Prebiotics: an update

Christina S Venter

INTRODUCTION

The search for functional foods or functional food ingredients that can enhance health, is one of the leading trends in today’s food industry (Saarela et al, 2002). In this context, probiotics (i.e., living microbial food supplements) and prebiotics (i.e., non-digestible food ingredients which stimulate the growth of intestinal probiotic bacteria) receive much attention. Both popular concepts target the gastrointestinal microbiota. While in the Western world intake of probiotics has been recommended for many years, prebiotics have only recently received attention.

Functional foods or functional food ingredients exert a beneficial effect on host health and/or reduce the risk of chronic disease beyond their nutritive value (Ziemer & Gibson, 1998; Saarela et al, 2002). A food can be made functional by addition of a potential health-promoting entity, reducing or removing concentrations of harmful components and/or modifying the nature or the bioavailability of one or more components (Ziemer & Gibson, 1998; Saarela et al, 2002). The first generation of functional foods was based on enrichment/fortification with vitamins and minerals (mainly calcium). However, the concept has recently moved towards food ingredients exerting a positive effect on the gut microbiota, introducing probiotics and prebiotics (Ziemer & Gibson, 1998).

Probiotics are living microbial food components that beneficially affect the host by improving its intestinal microbial balance (Gibson & Roberfroid, 1995). The most common probiotics currently used belong to the genera *Bifidobacterium* and *Lactobacillus* (Duggan et al, 2002). These genera have a considerable safety record, both with the fermented food industry, where they have been used for many years, and more recently in probiotic foods. Intake of probiotic foods has been associated with a number of health benefits (reviewed by Sanders, 2003). Because probiotics do not permanently colonise in the intestine, they must be taken in sufficient quantities (>1 X 10^10/day) to maintain adequate amounts in the colon (Duggan et al, 2002). It is important that the ingested bacteria reach the large intestine in an intact and viable form. However, most common products containing probiotic bacteria, namely yogurt and probiotic drinks (milks, fruit juices), have a short shelf life and bacterial numbers are often not stated (Hamilton-Miller, 2004). Even if bacterial numbers are claimed on the label, which has been found not to be the case in several products in South Africa (Elliott & Teversham, 2004; Brink et al, 2005), it refers to live bacteria at the time of manufacturing and not the time of purchase. Another source of probiotics is supplements consisting of freeze dried bacteria in capsule, tablet or powder form. Some of these brands contain probiotics with proven beneficial
effects and have a long shelf life; however, many brands may contain contaminants and lower than claimed numbers and/or strains with no proven beneficial effects (Hamilton-Miller, 2004).

Prebiotics are a more recent concept, first defined about ten years ago (Gibson & Roberfroid, 1995). Here, the selective growth of indigenous gut bacteria is required. Prebiotics are indigestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of one or a number of health-promoting colon bacteria and thus improving host health (Gibson & Roberfroid, 1995). Prebiotics have become news mainly as an alternative to probiotics, which are difficult to handle in foodstuffs, but whose benefits to health in terms of prevention of diarrhoea and immunomodulation are increasingly well established and because prebiotics currently in use, especially inulin and its derivates as well as galactooligosaccharides, are cheap to manufacture or extract and, in addition to having probable health beneficial effects on the gut flora, are also valuable functional ingredients in foods, with the property of giving fat-based spreads and dairy products a creamy mouth feel (Macfarlane et al, 2006).

Gibson and colleagues (2004) have recently reviewed their original prebiotic concept in the light of much research that has been published in the past decade, and in particular the three key aspects of their definition: 1) resistance to digestion; 2) fermentation by the large intestinal microflora; and 3) a selective effect on the flora that promote health. Their new definition is: “A prebiotic is a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host wellbeing and health”. The key words in both definitions are “selective” and “benefit/improve...host ...health”. Therefore, a prebiotic substrate must be particularly readily available to some groups of bacteria (of which lactobacilli and bifidobacteria are considered indicator organisms) that are beneficial to intestinal health but less available to potentially pathogenic bacteria, such as toxin-producing Clostridia, proteolytic Bacteroides and toxogenic Escherichia coli (Manning & Gibson, 2004). In this manner, a “healthier” microbiota composition is obtained whereby the bifidobacteria and/or lactobacilli become predominant in the intestine and exert possible health-promoting effects.

