

ISBN: 2141 – 1778 Emelue and Adedoyin, 2021 168

ABUNDANCE AND DIVERSITY OF WILD BIRDS SPECIES IN THE BUFFE ZONE OF OLD OYO NATIONAL PARK, NIGERIA

Emelue, G.U. and *Adedoyin, S.O.

Department of Forest Resources and Wildlife Management, Faculty of Agriculture, University of Benin, Benin-City, Nigeria *Correspondence Author: adedoyin.so.mnim@gmail.com

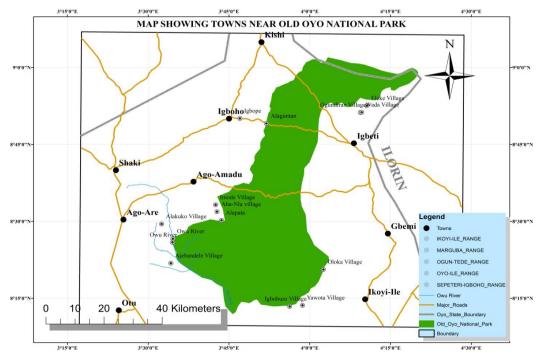
ABSTRACT

The study estimated the relative abundance and diversity of wild birds' populations in the buffer zone of Old Oyo National Park. Point count method was used to estimate wild birds' species abundance in both wet and dry seasons. Ecological data on wild birds' resources were subjected to diversity indices analysis using PAleontological STatistics (PAST). The results showed that 21 families representing 30 species of birds were recorded in wet and dry seasons. In Ogun-Tede range, Tockus nasatus $(6.70\pm1.65)/km^2$ had the highest relative abundance in both wet and dry seasons respectively. While in Marguba range, Motacilla flava $(4.14\pm1.02)/km^2$ had the highest relative abundance in both wet and dry seasons. The diversity indices for wild birds were higher (D=0.95; H=3.2) in wet season. Ecosystem values of wild birds and their roles in ecological processes would be lost if we do not take seriously the effective conservation and management of the study area.

Keywords: Wild birds, Buffer zone, Diversity, Abundance, Old Oyo National Park

INTRODUCTION

Birds form an integral part of the ecosystem as they serve as mobile-links within the vast food chains and webs that exist (Nason, 1992) in terrestrial and aquatic ecosystems. Wild birds could be both prey and predator; serving as biological control; eating insects (Mols and Visser, 2002) like grasshoppers and locusts which are agricultural pests, also birds of prey help to control populations of harmful rodents (Brown and Kotler, 2004) whilst vultures act as natural rubbish disposers by clearing up the carcasses of dead animals and human refuse (Prakash *et al*, 2003).


They have several scientific, ecological, economic and cultural values (Diamond, 1987); they serve as pollinators of flowers. Birds like sunbirds help to pollinate flowers as they pass from one plant to another,

seeking nectar, in the same way as bees carry pollination. This enables out man's vegetative food supplies to flourish (Nabhan and Buchmann, 1997; Narang et al, 2000). Birds serve as seed dispersal agents (Greenberg et al, 1995; Wenny and Levey, 1998). They convey exotic species, as they carry certain organisms from one place to another where they do not exist and in some cases, they become invasive (Gibson and Wheelwright, 1995). The droppings of some species of birds mainly seabirds serve as a source of fertilizer for farmers as the droppings popularly called 'guano' are rich in sulphate and phosphate (Croll et al, 2005).

There is scarcity of literatures on the abundance and diversity of wild birds on buffer zones or lands adjacent most of the protected areas in Nigeria, hence the importance of this study. This study estimated the relative abundance and diversity of wild birds' populations in the buffer zone of the Park.

MATERIALS AND METHODS Study Area

Old Oyo National Park (OONP) derives its name from the ruins of Oyo-Ile, (Old Oyo) the ancient political capital of Yoruba Empire. The abundance of cultural features in and outside the Park with a combination of ecological and biodiversity sites places the Park in a very unique and advantageous position as a potential tourism destination. The Park has a total land mass of 2512 km² (making it the fourth largest National Park in Nigeria) and is located in the South Western part of Nigeria, specifically Northern part of Oyo State. OONP is geographically located between latitudes 8° 15' and 9°.00'N of the equator and longitudes 3° 35' and 4° 42'E of the Greenwich meridian (Oladeji *et al*, 2012). 169

