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Abstract 

Cognition and sleep are important for optimum functioning of the central nervous system. Paracetamol, a commonly  

used analgesic and antipyretic agent is thought to modulate cognition and sleep in humans. This study was 

undertaken to evaluate the effect of paracetamol on cognitive and sleep indices in mice. Cognitive effect of 

paracetamol (250-1000 mg/kg) was evaluated using the elevated plus maze and novel object recognition tests while 

the diazepam and ketamine induced sleep models were used to assess its sleep modifying effects. Paracetamol 

significantly (p<0.05) decreased transfer latency in the elevated plus maze test and increased the time spent 

exploring the novel object. Onset and duration of sleep were increased in both the diazepam and ketamine induced 

test. Results suggest a modulatory role of paracetamol in cognition and sleep . 

 

Keywords: Elevated plus maze; Diazepam; Ketamine; Novel object recognition test; Paracetamol 

______________________________________________________________________________ 

 

                                                                 
* Corresponding author. E-mail: lo.iniaghe@uniben.edu   Tel: +234 (0) 8022113816 

ISSN 0189-8442  © 2018 Faculty of Pharmaceutical Sciences, University of Jos, Jos. Nigeria. 

INTRODUCTION 

Cognitive impairment or deficit is an 

inclusive term, which describes any feature 
that acts as a barrier to the cognition and 
memory processes. Cognitive impairment 

could be a deficit in global intellectual 
performance, intellectual disabilities or drug 
induced cognitive and memory impairment 

[1,2]. 
Sleep is a human act, which is 

important for the maintenance of normal 
physiological processes in the body. Sleep 
helps to maintain mood, memory and 

cognitive processes, and plays a pivotal role 
in normal functioning of the endocrine and 

immune systems [3]. 

Acetaminophen commonly known as 
Paracetamol (PCM), a commonly used 

analgesic and antipyretic agent is a household 
name in many homes [4]. Emerging studies 
indicate a role for PCM in memory recall and 

formation; and in animal studies, improved 
cognitive performance, anxiolytic and 
antidepressant activity involving cannabinoid 

receptors were reported in preclinical and 
clinical studies [5-8]. While some studies 

report improved cognition with therapeutic 
doses of PCM others report cognitive deficits 
at sub-therapeutic doses [9]. PCM is thought 

to be to be a pro-drug with analgesic PCM 
metabolites and a central mechanism of action 

involving several neurotransmitters and 
serotonergic, opioidergic, vanilloid, and 
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cannabinoid receptor pathways. The link 
between analgesic, antipyretic and improved 

cognitive performance is yet to be elucidated 
[9-16]. There are conflicting reports on the 

effects of PCM on sleep; while PCM is 
thought to potentiate sleep indirectly via its 
analgesic property, others attribute no 

sedative properties to PCM [17-19]. 
This study was therefore carried out to 

evaluate the effects of PCM on (i) memory 

and cognition (ii) onset and duration of sleep 
in murine models of these indices.  

 
EXPERIMENTAL 

Drugs and chemicals. Carboxymethyl 

cellulose obtained from BDH Ltd Poole, 
England; paracetamol powder from May and 

Baker; distilled water; diazepam from Swipha 
Pharmaceuticals, Lagos, Nigeria; ketamine 
and piracetam purchased from Sigma Aldrich, 

USA were used for this study. 

Animals. Swiss albino mice of both sexes 
(16.5-25 grams) procured from the Animal 

House Facility of Department of 
Pharmacology and Therapeutics, Ahmadu 

Bello University, Zaria, Nigeria were used for 
the study. They were kept in polypropylene 
cages at the Animal House of the Department 

of Pharmacology and Therapeutics, Ahmadu 
Bello University, Zaria, Nigeria. The animals 

were maintained under standard laboratory 
conditions (optimum temperature and 
humidity) and were fed with standard 

laboratory animal feed and clean water ad 
libitum. Handling of the animals was done 
according to standard protocols for the use of 

laboratory animals of the National institute of 
Health [20]. Institutional approval was 

obtained from the Ethics Committee of the 
Department of Pharmacology and 
Therapeutics, Faculty of Pharmaceutical 

Sciences, Ahmadu Bello University, Zaria, 
Nigeria. 

Behavioural studies.  

Elevated plus maze. The method described by 
Komada et al. [21] was used in this study. 