POTENTIAL PREBIOTICS

An exclusively breastfed baby has flora dominated by lactobacilli and bifidobacteria, which are part of the baby’s defence against pathogens and which is an important primer for the immune system (Newburg, 2005; De Morais & Jacob, 2006). These flora are nurtured by the oligosaccharides of breast milk, which is considered to be the original prebiotics. While some peptides, proteins and certain lipids are potential prebiotics, non-digestible carbohydrates, in particular non-digestible oligosaccharides, have received most attention (Ziener & Gibson, 1998). Any dietary compo-
TABLE 1: FRUCTAN CONTENT OF FOODS*

<table>
<thead>
<tr>
<th>Foods containing fructans</th>
<th>Serving size (g)</th>
<th>Fructan content</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>g / 100 g</td>
<td>g / serving**</td>
</tr>
<tr>
<td>Wheat-based foods:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bran – raw</td>
<td>4 g</td>
<td>1.4 – 4.0</td>
<td>0.1</td>
</tr>
<tr>
<td>White bread</td>
<td>2 slices (65 g)</td>
<td>0.7 – 2.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Pasta</td>
<td>1 c. cooked (165 g)</td>
<td>1.4 – 4.1</td>
<td>2.5</td>
</tr>
<tr>
<td>Whole-grain breakfast cereal</td>
<td>1 c. (60 g)</td>
<td>0.8 – 3.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Muffins</td>
<td>1 (65 g)</td>
<td>0.6 – 2.2</td>
<td>1.4</td>
</tr>
<tr>
<td>Cracker</td>
<td>2 biscuits (40 g)</td>
<td>0.8 – 3.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Crispbread</td>
<td>2 biscuits (30 g)</td>
<td>1.0 – 3.8</td>
<td>1.1</td>
</tr>
<tr>
<td>Rye</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flour</td>
<td>100 g</td>
<td>0.5 – 1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>100% rye bread</td>
<td>2 slices (65 g)</td>
<td>0.35 – 0.63</td>
<td>0.4</td>
</tr>
<tr>
<td>Rye crispbread</td>
<td>2 biscuits (30 g)</td>
<td>0.4 – 0.72</td>
<td>0.2</td>
</tr>
<tr>
<td>Barley grain</td>
<td>100 g</td>
<td>0.3 – 0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Chicory roots</td>
<td>½ c. (75 g)</td>
<td>35.7 – 47.6</td>
<td>30.4</td>
</tr>
<tr>
<td>Chicory greens (witlof, Belgian endive)</td>
<td>½ c. (75 g)</td>
<td>none***</td>
<td>none</td>
</tr>
<tr>
<td>Chicory, root-based coffee-substitute beverages</td>
<td>1 – 2 tsp (7 g)</td>
<td>35.7 – 47.6</td>
<td>3.0</td>
</tr>
<tr>
<td>Onion</td>
<td>2 T. (35 g)</td>
<td>1.1 – 10.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Leek</td>
<td>½ c. (85 g)</td>
<td>3.0 – 10.0</td>
<td>5.6</td>
</tr>
<tr>
<td>Asparagus</td>
<td>6 spears (90 g)</td>
<td>1.4 – 4.1</td>
<td>2.6</td>
</tr>
<tr>
<td>Jerusalem artichoke</td>
<td>½ c. (75 g)</td>
<td>16.0 – 20.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Globe artichoke</td>
<td>1 medium (120 g)</td>
<td>2.0 – 6.8</td>
<td>5.5</td>
</tr>
<tr>
<td>Garlic</td>
<td>1 clove (3 g)</td>
<td>9.0 – 16.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Banana</td>
<td>1 medium (90 g)</td>
<td>0.3 – 0.7</td>
<td>0.6</td>
</tr>
</tbody>
</table>

C: cup, T: tablespoon (15 ml), tsp: teaspoon (5 ml)
* Adapted from Shephard & Gibson, 2006. Main source: Van Loo et al, 1995
** Upper end of the range
*** Van Loo, 2006 (personal communication)