Figure 1: Map of Old Oyo National Park showing the buffer zone villages **Source:** Adedoyin *et al.*, 2018

Experimental Design

A total of ten (10) point counts were laid in the five ranges in the buffer zone. Each point count was more than 5 km apart to prevent double counting. Each point count was visited twice in a month between the hours of 7:00 am-12 noon and 4:00 pm and 7:00 pm (local time). The observer stayed quietly for between 10-15 minutes in each count point to allow for human presence. Binocular (10 x 40) was used to observe bird species. Birds within and outside a fixed radius of 100 m were counted. Birds sighted were identified as described and classified by Serle *et al*, (1997). The following assumptions were made: birds do not approach observer or flee; birds behave independently of the others; birds are not counted twice; birds are identified correctly and distance estimates are correct. Relative abundance of wild birds' population is calculated using:

$$RB = log_e \left(\frac{n_1}{n_2}\right) \times \frac{n(\pi r^2)}{m} \dots \dots \dots [1]$$

Where: RB = Relative Abundance

 n_1 - number of species of birds counted within the radius (100 m); n_2 - number of birds counted beyond the fixed radius (100 m); n total number of birds; m- total number of birds counted within each range and r- radius.

Data Collection

Ecological data collected (such as number of species of birds counted within and beyond fixed radii, number of species encountered and fraction of the entire population made up of species) on avifauna resources were subjected to diversity indices analysis using PAST (PAleontological STatistics) Software Package for Education and Data Analysis (version 3.04) as recommended by (Hammer *et al*, 2001).

 $H = -\sum (P_i * \ln P_i) \dots [3]$

H = the Shannon diversity index; P_i = fraction of the entire population made up of species *i*; s = numbers of species encountered; *i*=1; \sum = sum from species 1 to species s

RESULTS

During wet season in Ogun-Tede range buffer zone, *Tockus nasatus* $(6.70\pm1.65)/\text{km}^2$ had the highest relative abundance while *Streptopelia semitorquata* $(0.30\pm0.07)/\text{km}^2$ had the least.

In dry season, *Ploceus cucullatus* $(4.22\pm1.02)/\text{km}^2$ had the highest relative abundance while *Milvus migrans* $(0.27\pm0.06)/\text{km}^2$ had the least.

Table 1: Wet Season	Wild Birds Species	Abundance in Ogun	-Tede Buffer zone
		is an addition in Ogan	i cuc Duiter Lone

Family	Species	n 1	n ₂	n	Relative
	-				Abundance/km ²
Acciptridae	Kaupifalco monogrammicus	9	13	22	1.19±0.28
	Milvus migrans	7	13	20	1.82 ± 0.44
Alcedinidae	Halcyon malimbica	1	4	5	1.02 ± 0.25
Apodidae	Cypsiurus parvus	8	13	21	1.50±0.36
Bucerotidae	Tockus nasatus	5	24	29	6.70±1.65
Columbidae	Columba guinea	12	25	37	4.00±0.97
	Streptopelia semitorquata	2	3	5	0.30±0.07
Coraciidae	Coracias abyssinica	3	5	8	0.60±0.14
Cuculidae	Centropus senegalensis	3	6	9	0.92±0.22
Phasianidae	Francolinus bicalcaratus	2	7	9	1.66±0.41
Ploceidae (Passerine)	Petronia dentata	2	5	7	0.94±0.23
Ploceidae (Ploceinae)	Ploceus cucullatus	19	27	46	2.38±0.55
Ploceidae (Viduinae)	Vidua macroura	2	7	9	1.66±0.41
Psittacidae	Poicephalus senegalus	8	15	23	2.13±0.51
Mean	-			18.0	1.92±0.46
Total				250.0	26.82±6.49

Family	Species	\mathbf{n}_1	\mathbf{n}_2	n	Relative Abundance/km ²
Acciptridae	Kaupifalco monogrammicus	3	7	10	1.14±0.28
_	Milvus migrans	2	3	5	0.27 ± 0.06
Alcedinidae	Halcyon malimbica	1	3	4	0.59 ± 0.14
Apodidae	Cypsiurus parvus	5	11	16	1.70 ± 0.41
Columbidae	Columba guinea	6	14	20	2.28±0.55
	Streptopelia semitorquata	7	16	23	2.56±0.62
Coraciidae	Coracias abyssinica	2	12	14	3.38±0.83
Ploceidae (Passerine)	Petronia dentata	3	11	14	2.45 ± 0.60
Ploceidae (Ploceinae)	Ploceus cucullatus	19	27	46	4.22±1.02
Ploceidae (Viduinae)	Vidua macroura	14	29	43	2.96±0.73
Mean				16.0	2.16±0.52
Total				159.0	21.55±5.24

