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ABSTRACT

Previous theporetical studies supported by practical experiments have shown that the use of differential equations in problem
solving orieted to the field of reinforced concrete structures, especially to pre-cast and pre-stressed concrete beams, slabs
and col is effective in improving the stiffness of the structural material and predicting the eventual progressive
cracking characteristics of the structural members. Design formulas for stress-strain limit states of structures have been pre-
viously proposed based on these said experiments. However, little evaluation of the time effects of stressing of high
strength steel tendons, and the long-term static loading of structural members has been done. This paper demonstrates how
the design procedures of concrete structural elements can be simplified through the use of equilibrium differential equa-
tions, the series method for approximate integrations, and derivatives of linear and non-linear functions.

Keywords: Ij)iﬂ'erential equations, non-linear creep characteristics, reinforced precast and prestressed concrete structures,
beams, columns.

1. INTRODUCTION on the well-known Euler column formula and other
concepts on the quality, stiffness, strength, reliability,
durability, fatigue, life safety and stability of rein-
forced concrete structural elements.

Today, the major concern for civil engineers and sci-
entists in applied mathematics and mechanics of rein-
forced congrete structures is the failure of the mate-
rial to meetithe design safety and service life of struc-  Consider a column section as shown in (Figure 1).
tures. This | paper describes present ongoing numeri-  Acting on the cross-section of the column at the ordi-
cal and experimental analysis models used to evalu-  nate x are the bending moment M{(x), the shear force
ate the long-term flexural and non-linear creep char-  Q(x) and the axial normal force N(x) = P, If deflec-
acteristics of reinforced concrete structures. tions, y(x), are small, the following differential equa-

This study 'has been based on nonlinear differential tion can be assumed:

equations of the concrete matrix creep theory which M) =-Ely (x) (1¢)
reflects thecorrelation between the matrix stress and
strain by itsd modulus of elasticity, using the nonlinear
strain function and the well-known geometrical pre- M) =P, y(x) (2¢)
conditions of the theory of elasticity of thin plates
with small {flexural deformations. For structural and
crack prediktions, virtual work principles have been

Also the bending moment could be expressed as:

used to estifnate (a) transient strains due to the matrix y
creep and shrinkage, (b) the resulting time-dependent o e
stress redigtribution, as well as (c) displacement

variations in the structures and finally (d) pre-
stressing lasses in the pre-stressed high yield ten-
dons. The Concrete shear stresses have been evalu-
ated by the principle of Juravsky (Sossou, 2002; Yat-
senko et al, 2000). The finite-difference method M
based on thie displacement formulation has been suc-
cessfully uged to solve the systems of nonlinear equi-
librium differential equations.

2. GENERAL PRINCIPLES OF DIFFEREN-
TIAL EQUATIONS AS APPLIED TO
REINRORCED CONCRETE STRUCTURES

2.1 Columns: Calculations of the Critical Forces
For columns, the numerical part of this study is based

Figure 1. Forces acting on column section
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From Equations (1c) and (2c), is obtained the follow-
ing expression:

) P
+ cr
y (x) 71

()

y(x)=0

The integral of this second-order differential equation
will have two constants of integration (Backhouse et
al, 1992; Stroud and Booth, 2001; Gaylord et al,
1997). But there is a total of four (4) end conditions at
the two ends of the column (i.e. y(x) = 0, y"(x) = 0 at
x = 0 and x= I). So it is noted that the Equation (3c) is
not complete. A double differentiation of y by x gives
the following fourth-order differential equation:

Y () +0'y () =0 (40)
where,
v =te (5¢)
7
The general solution of the equation (4c) is
¥(x) =C, sinvx+C, cosvx+C;x+C, (6¢c)

where C,, C,, Cs, C,4 are constants which can be
determined from support conditions at the ends
of the column.

With successive differentiation of Equation (6¢), the
following can be obtained:

Y (x) =vC cosvx—vC,sinvx+C; (7
¥ (x) =v°C, sinvx - v°C, cos Ux (8¢)
¥ (x) =0°C, cosvx +v’C, sinvx ©0)

Taking into consideration the four (4) column end
conditions, with x = 0, equations {(6¢c) and (8c) give:

C;+C4=0; C;=0 Thus,

C;=C;=0 (IOC)
Now from (10c), and given thatx =7, we have:
Csinvl+CJl=0, Csinvl=0
C3=0,C #0; (11¢)
sinvl =0 (12¢)

Equation (12¢) is true when

ul=jx (13c)

where j = I, 2, ... . This shows that the
column has an infinite number of forms of equilibrium
losses (or modes of buckling), each of which corre-
sponds in value to the critical force P.,.. For most prac-
tical cases, the first mode of buckling (f = 1) will
cause failure and this is the most dangerous mode as
P... is minimum.