NUTRITIONAL AND ASSOCIATED HEALTH PROPERTIES OF PREBIOTICS

The nutritional properties of prebiotics are related directly to the physiological changes they induce in the host. Bacterial metabolites are probably the main effectors of most observed effects. The most important metabolites are the short-chain fatty acids (SCFA) acetate, propionate and butyrate (Cummings et al, 2001). Prebiotic consumption can double the pool of SCFA in the gastrointestinal tract. These SCFA acidify the colon environment, which is beneficial for the development of bacteria such as bifidobacteria and lactobacilli, and detrimental to the growth of potential pathogenic species (Brandt, 2001; Blaut, 2002). All the SCFA are rapidly absorbed from the colon and then metabolised by various tissues: butyrate by the colonic epithelium, propionate and acetate (partly) by the liver and acetate (partly) by muscle and other peripheral tissues (Gibson & Roberfroid, 1995; Blaut, 2002). Acetate is the principal SCFA in the colon, and after absorption it has been shown to increase choles-
terol synthesis (Jenkins et al, 1991; Wolever et al, 1991). However, propionate, a glucoseonenergator, has been shown to inhibit cholesterol synthesis in vitro and in animal models (Chen et al, 1984; Venter et al, 1991). Therefore, it has been hypothesised that substrates that can decrease the acetate:propionate ratio may reduce serum lipids and possibly cardiovascular disease risk (Wong et al, 2006). Butyrate has been studied for its role in nourishing the colonic mucosa and in preventing colon cancer by regulating differentiation of colonic epithelial cells (Wollower et al, 2001; Guarner & Malagelada, 2003; Manning & Gibson, 2004).

In the past decade, a large number of studies investigated the health-promoting effects of prebiotics. Although some of the postulated effects have not been fully demonstrated, the data suggest clinically significant effects that warrant further study and explanation. Demonstrating a direct clinical or health benefit of prebiotics is proving difficult. Small changes in lipid metabolism, calcium absorption or immune function may not give rise to evident improvements in health for many years. However, resistance to pathogen invasion through increased colonisation resistance of the gut microbiota, brought about by stimulation of bifidobacteria and lactobacilli, should in principle be easier to show in vivo (Cummings & Macfarlane, 2002). The postulated beneficial effects of prebiotics are summarised below.

Alleviation of constipation

All carbohydrates that reach the large intestine have a laxative effect on bowel habit. The mechanism works via stimulation of microbial growth, increase in bacterial cell mass and thus stimulation of peristalsis by the bowel habit. The mechanism works via stimulation of microbial growth, increase in bacterial cell mass and thus stimulation of peristalsis by the gut. Butyrate has been studied for its role in nourishing the colonic mucosa and in preventing colon cancer by regulating differentiation of colonic epithelial cells (Wollowski et al, 2001; Guarner & Malagelada, 2003; Manning & Gibson, 2004).

Increased mineral absorption

There has been an increased interest in recent years in the possibility of increasing mineral (particularly calcium) absorption through the consumption of prebiotics. Although the small intestine is the principal site of calcium absorption in humans, significant amounts may be absorbed throughout the length of the gut, consequently maximising of colonic effects is desirable. Numerous animal studies have indicated that prebiotics increase calcium, zinc and magnesium absorption from the colon (Delzenne et al, 1995; Younes et al, 2001; Coudray et al, 2003; Raschka & Daniel, 2005a), resulting in increased bone density and bone trabecular structure (Ohta et al, 2002; Scholz-Ahrens et al, 2002; Raschka & Daniel, 2005b). Raschke and Daniel (2005b) reported increased absorption, retention and femur content of calcium, zinc and magnesium in a rat model only when the basic diet of the control group contained no intrinsic fructans and when the mineral demand was particularly high, as during growth.

Several studies have investigated the effect of prebiotics on mineral absorption in humans, but with opposing results. In postmenopausal women fructooligosaccharides increased magnesium absorption and status after five weeks (Tahiri et al, 2001). However, when women were stratified by time of postmenopause, a trend was observed (P < 0.1) of a beneficial effect of short-chain oligofructose on calcium balance in women >6 years postmenopause but not in women <6 years postmenopause (Tahiri et al, 2003). In healthy young men, the consumption of 40 g inulin/day for 28 days resulted in a significant increase in calcium absorption (Couedy et al, 1997). A lower dose, 15 g of inulin, fructooligosaccharide or galacto-oligosaccharide per day, when fed to adults for 21 days, resulted in no effect on absorption of calcium or iron as measured by stable isotope methodology (van den Heuvel et al, 1998). In a later study, adolescent boys (aged 14-16) consumed 15 g of fructooligosaccharides/day for 9 days (van den Heuvel et al, 1999). An increase (10.8%) in calcium balance was found, with no significant effect on urinary excretion. Griffin et al (2002) reported an increase in calcium absorption when inulin plus a fructooligosaccharide mixture were fed to healthy girls (aged 11-13.9), but not with fructooligosaccharide alone.