 Table 2: Dry Season Wild Birds Species Abundance in Ogun-Tede Buffer zone

In Marguba range during wet season, Motacilla flava $(4.14\pm1.02)/\text{km}^2$ had the highest relative abundance while *Ploceus* cucullatus $(0.52\pm0.10)/\text{km}^2$ had the least

relative abundance. In dry season, *Tockus nasatus* $(4.42\pm1.09)/\text{km}^2$ had the highest relative abundance while *Ardeola ibis* $(1.28\pm0.30)/\text{km}^2$ had the least.

171

Family	Species	n ₁	n ₂	n	Relative Abundance/km ²
Alcedinidae	Halcyon senegalensis	1	8	9	2.44±0.60
Ardeidae	Ardeola ibis	10	18	28	2.14±0.51
Bucerotidae	Tockus nasatus	1	6	7	1.63 ± 0.40
Columbidae	Stigmatopelia senegalensis	2	8	10	1.81 ± 0.44
Cuculidae	Centropus senegalensis	2	8	10	1.81 ± 0.44
Meropidae	Merops pusillus	2	9	11	2.16±0.53
Motacillae	Motacilla flava	3	16	19	$4.14{\pm}1.02$
Ploceidae (Ploceinae)	Ploceus cucullatus	17	19	36	0.52±0.10
Pycnonotidae	Pycnonotus barbatus	2	12	14	3.27±0.80
Surnidae (Sturniae)	Lamprotornis chloropterus	1	11	12	3.75±0.93
Turdidae	Turdus pelios	6	15	21	2.51±0.61
Mean	-			16.0	2.38±0.58
Total				177.0	26.18±6.38

Table 3: Wet Season Wild Birds Species Abundance in Marguba Buffer zone

Table 4: Dry Season	Wild Birds	Species	Abundance i	n Marguba	Buffer zone
----------------------------	------------	----------------	-------------	-----------	--------------------

Family	Species	n ₁	\mathbf{n}_2	n	Relative Abundance/km ²
Ardeidae	Ardeola ibis	5	10	15	1.28±0.30
Bucerotidae	Tockus nasatus	1	13	14	4.42 ± 1.09
Columbidae	Stigmatopelia senegalensis	7	15	22	2.06±0.49
Ploceidae (Ploceinae)	Ploceus cucullatus	10	17	27	1.76 ± 0.41
Turdidae	Turdus pelios	3	12	15	2.56±0.62
Mean				19.0	2.42 ± 0.58
Total				93.0	12.08±2.91

Bradornis pallidus $(5.00\pm1.23)/\text{km}^2$ had the highest relative abundance while *Halcyon senegalensis* $(1.19\pm0.29)/\text{km}^2$ had the least during wet season in Sepeteri range. *Numida*

meleagris $(3.48\pm0.85)/\text{km}^2$ had the highest relative abundance while *Nectarinia senegalensis* $(1.29\pm0.32)/\text{km}^2$ had the least in dry season.

Family	Species	n 1	n 2	n	Relative
					Abundance/km ²
Alcedinidae	Halcyon senegalensis	2	7	9	1.19±0.29
Bucerotidae	Tockus nasatus	2	8	10	1.47±0.36
Caprimulgidae	Caprimulgus nigriscapularis	2	9	11	1.75±0.43
Columbidae	Streptopelia semitorquata	4	10	14	1.36±0.33
Muscicapidae	Bradornis pallidus	2	19	21	5.00±1.23
(Muscicapinae)					
Nectarinidae	Nectarinia olivacea	2	15	17	3.62±0.89
	Nectarinia senegalensis	1	9	10	2.32±0.57
Numididae	Numida meleagris	12	18	30	1.29 ± 0.30
Picidae	Mesopicos geortae	1	16	17	4.98±1.23
Mean				15.0	2.55±0.63
Total				139.0	22.98±5.63

