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ABSTRACT 

The interaction of solar radiation with the atmosphere causes changes in the solar radiation 

that the Earth's surface reflects satellite sensors. Therefore, by eliminating air influences from 

satellite images, applying an atmospheric correction aid in determining genuine surface 

reflectance values and retrieving physical properties of the Earth's surface, including surface 

reflectance. Perhaps the most crucial step in pre-processing data from satellites that have been 

remotely detected is atmospheric correction. Here, we assessed Okitipupa, Ondo State, 

Nigeria's land cover classification using Landsat 8 image. The acquired Landsat image was 

subjected to Quick Atmospheric Correction (QUAC), Dark Object Subtraction (DOS), and 

Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm. The 

corrected image was applied to create the land cover classification using random forest (RF) 

and support vector machine (SVM) techniques. Four different classes were used in this study: 

built-up, shrubs, vegetation, and wetland/river. The land cover classification accuracy was in 

the following order: 0.98 and 0.96 > 0.97 and 0.95 for SVM_FLAASH and SVM_QUAC. This 

was followed by SVM_QUAC with an overall accuracy of 0.97 and a kappa coefficient of 0.95. 

Quick Atmospheric Correction (QUAC), Dark Object Subtraction (DOS), and Fast Line-of-

Sight Atmospheric Analysis of Spectral Hypercubes are the three atmospheric correction 

algorithms (FLAASH).  

 

Keywords: Accuracy assessment, Contrast ratio, Operational Land Imager, Pattern curve, 
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INTRODUCTION 

Natural ecosystems need to be monitored 

and assessed in order for environmental 

elements to be sustainable (He et al., 2005). 

Over the past few decades, environmental 

mapping has been fueled by conventional 

evaluation methods such as sizable field 

samples (Ruppert and Linstädter, 2014). 

Even if these methods are accurate, 

covering large tracts of land demands a lot 

of resources, including money and effort 

(Xie et al., 2009). In response to 

developments in remote sensing and 

geographic information systems, several 

studies on faster methods for atmospheric 

correction have been done (Zhao et al., 

2016). Air pollutants may be detected by 

the spheric dispersion and absorption, 

which show considerable variations with 

time, space, and wavelength. In addition, 

surface reflectance is significantly 

influenced by the height of the terrain, with 

a larger effect in mountainous regions 

(Körner et al., 2008). In particular, when 

conducting multitemporal investigations 

(Vázquez-Quintero et al., 2016; Prieto-

Amparán et al., 2016), this highlights the 

need for atmospheric correction to limit the 

impacts of noise present during the 

acquisition of satellite images (Pons et al., 

2014). For example, the problem of data 

saturation is believed to have a substantial 

influence on the results when measuring the 

biomass of plants (Tan et al., 2012; Roy et 

al., 2016). The primary goal of atmospheric 

correction is to correct influences on 

satellite images through the assessment of 

optical qualities (Chrysoulakis et al., 2010). 

The Landsat satellite has provided data with 

complete worldwide coverage since 1972. 

(Cohen and Goward, 2004). This is an 

essential tool for monitoring environmental 

changes throughout the world (Hansen and 

Loveland, 2012). Due to the multiplicity of 

models and parameter choices, the main 

disadvantage of many atmospheric 

adjustments for different sensors is the 

difficulty to understand the data. The 

Harmonized Landsat and Sentinel-2 Project 

is one attempt to combine satellite data 

(Claverie et al., 2018). It intends to 

seamlessly transmit Sentinel-2 and Landsat 

8 products. Model-based atmospheric 

corrections rely on radiative modelling with 

a specific focus on atmospheric optical 

characteristics at the time of picture 

capture, unlike image-based approaches, 

which rely on image metadata and 

statistical analysis of top of the atmosphere 

(TOA) reflectance. (Lantzanakis and 

coworkers, 2016) Various atmospheric and 

radiometric corrections were made to the 

images' raw data to transform them into 

reflectance values methods that have been 

developed (Chavez 1988; Kaufman et 

al.,1997; Janzen, et al., 2006). For instance, 

the MODTRAN accuracy model is used in 
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the Fast Line of Sight Atmospheric 