In a follow-up study, Griffin et al (2003) used a dual-tracer stable isotope method to determine the effects of long-chain inulin enriched with oligofructose on calcium absorption in girls. Calcium absorption increased mainly in girls with lower calcium absorption during the placebo period. Other researchers also found that not all prebiotics promote mineral absorption to the same extent, and that the effects were more pronounced when long-chain fructans were present (Abrams et al, 2005). Abrams et al (2005) reported an increase not only in calcium absorption, but also in the whole-body mineral content and density when a combination of short- and long-chain inulin-type fructans were consumed by pubertal adolescents for a period of one year. These observations have led to the hypothesis that short-chain fructans (DP 2-8) (which are very soluble and are fermented quickly) are able to modify the composition of the intestinal microbiota in the proximal part of the colon and that the long-chain fructans (DP 12-65) (which are fermented slowly) keep the improved microbiota metabolically active for a prolonged period of time and hence in the more distal parts of the intestine (van Loo, 2004). In summary, the most convincing data in humans, until now, have been obtained in adolescents and in postmenopausal women. Furthermore, the effects were more pronounced when long-chain fructans were present.

Several mechanisms have been proposed to explain the effect on mineral absorption and metabolism.
There have been several studies on anti-carcinogenic effects of dietary prebiotics in various experimental animal models, recently reviewed by Pool-Zobel (2005). Inulin-type fructans have been shown to inhibit the formation of aberrant crypt foci (ACF), a biomarker of colon cancer, and reduce tumour incidence. More pronounced effects were achieved by symbiotics (mixtures of probiotics and prebiotics) and long-chain inulin-type fructans compared to short-chain derivatives (sustained activity of the saccharolytic fraction of the intestinal microbiota), especially in the more distal parts of the colon (van Loo, 2004; Pool-Zobel, 2005).

However, very few human studies have been carried out to date. Human studies tend to focus on faecal markers of carcinogenesis rather than being epidemiological in nature. Fructooligosaccharides and galactooligosaccharides have been investigated in this regard. Fructooligosaccharides have been found to reduce genotoxic enzymes concomitant with increasing bifidobacteria (Bouhnik et al, 1996), but a study on galactooligosaccharides found no significant changes in bifidobacteria or in markers of carcinogenesis (Alles et al, 1999). The lack of effect may be explained by the rather high starting bifidobacteria populations in the volunteers. It has been noted previously (Rycroft et al, 2001) that the magnitude of the response to prebiotics by bifidobacteria depends on the starting levels. Recently, the European Union sponsored a human intervention trial (European SYNCAN project, www.syncan.be) to evaluate the potency of a mixture of short- and long-chain fructooligosaccharides (10 g/d) given together with probiotics (Lactobacillus rhamnosus GC and Bifidobacterium bifidum Bb; 10^{10} – 10^{12} colony-forming units/day) to modulate several criteria associated with a high risk of developing colon cancer (van Loo et al, 2005). Preliminary results showed that the symbiotic treatment in polyp patients reduced DNA damage, cell proliferation in colonicocytes and faecal water genotoxicity (Pool-Zobel, 2005). These findings are strikingly similar to the data from in vitro cell culture experiments and in vivo animal studies, thus indicating a potential risk preventing property of this intervention in humans (Pool-Zobel, 2005).

At least two mechanisms have been proposed to explain the effect of prebiotics on the development of cancer:

- Production of protective metabolites. Butyrate is a common fermentation end product and is known to stimulate apoptosis in colonic cancer cell lines, and it is also the preferred fuel for healthy colonicocytes (Prasad, 1980).
- Shift of colonic metabolism away from protein and lipid metabolism towards more benign end products (saccharolysis, Manning & Gibson, 2004).

It is thought that lactic acid bacteria have inhibitory effects on several bacteria that produce carcinogenic enzymes and are themselves non-producers. Moreover, prebiotics may indirectly modify the activities of enzymes produced by the lactic acid bacteria that are involved in carcinogenesis (Reddy, 1998).