Table 5: Wet Season	Wild Birds Species	Abundance in Sepeteri Buffer zone
	1	1

Table 6: Dry Season Wild Birds Species Abundance in Sepeteri Buffer zone

Family	Species	n ₁	n ₂	n	Relative Abundance/km ²
Apodidae	Cypsiurus parvus	6	13	19	1.68 ± 0.41
Bucerotidae	Tockus nasatus	1	7	8	1.78 ± 0.44
Columbidae	Streptopelia semitorquata	2	9	11	1.90±0.47
Muscicapidae	Bradornis pallidus	2	12	14	2.87±0.71
(Muscicapinae)					
Nectarinidae	Nectarinia olivacea	2	11	13	3.30±0.82
	Nectarinia senegalensis	2	7	9	1.29±0.32
Numididae	Numida meleagris	4	17	21	3.48±0.85
Ploceidae (Ploceinae)	Ploceus cucullatus	11	25	36	3.39±0.82
Mean				16.0	2.46±0.61
Total				131.0	19.69±4.84

During wet season in Oyo-Ile range buffer zone, *Motacilla flava* $(5.66\pm1.40)/\text{km}^2$ had the highest relative abundance while *Ploceus cucullatus* $(1.06\pm0.25)/\text{km}^2$ had the least. In dry season, *Milvus migrans* $(3.83\pm0.95)/\text{km}^2$ had the highest relative abundance while *Cypsiurus parvus* $(1.08\pm0.26)/\text{km}^2$ had the least. *Coracias abyssinica* $(3.90\pm0.96)/\text{km}^2$ had the highest relative abundance while *Cypsiurus parvus* $(1.22\pm0.28)/\text{km}^2$ had the least relative abundance during wet season in Yemoso range.

Family	Species	n ₁	\mathbf{n}_2	n	Relative
-	-				Abundance/km ²
Acciptridae	Butastur rufipennis	1	8	9	1.96±0.48
Alcedinidae	Halcyon senegalensis	1	13	14	3.76±0.93
Bucerotidae	Tockus nasatus	1	9	10	2.30±0.57
Columbidae	Columba guinea	6	11	17	1.08±0.26
	Stigmatopelia senegalensis	5	15	20	2.30±0.56
Motacillae	Motacilla alba	3	11	14	1.90 ± 0.47
	Motacilla flava	2	21	23	5.66 ± 1.40
Ploceidae (Ploceinae)	Ploceus cucullatus	13	18	31	1.06±0.25
Mean				17.0	2.50±0.62
Total				138.0	20.02±4.92

Table 7: Wet Season	Wild Birds Species	Abundance in	Oyo-Ile Buffer zone

Table 8: Drv Sease	on Wild Birds Species A	bundance in Oyo-Ile Buffer zone
	· · · · · · · · · · · · · · · · · · ·	

Family	Species	n ₁	n ₂	n	Relative Abundance/km ²
Acciptridae	Butastur rufipennis	2	11	13	2.37±0.58
-	Milvus migrans	1	13	14	3.83±0.95
	Kaupifalco monogrammicus	1	12	13	3.45 ± 0.85
Apodidae	Cypsiurus parvus	9	14	23	1.08 ± 0.26
Columbidae	Stigmatopelia senegalensis	4	13	17	2.14±0.52
Motacillae	Motacilla flava	1	12	13	3.45 ± 0.85
Ploceidae (Ploceinae)	Ploceus cucullatus	10	17	27	1.53±0.37
Mean				17.0	2.55±0.63
Total				120.0	17.85±4.38

Family	Species	n ₁	\mathbf{n}_2	n	Relative
-	-				Abundance/km ²
Acciptridae	Butastur rufipennis	1	10	11	3.06±0.76
-	Milvus migrans	2	11	13	2.68 ± 0.66
Apodidae	Cypsiurus parvus	11	16	27	1.22 ± 0.28
Bucerotidae	Tockus nasatus	3	13	16	2.83±0.69
Columbidae	Streptopelia semitorquata	6	14	20	2.05 ± 0.49
Coraciidae	Coracias abyssinica	1	12	13	3.90±0.96
Phasianidae	Francolinus bicalcaratus	5	17	22	3.25±0.79
Psittacidae	Poicephalus senegalus	3	11	14	2.20 ± 0.54
Mean	- 0			17.0	2.65±0.65
Total				136.0	21.19±5.17

Milvus migrans and *Kaupifalco monogrammicus* $(4.59\pm1.14)/\text{km}^2$ had the highest relative abundance while *Ardeola ibis* $(0.57\pm0.12)/\text{km}^2$ had the least relative abundance in dry season. In wet season, Simpson's Index (0.8946) and Shannon-Wiener's Index (2.413) were highest in

Ogun-Tede range, but both indices were lowest in Oyo-Ile range. In dry season, Simpson's Index (0.855) and Shannon-Wiener's Index (2.102) were also highest in Ogun-Tede range, but these two indices (Simpson and Shannon) were lowest in Marguba range.