Analysis of Spectral Hypercubes 

(FLAASH) algorithm, created by Spectral 

Science Inc. (Burlington, MA, USA) 

(Kruse 2004), to determine the properties of 

the surface and atmosphere's reflectance 

and to explain how adjacency affects the 

atmosphere's dispersion. The brightness of 

the image and any potential cloud or fog 

effects are eliminated using the 

Atmospheric Correction for Flat Terrain 2 

(ATCOR2) method to get the values of the 

terrestrial surface (User Manual, 2013). The 

Dark Object Subtract  (DOS) method, 

which is based on the image's features, is 

the most often used method for recognizing 

changes in land usage (Paolini et al., 2006; 

Cui et al., 2014). Several studies have 

compared various techniques for reversing 

the effects of the atmosphere. El Hajj et al. 

(2008) compared a 6S method employing 

SPOT5 data and relative radiometric 

normalization in this regard. Calliceco and 

Dell'Acqua (2011) compared and 

contrasted the 6S and MODTRAN 

algorithms. The FLAASH and QUAC 

algorithms were studied by Agrawal et al. 

(2011) in their study. Nazeer et al. (2014) 

tested five atmospheric correction 

algorithms across the sand, turf, grass, and 

water surfaces: 6S, FLAASH, ATCOR, 

DOS, and ELM. Lopez-Serrano et al 

(2016) evaluated the efficacy of the COST, 

ATCOR2, FLAASH, 6S, and TOA 

algorithms for the assessment of forest 

above-ground biomass. Martins et al (2017) 

compared the 6S, ACOLYTE, and Sen2Cor 

methods employed with the brand-new 

Sentinel 2-MSI platform. Many 

classification algorithms have been created 

in recent years, especially in the machine 

learning sector. Certain machine learning 

approaches have been used for 

classification tasks for more than 10 years. 

Support vector machines (SVM) and 

random forests (RF) are two of the most 

often used methods (Koc-San, 2013; Adam 

et al., 2014; Ballanti et al., 2016; Sonobe et 

al., 2017). While Rumora et al. (2019) 

investigated the impact of atmospheric 

changes on spectral reflectance values, 

Vanonckelen et al. (2013) and Lin et al. 

(2015) offered instances of the 

implementation of just one classification 

approach. Three atmospheric adjustments 

and five topographic corrections were 

examined using the greatest likelihood 

classification. In other studies, various 

methods were employed to classify land 

cover. For instance, while Noi and Kappas 

(2017) used RF, SVM, and K-nearest 

neighbour to classify six distinct land 

use/cover classes, Abdi (2020) used SVM, 

RF, and Extreme gradient boosting (XGB) 

to classify eight different classes (K-NN). 

Castro Gomez (2017) investigated the 

classification of the Sentinel-1 and 

Sentinel-2 datasets using machine learning. 
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The major goal of this research was to use 

machine learning techniques to assess how 

various atmospheric correction models 

influenced classification accuracy. The 

objective of this study was to test the 

precision of three atmospheric correction 

algorithms' estimations of land use and land 

cover. 

Materials and Methods  

The Okitipupa Local Government Area is 

the focus of this research (LGA). Okitipupa 

LGA is one of Ondo State's eighteen local 

government areas. Within Nigeria's 

Tropical rainforest zone, it is located 

between 6°25' and 6°30' N and 4°35' and 

4°48' E. (Figure 1). At the 2006 census, it 

had an area of 803 km2 and a population of 

233,565 people (Tobore et al., 2019). The 

region is separated into two geological 

formations: Precambrian Basement 

Complex Granitic Rocks make up the 

northern half, while recent to tertiary sandy 

deposits make up the centre and southern 

halves (Tobore et al., 2019). The average 

annual temperature is 27.0°C, and the 

average annual precipitation is 1900 mm, 

with total annual rainfall frequently 

exceeding 2000mm.  