Modulation of the immune system

Research with prebiotics in this field of interest is very recent and mostly from experimental models. It has been observed that consumption of inulin-type fructans increases the phagocytic capacity of macrophages (Kelly-Quanglana et al, 2003). There is increasing evidence from animal studies that the addition of fermentable fibre to the diet can modulate the type and function of cells from different regions of the gut-associated lymphoid tissue (GALT) (Schley & Field, 2002), increase the number of Peyer’s patches (Pierre et al, 1997) and alter leucocyte and lymphocyte numbers in the intestinal mucosa (Gaskins et al, 1996). Human studies have only recently begun. A study in healthy children, supplemented with fructooligosaccharides, demonstrated an impact on the occurrence of febrile illness, either associated with diarrhea or upper respiratory illness (Saavedra & Tschernia, 2002). Furthermore, prebiotics improved the manifestations of atopic dermatitis in children above two years (Passeron et al, 2006) and reduced the incidence of atopic dermatitis during the first six months of life in high-risk infants (Moro et al, 2006).

The proposed mechanisms underlying the immunomodulating effects may include the following (Schley & Field, 2002):

- direct contact of lactic acid bacteria or bacterial products with immune cells in the intestine;
- production of SCFA from fermentation; and
- modulation of mucin production.
Although further work is needed to better define the mechanisms for immunomodulation and the ultimate impact on health, there is convincing preliminary data to suggest that the consumption of fermentable fibres can modulate immune parameters in GALT, secondary lymphoid tissues and peripheral circulation (Swanson, et al, 2002; Gibson, et al, 2004).

Regulation of lipid metabolism

There is interest in the food industry in developing functional foods to modulate blood lipids, such as cholesterol and triglycerides. Although convincing lipid-lowering effects of inulin and fructooligosaccharides have been demonstrated in animal models, attempts to reproduce similar effects in humans have produced conflicting results. In some studies no effect on lipid metabolism were noticed (Pederson et al, 1997; Alles et al, 1999, Kruse et al, 1999; van Dokkum et al, 1999), while in some studies total serum cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) decreased in comparison with placebo (Hidaka et al, 1999). In some studies prebiotics decreased fasting triglyceride levels (Brighenti et al, 2002; Gibson et al, 2003; Wong et al, 2006). A variety of results may be attributed to the complexity of the biochemistry of lipid metabolism in humans (van Loo, 2004).

Three mechanisms have been put forward to explain a hypolipidaemic effect of prebiotics. The first is the modification of glucose or insulin concentrations. Non-digestible carbohydrates reduce peak levels of blood glucose after a meal and consequently the induction of lipogenic enzymes via an increased gene transcription (Roberfroid, 2000). The second is the production of SCFA in the colon. As mentioned earlier, the ratio of acetate to propionate reaching the liver is a putative mechanism for the triglyceride-lowering properties of prebiotics (Delzenne & Williams, 2002; Letexier et al, 2003; Wong et al, 2006). The third mechanism proposes that serum cholesterol is reduced because of precipitation and excretion of bile acids to the intestine, which requires the liver to utilise cholesterol for further bile acid synthesis (Pedersen et al, 1997). Because animal studies have identified inhibition of hepatic fatty acid synthesis as the major site of action for the triglyceride-lowering effects of inulin and fructooligosaccharides, and because this pathway is relatively inactive in humans unless a high-carbohydrate diet is followed, variability in response of animals and humans may be a reflection of differences in background diet or experimental foods used (Williams & Jackson, 2002).

Adverse side-effects

Generally, oligosaccharides are well tolerated. Some individuals report increased flatulence initially. Tolerance depends on the dose and individual sensitivity factors. Because fructans of small degree of polymerisation are osmotically active and rapidly fermented, Shepherd and Gibson (2006) recently reported improvement in symptoms of irritable bowel syndrome (IBS) in 62 patients with IBS or fructose malabsorption when they limited the total dietary fructose load (free fructose and short-chain fructans).

DISCUSSION

The purpose of this review is to show that carbohydrate prebiotics interact with physiological processes such as bowel habit, mineral absorption, cancer, immunology and lipid metabolism. This was observed by monitoring biomarkers of these physiological processes. The way in which prebiotics modify these physiological processes may result in a reduced risk of disease or an improved health status. Because the physiological effect is dependent on the type of intestinal fermentation induced by a specific prebiotic, it can be concluded that all other physiological processes are a consequence of these fermentation processes, either directly from the bacteria or indirectly from the metabolites that they produce.

