the following modes for the optimum non-dominated point 

occurs: 

First mode: k = 0. In this case, for every  = 1, … ,   , we have   = 0. So, we have no 

additional lower bound for the value of the first criteria and therefore we can writeb1
k,n

= −M. 

Also in this mode, for every   = 1, … ,  , we have 2( ) ≥   2 + 1 and thus, we can define: 

b2
k,n

= max
 t∈  

 
{  2} + 1 

This mode is equivalent with the mode in which k = 0, which results in  
0 =   , because for 

every t = 1, ...,n, we have   1 ≥ b1
k,n. 
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Second mode: In this mode we have0 <   ≤  . In this case, for some values of k(1 ≤   ≤  ), 

we have   = 1and for all t that satisfy the condition  1 ≥   1 + 1, we have   = 0. This 

shows that 1( ) ≥   1 + 1 and we can put 1
  =   1 + 1. For all t that satisfy the 

condition  1 ≤   1, we have  1 + 1 ≤   1 + 1 ≤  1( )and we can write   = 1. 

Since just for all t that satisfy  1 ≥   1 + 1, we have   = 0, therefore, for every t that satisfy 

condition  1 ≥  1
 , , we have 2( ) ≥   2 + 1, i.e.  t ∈ Sn

k. IfSn
k ≠  , then, lower bound 

for 2will be as follows: 

b2
k,n

= max
 t∈  

 
{  2} + 1. 

IfSn
k =  , thenb2

k,n
= −M. 

For every   = 0,1, … ,  , value of 
൬  k,n

൰
, is obtained by solving the corresponding models so 

that we consider all the possible states one by one for every new solution. Since our goal is 

maximizing the third criterion, sub model ∗that has the optimal solution with the highest value 

for the third criterion, i.e.: 

 3

ቆ  k∗,n
ቇ

= max
kୀ0,1,…,n

 3

൬  k,n
൰

, 

 

Results in the next non-dominated point.  3

ቆ  k∗,n
ቇ

= − corresponds to the mode in which all 

sub models are infeasible and therefore Problem( 3
 )is infeasible and   = { t: 1 ≤   ≤

 }includes all the non-dominated points. Otherwise, the corresponding sub model will result in 

new non-dominated point  ା1 =  
ቆ  k∗,n

ቇ
. 

Similar to the case mentioned for p = 3, for each p, Problem(  
 ) can be divided into sub-

problemsቀ  k,n
ቁfor  = ( 1,  2, … ,   ି2). We used existing non-dominated points to define 

lower bound for criteria  = 1,2, … ,   −1. Index of non-dominated point that we used to define 

bound for the j-th criteria was considered to be  . The relation   = 0indicates that no specific 

bound is considered for the j-th criteria. 

At first, when0 <  1 ≤  , the lower bound isb1
 ,n

= zk11 + 1 and if when 1 = 0,we consider the 

lower bound of b1
 ,n

= −  for the first criteria. Now, similar to the case with three criteria, we 
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used only those non-dominated points that value of their first criterion is greater than or equal 

tob1
 ,nto define bound for other criteria. In other words, the first criterion of    , which will be 

used to define bound for the second criterion, will satisfy the relation zk21 ≥ zk11 + 1, provided 

that  1,  2 ≠ 0. 

We will continue finding bound for each of the criteria j = 1, ...,p-2, which depends on the value 

of  , so thatzkji ≥ zkii + 1 for each non-zero  and  with   <  . 

In order to define a lower bound for p-1-th, we define the below set: 

  
  = ൛  :     ≥ bj

 ,n
,   = 1,2, … ,   − 2,    ∈   ൟ 

that included the existing non-dominated points that yet dominated regions are not removed by 

them. This way, we impose the following conditions on the Problem: 

  ି1( ) ≥   ( ି1) + 1               ∀   ∈   
 . 

So we have: 

bpି1
 ,n

= max
 t∈  

 
൛  ( ି1)ൟ + 1. 

According to the above explanations, the previous proposition can be extended for more than 

three criteria. 

 

Proposition 3-9. Let K is the set of all possible combinations of   = ( 1,  2, … ,   ି2)that 

   ∈ {0,1,2, … ,  }          ∀  = 1,2, … ,   − 2, 

zkji ≥ zkii + 1                  ∀  ,    ≠ 0,   <  . 