Material and Methods 

This research can be divided into five 

phases: (1) study area and satellite data, (2) 

application of atmospheric correction, (3) 

spectral indices, (4) land cover 

classification methods, and (5) accuracy 

assessment. The remote sensing image 

utilized in this study was acquired on the 5th 

of November 2021 (path/roll 190/055) from 

Explorer’s official website 

(https://earthexplorer.usgs.gov/). The 

Landsat 8 ETM image was projected to the 

World Geographic System (WGS) 84 

datum with the coordinate system of 

WGS_1984_UTM_Zone_31N. This image 

has a pixel size of 30 meters and eleven 

bands. Though not all the bands were 

utilized in this study, Table 1 gives an 

overview of the entire bands that make up 

the Landsat 8 (OLI/TIR) image. 
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Figure1: Map of the study area in Okitipupa LGA, Ondo State, Nigeria. 

 

Table 1. Landsat 8 (OLI) bands and their respective wavelength in micrometres 

Band Name Wavelength (µm) Resolution(m) 

Band 1  Coastal/Aerosol 0.43-0.45 30 

Band 2  Blue 0.45–0.51 30 

Band 3  Green 0.53–0.59 30 

Band 4  Red 0.64–0.67 30 

Band 5  NIR 0.85–0.88 30 

Band 6  SWIR1 1.57–1.65 30 

Band 7  SWIR2 2.11–2.29 30 

Band 8 Panchromatic 0.50-0.68 15 

Band 9  Cirrus 1.36-1.38 30 

Band 10 Thermal infrared (TIR) 1 10.6-11.19 100 

Band 11 Thermal infrared (TIR) 2 11.50-12.51 100 
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Atmospheric Correction Methods 

The correction methods are used to 

eliminate the noise in the satellite images. 

Though scientific literature is replete with 

so many correction methods, this study is 

focusing on: Fast Line-of-sight 

Atmospheric Analysis of Spectral 

Hypercubes (FLAASH), Quick 

Atmospheric Correction (QUAC), and 

Dark Object Subtraction (DOS). It is 

designed to eliminate the atmospheric 

effects caused by the molecular dispersion 

of particles in the atmosphere. It is 

determined by Equation (1). 

𝐿𝑇𝑂𝐴 = (
𝐴𝜌𝑆𝑈𝑃

1−𝜌𝑒𝑆
) (

𝐵𝜌𝑒

1−𝜌𝑒𝑆
) + 𝐿𝑜                                                                                                   

(1) 

Where;  

 𝐿𝑇𝑂𝐴 is the spectral radiance reached by the 

satellite, 

𝜌𝑆𝑈𝑃 is the reflectance of the pixel surface,  

𝜌𝑒 is the reflectance of the average surface 

of the pixel of the surrounding region,  

S is the spherical albedo of the atmosphere, 

Lo is the radiance backscattered by the 

atmosphere,  

A as well as B are coefficients that depend 

on the atmosphere and geometric 

conditions. 

 

The first term of the equation corresponds 

to the reflectance of the surface that travels 

directly into the sensor while the second 

term corresponds to the luminosity of the 

surface that is dispersed by the 

environment. The distinction between 𝜌𝑆𝑈𝑃 

and 𝜌𝑒 explains the “adjacency effect” 

(spatial blending of radiation between 

nearby pixels) caused by the atmospheric 

dispersion. The values of A, B, S, and Lo 

can be determined empirically from the 

MODTRAN4 standards. The vision and the 

solar angles of the measurement and the 

nominal values for the surface elevation, 

aerosol shape, and visible range of the 

scene must be specified (Marcello et al., 

2016). This correction method was carried 

out with the FLAASH module of the 

software ENVI (v.5.1). 