Thus, combining Equations (5c) and (13c) gives

222
p=L22
. m*EI
whenj = 1, P = 7 (14¢)

This is also called the Euler force

2.2 Slabs: Main Concepts for Numerical Analysis

Similarly to columns, this part of the numerical study
relates to the details of a unified method for analytical
prediction of various durability, reliability and struc-
tural quality characteristics of slabs, precast and
prestressed in both directions (Figure 2). This analyti-
cal procedure is aimed at predicting the quality, stiff-
ness, strength, reliability and durability at the planning
phase, and the nonlinear creep behaviour of the said
slabs (Sossou, 2002; 2001).

Zg

Figure 2. Forces acting on slab

The present ongoing study is so real, as it is recog-
nized that little information is available on the time
dependent factors like the concrete matrix creep,
shrinkage and loss of stresses, in relation to bi-
directional prestressing of reinforced concrete slabs,
with high yield tendons, subjected to long-term ser-
vice loads. The present study, has been based on
nonlinear differential equations of concrete creep the-
ory which reflects the correlation between the matrix
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stress al#d strain by its modulus of elasticity, using the
nonlinear strain function, and based on the well-
known geometrical boundary conditions of the theory
of elasticity concerning thin plates and membranes
with small flexural deformations.

It has bden successfully assumed (Sossou, 2000;
Yatsenkb et al, 2000), by the hypothesis of straight

normal 4ccording to which:
£ =6+Rz6 =6 +R 2,7, =7, +2R,2
............................................. (1s)
Where, c R
e =€(x,y,2,0) €, = £,(x,y,2,0)

Yoo = Vo (%,,2,4)

are normhal and shear strains of the slab layer, sepa-
rated byl the distance z. at the medium-level surface

(see Figure 2);

£ =£,xy.0); & =6(X9)

Yo = Yo (%:3,2,8)

£, =£,(x0.0) &, =€,(6,7,05 Vo = Vo (%::2,0)

are suitable strains of medium-level layer of the slab,
and 1

R,xy 05 R =& Y0%R y =X v,9)

are flexural curvature and torsion of the slab.

Also, adcording to linear geometrical hypothesis:
’w

dxdy

*w

ayZ ;ERX}' =

’w
ox’

R =

x
'

% = 2s)

here w = w (x, y,@) are deflections in the
mposite slab.

The steel reinforcement has been assumed as an elas-
tic material and according to Hooke’s law:

Ocx = Eeq exs Ccy= Eee ey (3s)

with . ¥ G.(X, ¥, Z.,0) being stresses in steel rein-
forcement; E., the steel reinforcement modulus of
clasticity] and g, =¢. (X, ¥, Z.,0), the relative steel rein-
forcement strain of the e® layer of the slab. Steel rein-
forcement modulus of each wire netting have been
assumed to be the same in both directions, accord-

ingly; !
Eex = Ey £ E..

The steel| reinforcement and the concrete matrix de-
form jointly, so that their normal strains are equal.

XY, %:d) =€ (X, ¥, 0) (4s)

.
b

The uniformly distributed service load acting on the
composite slab q(x,y,$) is subdivided into compo-
nents such that:

q(x, y, 9) = g (x, ) p(9), (5s)
where g - load intensity, and p - stretch time
function.

Deformation laws of thin isotropic concrete matrix
membranes in a uniform stress state is presented in
the following form:

€ = €'x + "&x = (04 /E0) -1 (oY /E0) (6s)
(x.y)

Here indices x, y show the stress-strain directions
which correspond to coordinate axes and is the Pois-
son ratio for concrete.

Using the aging theory with a constant concrete ma-
trix modulus of elasticity, and a variable creep charac-
teristic we obtain:

&x+ox =E0{éx+e, —§y+ey)—ﬂf(e,,)—f(ey)}
(xy)
(7s)

....................