 

Now considering  

  ,n = ൫ 1
 ,n,  2

 ,n, … ,  pି1
 ,n ൯ 

and 

  
  = ൛  :     ≥ bj

 ,n
,   = 1,2, … ,   − 2,    ∈   ൟ 

  

, let  ∗ is such that 

  

ቆ  k∗,n
ቇ

= max
 ∈ 

    

൬  k,n
൰
, 

where, 
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 j
 ,n = ቊ

−M,               j = 0
zkjj + 1,        o. w.

                       j = 1,2, … , p − 2, 

 pି1
 ,n = ൝

−M,                                          
  =  

max
 t∈  

 
൛  ( ି1)ൟ + 1,                o. w.

  

If  

൬   ∗,n
൰

= − , then   = { t: 1 ≤   ≤  }includes all the non-dominated points of the main 

Problem (P). Otherwise, we have: 

  ା1 =  
൬   ∗,n

൰
. 

The second modified algorithm 

Step zero. Set n equal to zero. If൫  
0 ൯is infeasible, then X is empty and there is no non-

dominated vector. Stop. 

Step one. Find   

ቀ   ,n
ቁ
for each k K. Specify   ∗ such that: 

  

൬   ∗,n
൰

= max
 ∈ 

    

ቀ   ,n
ቁ
. 

If  

൬   ∗,n
൰

= −  (all models are infeasible), go to the second step. Otherwise, new non-

dominated point will be as follows: 

  ା1 =  
ቆ  k∗,n

ቇ
. 

Increase n by one and repeat the first step from the beginning. 

Second step. Stop. Set   = { t: 1 ≤   ≤  }includes all n non-dominated vector for Problem 

(P). 

If N is the number of all the non-dominated points of Problem (P), then at worst mode, number of 

models that must be solved to find N is equal to: 

෍ ෍ 1
 ∈ 

 

 ୀ0
, 

which of the order of O൫  ି1൯. 

The number of models that must be solved can be reduced by maintaining some information in 

memory. Many of models results in the same solutions, since there are only N non-dominated 

point, while we have solved more than N model, each of which results in one non-dominated 

point. As is shown in the following proposition, by keeping vector of lower bounds b and the 
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corresponding solution to it, i.e. (  ), we can detect whether the generated optimal solution is 

similar to each of the previous solutions or not. 

 

Proposition 3-10. Let the bound vectors  1 = (b1
1, b2

1, … , bpି1
1 ) and 2 = (b1

2, b2
2, … , bpି1

2 ). If 

  
1 ≤   

2 ≤   
൫  1൯

,          ∀  = 1,2, … ,   − 1, 

Then (   ) =  (   ). 

Proof. Since   
2 ≤   

൫  1൯
 for every   = 1,2, … ,   − 1, thus, the non-dominated point (   ) 

for Problem (   ) is also feasible. Assume (   )has an optimal solution so that (   ) ≠

 (   ). Since (   )is not an optimal solution to Problem(   ), and both Problems seek to 

maximize the p-ti criteria, so we have  
൫  1൯

<   
൫  2൯

. In addition, to meet the feasibility 

condition, we can write: 

  
2 ≤   

൫  2൯
,      ∀  = 1,2, … ,   − 1. 

Since we know   
1 ≤   

2 for each   = 1,2, … ,   − 1, therefore, for each   = 1,2, … ,   − 1, we 

will have   
1 ≤   

൫  2൯
and thus  (   )is also infeasible for Problem(   ). But we know 

  
൫  1൯

<   
൫  2൯

and therefore  (   )results in contradiction with optimality (   ) for 

Problem(   ). This contradiction shows that (   ) =  (   ). 

In a similar way, we can maintain and use the lower bounds that have caused infeasibility. The 

following result makes possible to detect infeasibility of the problem in the next iterations, 

without solving the model. 

 

Result. Consider bounds 1 = (b1
1, b2

1, … , bpି1
1 ) and 2 = (b1

2, b2
2, … , bpି1

2 ). If (   ) is infeasible 

and 

  
1 ≤   

2 ,          ∀  = 1,2, … ,   − 1, 

 Then (   ) will also be infeasible. 
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