QUAC is an atmospheric correction method 

for visible band, NIR, and SWIR 

hyperspectral and multispectral data. 

Because this methodology was based on the 

values of light that penetrated the picture, 

QUAC's founding principles deviated from 

the standard atmospheric correction 

method. QUAC was characterized as a 

recording-based empirical technique. 

Without any further information, this 

specified type of parameter can be obtained 

directly from the atmosphere during the 

recording (Esthi and Bambang, 2016). The 

QUAC model was developed based on the 

experience of gathering average reflectance 

from a variety of content, including the 

spectrum of each section, where n denoted 

the amount of spectrum detected with 

shadows or a cloud-free basic scene. This 

means that the adjustment will be 

completed more quickly. The sun's 

https://www.l3harrisgeospatial.com/docs/flaash.html
https://www.l3harrisgeospatial.com/docs/flaash.html
https://www.l3harrisgeospatial.com/docs/flaash.html
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elevation angle and centre wavelength were 

also used by QUAC. Corrections could still 

be made using this method within the 

acceptable range of accuracy if the sensor 

did not have accurate radiation or 

wavelength, or if the intensity of sunlight 

was unknown. It's a dark targets-based 

algorithm. Because QUAC does not require 

first-principles radiative-transfer 

computations and simply requires an 

equation, the atmospheric correction 

approach is substantially faster than 

radiative transfer model-based methods. 

This correction method was carried out 

with the QUAC algorithm of the software 

ENVI (v.5.1). 

Dark Object Subtraction (DOS) is an 

atmospheric correction system based on 

images. Due to air scattering, only a few 

pixels’ radiances obscured by cloud 

pictures may be acknowledged by the 

satellite, according to Chavez (1996). The 

DOS method is based on the properties of 

the image. This correction method is the 

most widely used for the detection of land-

use changes. Elements such as water, 

forests, and shadows are considered dark 

objects when their values of reflectance are 

close to zero. Dark objects are detected 

automatically when the pixel reflectance 

value is less than or equal to 1.0%. The 

assumption is that some pixels within the 

image receive 0% of the solar radiation 

(100% of shade), mainly due to the effect of 

topography, and the value of radiances 

corresponding to these pixels registered by 

the satellite corresponds to atmospheric 

dispersion (Chavez, 1988). If a dark object 

is found in the image, the minimum 

reflectance value in the histogram is 

assigned to such an object. From this 

minimum, it is possible to correct the entire 

scene by the effects of the atmospheric 

dispersion (Paolini et al., 2006; Cui et al., 

2014). Surface reflectance was obtained 

using Equation (2) 

𝑃𝑆𝑈𝑃 =
𝑑2𝜋(𝐿𝑇𝑂𝐴−𝐿𝑜)

𝐸𝑇𝑂𝐴𝑐𝑜𝑠𝜃
                                                                                                                                  

(2) 

Where;  

d is the direct distance to the sun,  

𝐿𝑇𝑂𝐴 is the spectral radiance to the satellite,  

𝐿𝑜 is the backscatter glow through the 

atmosphere,  

𝐸𝑇𝑂𝐴 is the solar spectral radiance on a 

surface perpendicular to the sun’s rays 

outside the atmosphere, and  

θ is the solar zenith angle.  

This radiometric correction was carried out 

using the Semi-Automatic Classification 

plugin developed by Congedo (2013) in the 

QGIS (v.3.8). 