After solving (7s) with respect to @, and cancellation,
we obtain:

O+ 0, = E, ext fE2 - iy + 26, + fE?)

xy)

............................ (8s)
with f(e,) = &x + Be’x
xy)

Where B is a function which regularizes the
nonlinear creep strains in due course.

9s)

Here, and in the next formulas, the functions’ deriva-
tives have been presented by dots.

Then, putting Equation (9s) into (8s) and cancelling

gives:

Ox+ 0"1 = EO {(gx" gsh,x) _ﬂ(gx _gsh,x)2} (IOS)
&y

Normal stresses in formula (10s) have been presented
like a sum of separated force stresses (marked with
single quotation comma) and spontaneous stresses
(marked with double quotation comma):

Oy =0’y +07 (11s)
®y)

By arranging (11s) into (10s), taking into considera-
tion the concrete shrinkage strain, we obtain:

37



Vol. 2, No. 1, 2004 pp35-39

Sossou, G.
. (12s)
O:+0, =—F{(&—Eny)+2AE, €, )+ BE, —(ed,’ygz}
XYy
................................... (13s)

and this has been verified on non-cracked composite
slabs (Sossou, 2000; 2001; Yatsenko et al, 2000).

In the composite slab (Figure 2) forces act with the fol-
lowing linear values:

Ny =Ny (X,y) ; Ny = Ny (X,y) ; Nxy = Nyy (X,y) are nor-
mal and shear forces on the medium-level surface of
the slab, whilst

M, = M (x,5) ; My = My (X,y) ; Myy = M,y (X,y) are
flexural moments and torque relative to the medium-
level surface of the slab (Sossou, 2000;2001; Yatsenko
et al, 2000).

2.3. Beams: Basis for Theoretical Analysis

Similarly to columns and slabs this part of the study
relates to cracked and non-cracked prestressed concrete
beams, not only as the most widely used prefabricated
structural elements, but also as the most convenient
models for theoretical and experimental studies, which
can permit to extend and reliably reveal their positive
effect and generalize it to more complicated type of
structural elements. For beams, the nonlinear Equation
(1b) of the concrete matrix creep ageing theory reflects
the correlation between the stress G,(t) and the strain
£(t) by its modulus of elasticity Ey(t). Here the nonlin-
ear strain function fJey(t)] = &,(t) + P(t) &°(t) is applied
with the coefficient of non-linearity B(t) = Eo Bo/[1 +
ko (t)]?, where Poand k once determined graphically by
experiment, have been successfully used as test data
(Sossou, 1991; 2002). Also the relaxation measure r(t,t)
has been formulated by the matrix creep characteristic

¢ as
1(1,t) = Eo{1 - & [ - oOhy.

dfle, (7)]
dr

ol dl
0,(1) = &(DE, (t,) — f1&,(t)Ir(t,4,) + J{ & (T))Eb -

r(z, T)} G

.......................

where t is loading duration; t is the concrete
age; tp is the initial moment.

In the modified ageing theory, equivalent to the work
theory with a constant concrete matrix modulus of elas-
ticity Ey, the correlation in Equation (1b) acquires the
following form:

v ?
G, (9) = Egle, (9) e | fle,(p)le*dp)  (2D)

By solving Equation (2b) relative, to ¢ , taking into
account the matrix shrinkage strain £.,(@), we hav::

L] - . 3b
o-b+o-b=E0[£b—£sh—ﬂ(8b-—esh)2] (3h)

Then, by examining the element of the beam, rein-
forced by many reinforcement (e = 1, 2, ..., ) Tows,
with cracked and non-cracked sections (Figure 3), we
have from the condition of Equation (3b), the Navier’s
hypothesis for the concrete matrix:

£, =e+Rz, (40)

and for the e steel reinforcement row:

£ =£+NRz (5b)

and the Hooke’s law for the e steel reinforcement
TOW:

o,=+Rz, (6b)

where z and z. are conformable distances from the

composite beam element axis to a certain concrete
matrix layer, and to the e® reinforcement row; G, €.,
E. are stress, strain and modulus of elasticity respec-
tively of the e™ reinforcement row; e is the shortening
strain and A is the flexural curvature of the member

element.