With respect to the prebiotic effect itself, the selectivity of the prebiotic cannot be described in terms of the names of bacterial species that increase in numbers and the species that decrease in numbers (van Loo, 2004). The problem is that more than 80% of the bacterial species present in the intestine are unknown (they cannot be grown *in vitro*, therefore cannot be classified taxonomically). The selectivity is recognised in terms of groups of bacteria (e.g. saccharolytic vs proteolytic), each with representative marker organisms (e.g. *Bifidobacteria* and *Clostridia*) (van Loo, 2004).

Prebiotics can be used in a wide variety of foodstuffs such as dairy, meat and bakery products, drinks, spreads and confectionary (Franck, 2002). They are legally classified as food or food ingredients (not as additives) in many countries, most of which have agreed that inulin and fructooligosaccharides may be labelled as ‘dietary fibres’ (Coussemert, 1999). The proposed South African regulations in the Foodstuffs, Cosmetics and Disinfectants Act (Act No. 54 of 1972, www.doh.gov.za) require statements on the amounts and source of prebiotics on the labels of food items claiming to contain these substances (at least 3 g of prebiotic per daily serving). Brink et al (2005) evaluated the content claims regarding prebiotic type and concentration of South African products and found that, although the concentration claims were in line with the proposed regulations, the labels of three products investigated did not specify the type of prebiotic.

The classical methods for analysis of dietary fibre (Association of Official Analytical Chemists (AOAC) and Englyst methods) do not analyse prebiotics (because they are either too soluble in ethanol or degraded in the acid hydrolysis steps). Therefore, AOAC International has adopted the ‘Fructan method’ (method number 997.08), which specifically allows the accurate quantitative determination of inulin and fructooligosaccharides in foods (Hoebregs, 1997). Inulin and fructooligosaccharides can be used for either their nutritional advantages or technological prop-

Prebiotics: an update
erties (Franck, 2002), but they are often applied to offer a dual benefit: an improved organoleptic quality and a better-balanced nutritional composition.

In conclusion, the microbiota of the gastro-intestinal tract is of key importance to the nutrition and health of the host. Modulation of the microbiota can occur through diets that contain prebiotics. It is still early days for prebiotics but the approach of using diet to induce microbial change offers a very straight-forward approach towards improved health. In terms of new developments, it is important to determine the definite health bonuses associated with prebiotic intake in humans and the mechanisms of action.

REFERENCES

GIBSON, GR, BEATTY, ER, WANG, X & CUM...