 

Land Cover Classification Methods 

This study is subjected to a supervised 

classification method using both Random 
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Forest (RF) and Support Vector Machine 

(SVM) classification algorithms. Random 

Forest (RF) classifier is a machine learning 

algorithm that combines many tree 

classifiers. To classify an input image, each 

tree classifier generates a unit vote for the 

most common class in the tree (Breiman 

1999). RF, which is one of the most applied 

machines learning algorithms in 

classification studies (Basu et al., 2021; 

Berhane et al., 2018; Avcı et al 2022) 

increases the accuracy of the classification 

by creating more than one decision tree 

(Dubeau et al., 2017). RF classifier is 

capable of handling high data 

dimensionality and multi-linearity while 

still being fast and resistant to overfitting 

(Jagannath, 2020). The number of active 

variables in the random subset at each node 

and the number of trees in the forest are two 

parameters of RF. Several studies in the 

realm of remote-sensing applications have 

recently revealed that LULC classification 

utilizing RF has a reasonable performance 

(Adam et al., 2014; Ma et al., 2017; 

Camargo et al., 2019).  

SVM on the other hand is a supervised non-

parametric statistical learning method. In 

this algorithm, no assumptions about the 

underlying data distribution are made 

(Vapnik, 1998). SVM is popular in remote 

sensing classification studies (Qian, et al., 

2015) and it is stated that SVM can handle 

the classification of complex LULC 

(Pretorius et al., 2016). The main benefit of 

SVM is that it does not necessitate a large 

number of training samples to obtain 

reliable statistical features for each class 

(Chinsu, et al., 2015). A hyperplane can be 

formed with just a few critical training 

examples. The hyperplane will be used to 

further classify all of the testing samples. 

This might be accomplished by separating 

their bounds in feature space and 

categorizing each sample according to 

which side they fall on. (Petropoulos et al., 

2012). The thematic classes of interest in 

this study are built-up, shrubs, vegetation 

and wetland/rivers. This is based on 

modified classification schemes by 

Anderson (1971) and Anderson et al., 

(1972).  

Accuracy Assessment  

To assess the accuracy, 500 randomly 

sampled ground control points (GCP) were 

generated. A Google Earth image of almost 

the same date as the Landsat image was 

used as a reference image. This GCP were 

used to generate error matrixes, also known 

as confusion matrixes by comparing the 

reference data, to the classification results. 

The accuracy of the results is the 

determining factor in judging whether this 

exercise is a success or not. The confusion 

matrix was calculated using the Compute 
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Confusion Matrix algorithm in Spatial 

Analyst Tools (ArcGIS 10.8). 

RESULTS AND DISCUSSION 

Visual characteristics of the 

atmospherically corrected images 

The spectral signatures of three 

atmospherically adjusted Landsat 8 images 

of 2021 were examined after atmospheric 

adjustment. Using the mean value of all 

training and validation pixels for each class, 

the analysis was performed on four separate 

land cover classes: built-up, shrubs, 

vegetation, and wetland/rivers.  

The image's visual quality was improved 

through a higher contrast ratio, indicating 

that the atmospheric adjustment was 

effective. The FLAASH image had the 

highest contrast ratio when the outcomes of 

atmospheric correction were visually 

contrasted (Figures 2-4). The normalized 

mean reflectance of some selected bands 

extracted from the three atmospheric 

correction models was revealed through 

band statistics (Figure 5). It was discovered 

that when compared to other models, the 

QUAC model had the highest mean values.  

In comparison to the others, the values 

adjusted by the QUAC model were 

dramatically displaced, particularly in the 

RED band of the Landsat 8 image. In 

contrast to those from the top of the 

atmosphere (TOA) photos, each 

atmospheric correction method boosted the 

NDVI values. This demonstrated that when 

compared to other atmospheric correction 

approaches, the QUAC method produced 

higher NDVI values. This finding is 

consistent with Moravec et al., (2021) work 

on the "Effect of Atmospheric Corrections 

on NDVI: Inter-comparability of Landsat 8, 

Sentinel-2, and UAV Sensors". Table 2 

contains the three AC models' mean values.  

Image classification using SVM and RF 

classifiers 

To provide a reliable estimation of the 

environmental assessment using Landsat 8 

OLI for the study area, two different 

machine learning classification techniques 

were used to classify the three 

atmospherically corrected Landsat 8 

images. In this regard, image classification 

based on advanced mathematical and 

machine learning algorithms of SVM and 

RF was produced (Figures 6 and 11). The 

aim is to evaluate the variations in LULC in 

the classification of the three AC models.  