Displacements in the composite element D have been
Figure 3: a) Illustration of finite difference method

b) Stress-strain state of non-cracked beam
and its section

evaluated, using the principle of virtual displacements:

n M
A= foM R+ Nye);dx, (7b)
i=t ¢ )
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where 1= 1, 2, . . ., n are number of homogeneous ele-
ments with £; of length ; M, and N; are moments and
forces respectively from the generalized force unit,
applied| at the place and to the direction of the un-
known displacement, and x is the-ordinate of the com-
posite beam element section in length.

The différential equations have been solved, by using
the finitel difference method. The essence of this simple
and suitdble method consists of the fact that the vari-
able j has been divided into j =0, 1, 2, ..., n equal parts
(Figure 3) with step h. Thus, the derivative of the func-
tion F(j) at settled points has been evaluated by follow-
ing formula:

FJ, = (Fj+1-Fj)/h (8b)

3. CONCLUSIONS

3.1 The need to validate the numerical results, required
detailed planning of a series of full-scale controlied
experiments which permitted the evaluation of (a) to (d)
in section 1.0 above, in addition to (e) calibrating the
parametens likely to enable the estimation of the time-
dependent pre-stressing losses, (f) predicting the sec-
tion stiffness and strength by determining the long-term
flexural and nonlinear creep capacity of the cracked and
non-cracked sections and hence, (g) devising a defini-
tion for structural durability and integrity, with regards
to concrete matrix stress-strain relationship under long-
term servige loads.

3.2 For the beams, the comparisons of numerical and
experimental results have shown that the nonlinear the-
ory described in this report, is quite adequate and can
be applied for practical use. Experimental results have
indicated that the finite-difference method based on the
displacement formulation is suitable and effective to
solve systems of nonlinear equilibrium differential
equations. '

3.3 The cdnsideration of this proposed design and ex-
peﬂmentaﬁ model, and the said time-dependent effects

could ensure interdependence of design and construc-
tion for economies of reinforcement up to 5 % - 15 %.

REFERENCES

Backhouse, J. K., Houldsworth, S. P. T., Cooper,
B.E.D. and Horril, P.J.F.,(1992). Pure Mathematics,
Book 2,}Third Edition, Longman Group Limited,

|

Gaylord, E.H.J., Gaylord, C.N. and Stallmeyer, J.E.
(1997). Structural Engineering Handbook, Fourth
Edition, McGraw-Hill,.

Sossou G. (2003). Theoretical and ExperimentaCharac-
teristics of Steel-Concrete Composite Precast and
Prestressed Columns, Subjected to Long-term Ser
vice Loads, Tenth International Conference on
Composites/Nano Engineering, ICCE-10, July 20-
26, 2003, New Orleans, Louisiana, U.S.A.

Sossou, G. (2002). On-going Theoretical and Experi-
mental Structural Analysis concerning Different
Characteristics of reinforced precast and prestressed
concrete beams, used under Long-term Service
Loads, 5th International Conference on Structural
Engineering Analysis and Modelling (SEAMS), 26-
28th Feb., Engineers’ Center, Accra, Ghana

Sossou, G. (2002). Theoretical and Experimental Struc
tural Analysis of Reinforced Precast and Prestressed
Concrete Beams, used under Long-term Service
Loads. Journal of Iron and Steel Research Interna
tional, Special Issue, Part 11, pp127-132

Sossou, G. (2001). Theoretical and Experimental Study
on Long-term Structural Characteristics of Steel
Concrete Composite Slabs, Prestressed in both Di
rections, /3th International Conference on Compos
ite Materials (ICCM12), June 25-29, Beijing, China

Sossou G. (2000). Ongoing Numerical and Experimen-
tal Analysis of Structural Characteristics of Rein
forced Concrete Slabs, Prestressed in Both Direc-
tions and Subjected to Long-term Service Loads.
EURO MAT 2000, European Conference on Ad
vances in Mechanical Behaviour ,Plasticity and
Damage, November 7-9, Tours, France.

Stroud, K.A. and Booth, D.J. (2001). Engineering
Mathematics, Fifth Edition, Palgrave.

Yatsenko, E.A.; Kamilova, S.V.; Bovina, A.A. and
Sossou, G. (2000). Creep Theory of Reinforced
Concrete Structures, Pridnieprovskaya State Acad
emy of Civil Engineering and Architecture, Gaude
mus Publishers, Dniepropetrovsk, Ukraine, pp600.

39



Vol.2,No |,

2004,

pp 40

40