Albino mice were randomly distributed into 
five groups of five mice per group. Mice in 

group I received oral piracetam (20 mg/kg); 
those in group II mice were administered oral 
carboxymethyl cellulose (0.5%) while groups 

III, IV and V mice were administered oral 
paracetamol 250, 500 and 1000 mg/kg 
respectively. An hour after administration, 

each mice was placed in one of the open arms 
of the maze with its back to the centre of the 

maze. The latency time (time taken for a 
mouse to enter a closed arm with both limbs) 
was recorded by trained observers blinded to 

treatment. Mice, which did not enter any of 
the closed arms, were guided into a closed 

arm using a non-invasive object. The same 
procedure was repeated after an hour; 
recording the latency periods. The apparatus 

was wiped with 70% alcohol after each 
animal was removed. 

Novel object recognition task model. 

Following the method described by Ennaceur 
and Delacour [22] with some modifications, 

albino mice were divided into 5 groups of 5 
mice each. Mice in group I were administered 
oral piracetam (20 mg/kg), group II mice 

were administered oral carboxymethyl 
cellulose (0.5%) while mice in groups III - V 

mice were administered paracetamol 250, 500 
and 1000 mg/kg respectively orally. One hour 
post drug administration, each mouse was 

placed in the open field and allowed to 
explore the for a minute. Mice were again 
placed in the field with two identical objects 

and allowed to explore the objects for 5 
minutes. Thereafter, one of the objects was 

replaced with a dissimilar  object and mice 
were placed again in the open field. Time 
spent exploring, licking or pawing novel 

object was recorded by trained observers 
unaware of treatment. The apparatus was 

wiped with 70% alcohol after each animal 
was removed. 
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Diazepam-induced sleep in mice. The 
method described by Beretz et al. [23] and 

modified by Rakotonirina et al. [24] was 
adopted in this study. Mice were randomly 

divided into four groups each of 6 mice per 
group. The first group received normal saline 
(10 ml/kg). The second, third and fourth 

groups were given paracetamol suspension at 
doses of 250, 500 and 1000 mg/kg. Thirty 
minutes post-treatment, the mice were 

administered diazepam at a dose of 20 mg/kg. 
The mice were placed individually in separate 

cages. The onset and the duration of sleep 
were determined for each animal. The time 
interval between diazepam administration and 

loss of righting reflex was considered as the 
criterion for onset of sleep [25] while the 

interval between the loss and the recovery of 
righting reflex was regarded as the duration of 
sleep [26]. 

Ketamine-induced sleep model in mice. 

Thirty mice were randomly divided into five 
groups of six mice each. The first group 

received normal saline (10 ml/kg). The 
second, third and fourth groups were given 

paracetamol suspension at doses of 250 
mg/kg, 500 mg/kg and 1000 mg/kg. The fifth 
group received diazepam at 0.5 mg/kg. Thirty 

(30) minutes post-treatment, the mice were 
administered ketamine at a dose of 100 mg/kg 

[27]. The mice were placed individually in 
separate cages and the onset and the duration 
of sleep were determined for each animal. 

The time interval between diazepam 
administration and loss of righting reflex was 
considered as the criterion for induction sleep 

[25] while the interval between the loss and 

the recovery of righting reflex was regarded 
as the duration of sleep [26]. 

Statistical analysis. The results were 
analyzed for statistical significance using one-

way analysis of variance (ANOVA) followed 
by Dunnett's post hoc test using Graphpad 
Instat (R) Version 6. A difference was 

considered significant at p < 0.05.The  results  
are  presented  as  mean  ±  standard  error  of 
mean  (SEM). 

 
RESULTS 

Elevated plus maze. The results of latency 
transfer time are shown in Table 1. Higher 
doses (500 and 1000 mg/kg) of PCM 

decreased mean transfer latency, this was 
significantly different (p<0.05) from the 

vehicle treated animals. 

Novel object recognition test. In the novel 
object recognition test, 500 mg/kg dose level 

gave the highest mean exploration time 
followed by 250 mg/kg, these were 
significantly different (p<0.05) from the 

control group. Data is presented in Table 2. 

Diazepam-induced sleep in mice. 

Paracetamol (250 and 1000 mg/kg) 
significantly increased onset of sleep while 
increased duration of sleep was observed at 

500 and 1000 mg/kg dose levels. Data is 
shown in Fig 1. 

Ketamine-induced sleep in mice. 