173

Family	Species	n ₁	n ₂	Ν	Relative Abundance/km ²
Acciptridae	Milvus migrans	1	12	13	4.59±1.14
_	Kaupifalco monogrammicus	1	12	13	4.59±1.14
Apodidae	Cypsiurus parvus	11	16	27	2.05 ± 0.49
Ardeidae	Ardeola ibis	10	12	22	0.57±0.12
Columbidae	Columba guinea	2	13	15	3.99±0.98
	Streptopelia semitorquata	4	14	18	3.20±0.79
Coraciidae	Coracias abyssinica	1	12	13	3.90±0.96
Phasianidae	Francolinus bicalcaratus	7	13	20	1.76±0.42
Mean				18.0	2.96±0.73
Total				128.0	20.75±5.08

Table 10: Dry Season Wild Birds Species Abundance in Yemoso Buffer zone

Table 11: Wet Season Wild Birds Species Diversity in each range of Old Oyo National Park	Ś
Buffer zone	

Diversity Indices	Ranges					
•	Ogun-Tede	Marguba	Sepeteri-Igboho	Oyo-Ile	Yemoso	
Taxa	14	11	9	8	8	
Individuals	250	177	139	138	136	
Dominance	0.1054	0.1172	0.1303	0.1445	0.1365	
Simpson	0.8946	0.8828	0.8697	0.8555	0.8635	
Shannon	2.413	2.268	2.118	2.004	2.036	
Evenness	0.798	0.878	0.9241	0.9278	0.9571	
Brillouin	2.302	2.148	1.997	1.895	1.924	
Menhinick	0.8854	0.8268	0.7634	0.681	0.686	
Margalef	2.354	1.932	1.621	1.421	1.425	
Equitability	0.9145	0.9457	0.9641	0.9639	0.9789	
Fisher_ alpha	3.204	2.596	2.151	1.849	1.857	
Berger-Parker	0.184	0.2034	0.2158	0.2246	0.1985	
Chao-1	14	11	9	8	8	

 Table 12: Dry Season Wild Birds Species Diversity in each range of Old Oyo National Park

 Buffer zone

Diversity Indices	Ranges				
	Ogun-Tede	Marguba	Sepeteri-Igboho	Oyo-Ile	Yemoso
Taxa	10	5	8	7	7
Individuals	159	93	131	120	128
Dominance	0.145	0.2149	0.159	0.1563	0.1526
Simpson	0.855	0.7851	0.841	0.8438	0.8474
Shannon	2.102	1.574	1.959	1.902	1.913
Evenness	0.8186	0.9649	0.8869	0.9571	0.9673
Brillouin	1.986	1.481	1.847	1.794	1.81
Menhinick	0.7931	0.5185	0.699	0.639	0.6187
Margalef	1.776	0.8825	1.436	1.253	1.237
Equitability	0.9131	0.9778	0.9423	0.9775	0.9829
Fisher_ alpha	2.369	1.131	1.878	1.621	1.591
Berger-Parker	0.2704	0.2903	0.2748	0.225	0.2109
Chao-1	10	5	8	7	7

175

Thirty (30) wild birds' species and eight hundred and forty (840) individuals were recorded in the wet season, while twenty-one (21) species and six hundred and thirty-one (631) individuals were recorded during dry season. Also, Simpson's diversity index in the wet season (0.95) was greater than the one in the dry season (0.91) while Shannon diversity index in the wet season (3.2) was also greater than the one in the dry season (2.7).