Four major thematic classes were identified 

in the image i.e., the build-up, shrubs, 

vegetation, and water/rivers. Out of 11711 

ha in the study area, the RF algorithm 

classified 1172 ha as a build-up area on the 

DOS image, 1172 ha on the QUAC image 

and 1040 ha on the FLAASH image (Table 

3). Shrubs recorded 2688 ha (DOS), 2690 
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ha (QUAC) and 2851ha (FLAASH) 

respectively. The vegetation thematic class 

had 7546 ha (DOS), 7544 ha (QUAC) and 

7665 ha (FLAASH). Wetland/rivers class 

had the least area extent by way of 

classification with 305 ha (DOS), 305 ha 

(QUAC) and 115 ha (FLAASH).  

 

 

 

 

 

 

 

 

Figure 2: A composite RGB image of an atmospherically corrected image using the DOS 

algorithm 

 

 

Figure 3: A composite RGB image of an atmospherically corrected image using the QUAC 

algorithm 
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Figure 4: A composite RGB image of an atmospherically corrected image using the FLAASH 

algorithm 

Figure 5: Band statistics of the normalized atmospherically corrected images using DOS, 

QUAC and FLAASH 

 

Table 2: Normalized Difference Vegetation Index (NDVI) horizontal profile statistics of the 

atmospheric correction models 

                 NDVI STATISTICS 

ALGORITHM MIN MAX MEAN StdDEV 

FLAASH 0.13 0.45 0.34 0.05 

QUAC 0.12 0.61 0.47 0.09 

DOS -0.12 0.15 0.05 0.05 
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Image classification using SVM and RF 

classifiers 

To provide a reliable estimation of the 

environmental assessment using Landsat 8 

OLI for the study area, two different 

machine learning classification techniques 

were used to classify the three 

atmospherically corrected Landsat 8 

images. In this regard, image classification 

based on advanced mathematical and 

machine learning algorithms of SVM and 

RF was produced (Figures 6 and 11). The 

aim is to evaluate the variations in LULC in 

the classification of the three AC models.  

Four major thematic classes were identified 

in the image i.e., the build-up, shrubs, 

vegetation, and water/rivers. Out of 11711 

ha in the study area, the RF algorithm 

classified 1172 ha as a build-up area on the 

DOS image, 1172 ha on the QUAC image 

and 1040 ha on the FLAASH image (Table 

3). Shrubs recorded 2688 ha (DOS), 2690 

ha (QUAC) and 2851ha (FLAASH) 

respectively. The vegetation thematic class 

had 7546 ha (DOS), 7544 ha (QUAC) and 

7665 ha (FLAASH). Wetland/rivers class 

had the least area extent by way of 

classification with 305 ha (DOS), 305 ha 

(QUAC) and 115 ha (FLAASH).  

Two distinct machine learning 

classification approaches were employed to 

classify the three atmospherically corrected 

Landsat 8 pictures to offer a valid estimate 

of the environmental assessment using 

Landsat 8 OLI for the research area. Image 

classification based on modern 

mathematical and machine learning 

methods of SVM and RF was developed in 

this regard (Figures 5 and 6). The overall 

goal is to assess the differences in LULC 

across the three AC models in terms of 

classification. The image contains four key 

subject classes: the build-up, bushes, 

greenery, and water/rivers. The RF 

algorithm classified 1172 ha of the 11711ha 

study area as a build-up region on the DOS 

picture, 1172 ha on the QUAC image, and 

1040 ha on the FLAASH image (Table 3).  