Paracetamol significantly increased onset of 
sleep at all doses while highly doses (500 and 

1000 mg/kg) significantly increased duration 
of sleep. Data is presented in Fig 2. 
 

 

Table 1: Effect of paracetamol in the elevated plus-maze 

Treatment Dose (mg/kg) Mean Latency Transfer Time (s) 

Carboxymethyl cellulose  0.5% 20.20 ± 3.93 

Piracetam  10 14.40 ± 3.78 

Paracetamol  250 41.40 ± 5.51 

Paracetamol  500 14.40 ± 3.32* 

Paracetamol  1000 12.20 ± 2.09* 

Values are represented as Mean ± SEM; n = 5; *p<0.05.  One way ANOVA and Dunnett's post test  
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Table 2: Effect of Paracetamol in Novel Object Recognition Test 

Treatment Dose (mg/kg) Mean Exploration Time (s) 

Carboxymethyl cellulose  0.5% 8.00 ± 2.16 

Piracetam  10 28.00 ± 3.85 

Paracetamol  250 12.00 ± 2.00* 

Paracetamol  500 21.00 ± 2.38* 

Paracetamol  1000 6.00 ± 0.00 

Values are represented as Mean ± SEM; n = 5; *p<0.05.  One way ANOVA and Dunnett's post test  

 

 
Fig 1: Statistical analysis of onset and duration of sleep in the diazepam induced sleep test. Paracetamol at 250 and 

1000 mg/kg increased onset of sleep while 500 and 1000 mg/kg dose levels increased duration of sleep. Data is 

expressed as mean ± SEM. *p<0.05 compared to vehicle;  n=6 per group 

 

 
Fig 2: Statistical analysis of onset and duration of sleep in the ketamine induced sleep test. Paracetamol at the t hree 

dose levels increased onset of sleep while 500 and 1000 mg/kg dose levels increased duration of sleep. Data is 

expressed as mean ± SEM. *p<0.05 compared to vehicle;  n=6 per group 

 

DISCUSSION 

Paracetamol, a commonly used 
analgesic was investigated for cognitive and 
sleep modifying effects. The elevated plus the 

elevated plus maze, a validated test for 

evaluation of memory and cognition in 
laboratory animals is based on rodents' natural 

aversion for open and high spaces. In this test, 

changes in latency time from the open to closed 
arm are indicative of memory and learning; a 

decrease in transfer time to the closed is taken 
as an index of good cognitive function while an 

increase implies cognitive dysfunction [28,29]. 

In this study, higher doses (500 and 1000 
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mg/kg) decreased latency transfer time into 
the closed arm, indicative of enhanced 

memory. 
The novel object recognition task is a 

widely used model for the investigation into 
memory alterations and can be configured to 
measure working memory, attention, anxiety, 

and preference for novelty in rodents [30,31]. 
It is based on the fact that when animals are 

exposed to a familiar and a novel object, they 
frequently approach and spend more time 
exploring the novel than the familiar one 

[32,33]. The novel object recognition task is 
particularly attractive because it requires no 

external motivation, reward, or punishment 
and it can be completed in a relatively short 
time, though a little training or habituation is 

required [30]. In the novel object recognition 
test, 250 and 500 mg/kg dose levels increased 

time spent exploring the novel object. These 
findings are in line with those of Ishida et al. 

[5] and Pickering et al. [9] who demonstrated 

improved cognitive function in preclinical and 
clinical studies. 

Diazepam acts by potentiating gamma 
amino butyric acid (GABA) - the major 
inhibitory neurotransmitter in the brain known 

to favour sleep - via a modulatory binding site 
of GABA-A receptors [34]. Glutamate  

receptor antagonists such as ketamine and 
riluzole has been documented to potentiate 
sleep in preclinical studies [35,36]. The 

lowest and highest dose of PCM used in this 
study, increased onset of diazepam-induced 

sleep while the middle and highest dose 
significantly increased duration of sleep. In 
the ketamine induced sleep test, all three 

doses of PCM increased onset of sleep while 
higher doses increased sleep duration. 
Increase in onset of diazepam and ketamine 

induced sleep suggest that PCM may not 
posses sleep inducing properties while 

potentiation of diazepam and ketamine 
induced sleeping time is indicative of sleep 
maintaining properties of PCM [24]. More 

studies on the effects of PCM on sleep onset 

and duration and elucidation of possible 
mechanisms of action will be undertaken. 
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