 Table 13: Wild Birds Richness, Evenness and Diversity in Old Oyo National Park Buffer

 zone (Wet and Dry Seasons)

Species	Wet	Dry
Kaupifalco monogrammicus	22	36
Milvus migrans	33	32
Halcyon malimbica	5	4
Cypsiurus parvus	48	85
Tockus nasatus	72	22
Columba guinea	54	35
Streptopelia semitorquata	39	52
Coracias abyssinica	21	14
Centropus senegalensis	19	0
Francolinus bicalcaratus	31	20
Petronia dentata	7	14
Ploceus cucullatus	113	133
Vidua macroura	9	10
Poicephalus senegalus	37	0
Halcyon senegalensis	32	0
Ardeola ibis	28	37
Stigmatopelia senegalensis	30	39
Merops pusillus	11	0
Pycnonotus barbatus	14	0
Lamprotornis chloropterus	12	0
Turdus pelios	21	15
Caprimulgus nigriscapularis	11	0
Bradornis pallidus	21	14
Nectarinia senegalensis	10	9
Nectarinia olivacea	17	13
Numida meleagris	30	21
Mesopicos geortae	17	0
Butastur rufipennis	20	13
Motacilla alba	14	0
Motacilla flava	42	13
Number of species	30	21
Number of individuals	840	631
Simpson's Diversity Index	0.95	0.91
Shannon Diversity Index	3.2	2.7

DISCUSSION

Generally, relative abundance and distributions of wild birds' species in Old Oyo National Park buffer zone revealed that more species were recorded in wet season than in dry season. This may be due to abundance and availability of food. Wet season is usually the period that different crops (mainly grains such as maize, millet, sorghum, soya-beans and groundnuts) are planted. Hence, the large number of wild birds' species. This agrees with the submission of Newton (1998) and Benton et al, (2003) that food abundance influences the distribution and size of wild populations. Many of the wild birds' species recorded were granivores. This is in consonance with the submission of Cirne and Lopez-Iborra (2005) and Hagy et al, (2008) that most species of avian granivores are beneficial and found in agro-ecosystems, especially because most species eat considerable quantities of grains as well as invertebrates during breeding season. However, the reduction in wild birds' species during dry season may be due to the fact that some of these birds' species migrated to another ecological zone for breeding. Also, fluctuations were noticed across ranges in the wild birds' species recorded in wet and dry seasons. This may not be unconnected with the variation in the vegetation and habitat quality. Anthropogenic activities, land-use systems, environmental factors and food scarcity might have induced the decrease in wild birds' relative abundance and distribution in dry season. This submission agrees with the earlier views of Beerens et al, (2011) and Sekercioglu et al, (2008).

Wild birds' species in Ogun-Tede range were dominated by fewer species (mainly Ploceus cucultatus and Columba guinea) in the wet season because they were not well distributed across the range. This may not be unconnected with the land-use system in the area which suited granivores (since grains were the most planted crops) more than other wild birds' species, hence reducing the number of other wild birds' species in the buffer zone. This is further revealed in the species evenness in Ogun-Tede range being the lowest. Wild birds' species were well distributed in Yemoso range and this made the species evenness to be the highest. This may not be unconnected to the evenly distributed resources (mainly food and water) in the buffer zone. In dry season, Ploceus cucullatus dominated other wild birds' species in Ogun-Tede range because they

(the wild birds' species) were not well distributed across the range. This may not be unconnected with the generalist nature of this species. They are mainly found around human habitation and feed on variety of food components such as grains, insects and worms. Also, wild birds' species were well distributed in Yemoso range in the dry season and this made the species evenness to be the highest. This may not be unconnected to the evenly distributed resources (mainly food and water) in the buffer zone. Simpson's index and the Shannon-Wiener diversity index were higher in wet season. Wild birds' species evenness was also higher in wet season when compared to the species evenness in the dry season. This indicates that there was greater evenness in the wet season sample obtained (due to food availability) compared to sample obtained during dry season. Migration of wild birds' species during dry (early and late) season may be responsible for the reduced values of the diversity indices.

CONCLUSION

The study had been able to establish that there were avifauna resources richness and diversity in all the ranges' buffer-zone of Old Oyo National Park. These findings should therefore enhance the mild protection of the buffer-zone (due to its wild birds' species richness and diversity) as well as the conservation and effective management of these wild birds' species for ecological processes.

