A 5-step maximal order method for direct solution of second order Ordinary Differential Equations

  • SJ Kayode
  • D O Awoyemi

Abstract



In this work, we propose a direct solution of second order ordinary differential equations without reduction to systems of first order equations. The method is based on collocating the differential system arising from a polynomial basis function at selected grid points xn+i, i = 0(1)5, which yields a five-step continuous method. The computational burden and computer time wastage involved in the usual reduction of second order problems into system of first order equations are avoided by this approach. The method is symmetric, consistent and of order nine. The interval of absolute stability of the method is sufficient for moderately stiff problems. The accuracy of the method is shown with some test examples.

Journal of the Nigerian Association of Mathematical Physics Vol. 9 2005: pp. 279-284
Published
2008-05-21
Section
Articles

Journal Identifiers


eISSN: 1116-4336