The built-up area was 1038 ha (DOS), 1100 

ha (QUAC), and 1103 ha (DOS) according 

to the LULC statistics calculated using the 

SVM classifier across the three 

atmospherically adjusted pictures 

(FLAASH). Shrubs had a total area of 2086 

ha (DOS), 1953 ha (QUAC), and 1982 ha 

(QUAC) (FLAASH). 8438 ha (DOS), 8416 

ha (QUAC), 8559 ha (FLAASH), 147 ha 

(DOS), 243 ha (QUAC), and 67 ha 

(FLAASH) were registered for vegetation 

and wetland, respectively (Table 3).  
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Figure 6: Land cover map using the Random Forests (RF) classification algorithm on DOS 

corrected image. 

 

Figure 7: Land cover map using the Random Forests (RF) classification algorithm on QUAC 

corrected image.
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Figure 8: Land cover map using the Random Forests (RF) classification algorithm on 

FLAASH corrected image. 

 

Figure 9: Land cover map using the Support Vector Machine (SVM) classification algorithm on DOS 

corrected image 
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Figure 10: Land cover map using the Support Vector Machine (SVM) classification algorithm on 

QUAC corrected image 

 

 

Figure 11: Land cover map using the Support Vector Machine (SVM) classification algorithm 

on FLAASH corrected image 
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Table 3: Land cover statistics derived from the three machine learning algorithms 

 

 

 

LULC 

Random Forest (RF) Support Vector Machine (SVM) 

DOS QUAC FLAASH DOS QUAC FLAASH 

Area

(ha) 

% Area

(ha) 

% Area

(ha) 

% Area

(ha) 

% Area

(ha) 

% Area 

(ha) 

% 

Built-up 1172 10 1172 10 1040 9 1038 9 1100 9 1103 9 

Shrubs 2688 23 2690 23 2851 24 2089 18 1953 17 1982 17 

Vegetation 7546 64 7544 64 7665 65 8438 72 8415 72 8559 73 

Wetland/River 305 3 305 3 155 1 146 1 243 2 67 1 

Accuracy assessment of the classifiers 

based on the atmospheric correction 

model 

The accuracy of classification was 

impacted by techniques, approaches, time 

and space. (Maxwell et al., 2018; Noi and 

Kappas, 2018; Rodriguez-Galiano and 

Chica-Rivas, 2018; Camargo et al., 2019). 

Several studies found slight to moderate 

differences in Land cover classification 

accuracy when different classifiers were 

used (Rwanga and Ndambuki, 2017, Leyk 

et al., 2018, Islam et al., 2018). A Land 

cover classification's accuracy varies not 

just by the classifier, but also by space and 

time. This could be due to differences in the 

atmosphere, surface, and lighting (Li et al., 

2016). With the help of a confusion matrix, 

(Tables 4 - 9) the accuracy assessment of 

the LULC classifications was obtained. The 

findings revealed that the SVM_FLAASH 

has the highest overall accuracy (0.98) and 

kappa coefficient (0.96).  

Tables 4-9 show that SVM has the highest 

accuracy performance among the three AC 

models, while RF has the lowest. This 

conclusion was consistent with Noi and 

Kappas's (2017) findings, with SVM 

having a higher accuracy output than RF. 

For example, Somdatta et al. (2011) used 

Hyperion data to test both FLAASH and 

QUACC methodologies and found that 

FLAASH performed better than QUAC in 

terms of atmospheric correction. Guo et al. 

(2012) discovered that FLAASH was more 

effective at reducing noise than QUAC 
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when they looked at spot data using both 

approaches. In contrast, when compared to 

FLAASH and QUAC models, Nazeer et al 

(2014) found that DOS had the most 

appropriate and consistent values. The 

variation in machine learning algorithms 

could be due to a variety of factors.  