and synbiotics affect mineral absorption, bone mineral
SCHREZENMEIR, J. 2007. Prebiotics, probiotics,
BER, P, TIMM, W, ACIL, Y, GLUER, C &
SCHOLZ-AHRENS, KE, ADE, P, MARTEN, B, WE-
457.
VAN DEN HEUVEL E, MUYS, T, VAN DOKKUM, W &
SHEPHERD, SJ & GIBSON, PR. 2006. Fructose
137:838S-846S.
VAN LOO, J, COUSSEMENT, P, DE LEENHEER, L,
HOBREGS, H & SMITS, G. 1995. On the presence of
insulin and oligofructose as natural ingredients in the
Western diet. Critical Reviews in Food Science and
The basis, the potential and the emerging evidence.
Journal of Cysternal Gastroenterology 38
(suppl 2):S70-S75.
VENTER, CS, VORSTER, HH & VAN DER NEST,
DG. 1991. Effects of konjac-glucamann and propi-
onate on plasma fibrinogen and serum and liver lipids in
Zucker rats. South African Journal of Clinical Nutri-
77(1-2):99-117.
SAAVEDRA, JM & TSCHERNIA. A. 2002. Human
studies with probiotics and prebiotics: clinical implica-
tions. British Journal of Nutrition 87 (Suppl 2):S241-
S246.
RYCROFT, CE, JONES, MR, GIBSON, GR & RAST-
ALL, RA. 2001. A comparative in vitro evaluation of
the fermentation properties of prebiotic oligosaccha-
SAARELA, M, LÄHTENNÄKI, L, CRITTENDEN, R,
SALMINEN, S & MATTILA-SANDHOLM, T. 2002. Gut bacteria and health foods – the European per-
78(1-2):99-117.
SCHLEY, PD & FIELD, CJ. 2002. The immune-
SCHOLZ-AHRENS, KE, SCHAAFMSA, G, VAN DEN
HEUVEL, EGHM & SCHREZENMEIR, J. 2001. Ef-
scholz-ahrens, ke, acil, y & schrezenmeir, j. 2002. Effect of oligofructose or dietary calcium on repeated
calculator and phosphorus balances, bone mineralization and trabecular structure in ovariec-
SCHOLZ-AHRENS, KE, ADE, P, MARTEN, B, WE-
BER, P, TIMM, W, ASIL, Y, GLUER, C &
SCHREZENMEIR, J. 2007. Prebiotics, probiotics,
and symbiotics affect mineral absorption, bone mineral
content, and bone structure. Journal of Nutrition
137:838S-846S.
SHEPHERD, SJ & GIBSON, PR. 2006. Fructose
malabsorption and symptoms of irritable bowel syn-
drome: guidelines for effective dietary management.
Journal of the American Dietetic Association 106:1631
-1639.
SWANSON, KS, GRIESHOP CM, FICKINGER EA,
BAUER, LL, HEALY, HP, DAWSON KA, MERCHEN,
NR & FAHEY, GC Jr. 2002. Supplemental fructooligo-
saccharides and mannanoligosaccharides influence immune function, ileal and total tract nutrient digesti-
bilities, microbial populations and concentrations of
protein catabolite concentrations in the large bowel of
TÀHIRI, M, TRESSOLL, JC, ARNAUD, J, BORNET, F,
BOUTELOUP-DEMANGE, C, FEILLET-COURDRAY, C,
Five-week intake of short-chain fructo-
oligosaccharides increases intestinal absorption and status of magnesium in postmenopausal women. Journal of Bone and Mineral Research 16 : 2152-
2160.
TÀHIRI, M, TRESSOLL, JC, ARNAUD, J, BORNET, F,
BOUTELOUP-DEMANGE, C, FEILLET-COURDRAY, C,
BRANDOLINI, M, DUCROS, V &
PEPIN, D. 2003. Effect of short-chain fructooligosac-
charides on intestinal calcium absorption and calcium
457.
VAN DEN HEUVEL, E, MUYS, T, VAN DOKKUM, W &
VAN DEN HEUVEL, E, SCHAAFMSA, G, MUYS, T &
VAN DOKKUM, W. 1998. Non-digestible oligosaccha-
VAN DOKKUM, W, WEZENDONK, B, SRIKUMAR, TS
& VAN DEN HEUVEL, EGHM. 1999. Effect of nondi-
gestible oligosaccharides on large-bowel functions,
VAN LOO, J, CLUNE, Y, BENNET, M & COLLINS,
JK. 2005. The SYCAN project: goals, set-up, first
VAN LOO, J, COUSSEMENT, P, DE LEENHEER, L,
HOBREGS, H & SMITS, G. 1995. On the presence of
insulin and oligofructose as natural ingredients in the
Western diet. Critical Reviews in Food Science and
WATZL, B, GIRRBACK, S & ROLLER, M. 2005. Insu-
WILLIAMS, CM & JACKSON, KG. 2002. Insulin and oligofructose: effects on lipid metabolism from human studies. British Journal of Nutrition 87 (suppl 2):S261-
S264.
WOLEVER, TMS, SPADAFORA, P & ESUIHIS, H.
1991. Interaction between colonic acetate and propi-
onate in humans. American Journal of Clinical Nutri-
tion 53:681-687.
WOLLOWSKI, I, RECHKEMMER, G & POOL-ZOBEL,
BL. 2001. Protective role of probiotics and prebiotics
WONG, JM, DE SOUZA, R, KENDALL, CW, EMAN, A
YOUNES, H, COURDRAY, C, BELLANGER, J, DEMI-
GNE, C, RAYSSIGUER, Y & REMESY, C. 2001. Effects of two fermentable carbohydrates (inulin and
resistant starch) and their combination on calcium and magnesium balance in rats. British Journal of
ZAFAR, TA, WEAVER, CM, ZHAO, Y, MARTIN, BR &
WASTNEY, ME. 2004. Non-digestible oligosaccha-
drides increase calcium absorption and suppress bone
ZIEMER, CJ & GIBSON, GR. 1998. An overview of probiotics, prebiotics and symbiotics in the functional