CONCLUSIONS 

The remote sensing image utilized in this 

study was Landsat 8 OLI covering 

Okitipupa Local Government Area, on the 

5th November 2021, downloaded from 

Earth Explorer 

(https://earthexplorer.usgs.gov/). Landsat 8 

image was used to test the effects of 

applying three different atmospheric 

correction methods on land cover 

classification using Random Forest and 

SVM algorithms. This study showed that 

SVM is the best machine learning classifier 

for land cover/use classification and 

outperformed RF. This research concluded 

that the selection of classifiers is as 

important as the selection of the 

atmospheric correction method deployed 

during satellite image analysis. The 

accuracy assessment showed that 

SVM_FLAASH has the highest accuracy 

performance among the three AC models 

 

Table 4 – Error matrix of the SVM_FLAASH classification  

 Built-up Shrubs Vegetation Wetland/Rivers Total U_Accuracy Kappa 

Built-up 48 0 1 0 49 0.98  

Shrubs 2 115 3 0 120 0.96  

Vegetation 0 0 317 1 318 1  

Wetland/Rivers 0 0 1 12 13 0.92  

Total 50 115 322 13 500 0  

P-Accuracy 0.96 1 0.98 0.92 0 0.98  

Kappa       0.96 

O-Accuracy       0.98 

 

 

 

 

 

https://earthexplorer.usgs.gov/


O. J. Aigbokhan*, C. S. Ofordu, N. E. Essien, N. C. Mba. 

Copyright © 2022 Nigerian Meteorological Society  P a g e  46 | 194  

Table 5: Error matrix of the SVM_QUAC classification  

 Built-up Shrubs Vegetation Wetland/Rivers Total U-Accuracy Kappa 

Built-up 48 1 1 0 50 0.96  

Shrubs 2 114 4 0 120 0.95  

Vegetation 0 0 316 2 318 0.99  

Wetland/Rivers 0 0 1 11 12 0.91  

Total 50 115 322 13 500 0  

P-Accuracy 0.96 0.99 0.98 0.85 0 0.98  

Kappa Coeff.       0.95 

O-Accuracy       0.97 

 

Table 6: Error matrix of the SVM_DOS classification  

 Built-up Shrubs Vegetation Wetland/Rivers Total U-Accuracy Kappa 

Built-up 47 2 2 0 51 0.92  

Shrubs 3 112 4 0 119 0.94  

Vegetation 0 1 314 2 317 0.99  

Wetland/Rivers 0 0 2 11 13 0.85  

Total 50 115 322 13 500 0  

P-Accuracy 0.94 0.97 0.98 0.85 0 0.97  

Kappa Coeff.       0.93 

O-Accuracy       0.96 
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Table 7: Error matrix of the RF_FLAASH classification  

 Built-up Shrubs Vegetation Wetland/Rivers Total U-Accuracy Kappa 

Built-up 48 3 0 0 51 0.94  

Shrubs 2 96 0 0 98 0.98  

Vegetation 0 16 322 0 338 0.95  

Wetland/Rivers 0 0 0 13 13 1  

Total 50 115 322 13 500 0  

P-Accuracy 0.96 0.83 1 1 0 0.95  

Kappa       0.92 

O-Accuracy       0.96 

 

Table 8: Error matrix of the RF_QUAC classification  

 Built-up Shrubs Vegetation Wetland/Rivers Total U-Accuracy Kappa 

Built-up 47 3 0 0 50 0.94  

Shrubs 3 90 0 0 93 0.96  

Vegetation 0 22 322 0 344 0.93  

Wetland/Rivers 0 0 0 13 13 1  

Total 50 115 322 13 500 0  

P-Accuracy 0.94 0.78 1 1 0 0.94  

Kappa       0.88 

O-Accuracy       0.94 
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Table 9: Error matrix of the RF_DOS classification  

 Built-up Shrubs Vegetation Wetland/Rivers Total U_Accuracy Kappa 

Built-up 44 4 0 0 49 0.92  

Shrubs 5 85 0 0 90 0.94  

Vegetation 0 26 322 1 349 0.92  

Wetland/Rivers 0 0 0 12 12 1  

Total 50 115 322 13 500 0  

P-Accuracy 0.90 0.74 1 0.92 0 0.928  

Kappa       0.85 

O-Accuracy       0.72 
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