RECOMMENDATIONS

Based on the findings from the study, the following recommendations were made:

- i. range headquarters should be situated at least 1-1.5km from the buffer zone, for effective anti-poaching, monitoring and policing;
- buffer zone should be made 4-5km round the park boundaries to give a blanket protection to wild birds and other renewable resources of the Park;

- iii. however, strict punitive measures should be taken on anyone who transgresses this demarcation
- iv. the Park management should create conservation education and awareness

REFERENCES

- Adedoyin, S.O., Emelue, G.U. and Aremu,
 O.T. (2018). Effective Protection
 AgainstAnthropogenic Activities of
 Land Adjacent Old Oyo National
 Park, Nigeria. Journal of Research in
 Forestry, Wildlife and
 Environment, 10 (2): 2141-1778.
- Beerens, J.M, Gawlik, D.E, Herring, G. and Cook, M.I. (2011). Dynamic Habitat Selection by Two Wading Bird Species with Divergent Foraging Strategies in a Seasonally Fluctuating Wetland. Auk (128): 651-662.
- Benton, T.G, Vickery, J.A and Wilson, J.D. (2003). Farmland Biodiversity: Is Habitat Heterogeneity the Key? Trends Ecol. Evol. (18): 182-188.
- Brown, J.S. and Kotler, B.P. (2004). Foraging and the Ecology of Fear, In Stephens, D., Ydenberg, R. and Brown, J. S. (Eds). Chicago: University of Chicago Press. Pp 143-151.
- Cirne, K.A and Lopez-Iborra, D.S. (2005). Birds as Predators in Tropical Agroforestry Systems. *Ecology* (89): 928-934.
- Croll, D.A, Maron, J.L, Estes, J.A, Danner, E.M and Byrd, G.V. (2005). Introduced Predators Transform Subarctic Islands from Grassland to Tundra. Science (307): 1959-1961.
- Diamond, A.W. (1987). A Global View of Cultural and Economic Uses of Birds. In Diamond, A.
 W. and Filion, F. L. (Eds.). The Value of Birds. Norfolk, United Kingdom: International Centre for Birds of Prey. Pp 101-123.
- Gibson, J.P and Wheelwright, N.T. (1995).

groups in the support zone households as well as starting conservation clubs in primary and secondary schools surrounding all the five ranges.

Genetic Structure in a Population of a Tropical *Ocotea tenera* (Lauraceae): Influence of Avian Seed Dispersal. Oecologia (103): 49-54.

- Greenberg, R, Foster, M.S and Marquez-Valelamar L. (1995). The Role of the White-eyed Vireo in the Dispersal of Bursera fruit on the Yucatan Peninsula. *Journal of Tropical Ecology*, (11): 619-639.
- Hagy, C.J, Whelan, C, Wenny, D.G and Marquis, R.J. (2008). Ecosystem Services Provided by Birds. Annals of the New York Academy of Sciences (1134): 25-60
- Hammer, Ø, Harper, D.A.T and Ryan, P.D (2001). PAST: PAleontological STatistics Software Package for Education and Data Analysis. Palaeontologia Electronica. 4(1): 9pp.
- Mols, C.M.M and Visser, M.E (2002). Great tits can reduce caterpillar damage in apple orchards. *Journal of Applied Ecology* (39): 888-899.
- Nabhan, G.P and Buchmann, S.L. (1997). Services Provided by Pollinators. In Daily, G. C. (Ed.), Natures Services: Societal Dependence on natural Ecosystems. Washington, DC, Island Press. Pp 133-150.
- Narang, M.L, Rana, R.S and Prabhakar, M. (2000). Avian Species Involved in Pollination and Seed Dispersal of Some Forestry Species in Himachal Pradesh. Journal of the Bombay Natural History Society, (97): 215-222.
- Nason, A. (1992). Discovering Birds: An Introduction to the Birds of Nigeria. Oxford: Pisces

Publications. Pp 47-59.

- Newton, I. (1998). Population Limitation in Birds. Academic Press, Oxford, UK. 135pp.
- Oladeji, S.O, Agbelusi, E.A and Afolayan, R. (2012). Anthropogenic Activities Threatening the Management of the Ecotourism Resources in Old Oyo National Park, Nigeria. *Ethiopian Journal of Environmental Studies and Management* 5(1): 100-111.
- Prakash, V, Pain, D.J, Cunningham, A.A, Donald, P.F and Prakash, N. (2003).
 Catastrophic Collapse of Indian White-backed *Gyps bengalensis* and Long-billed *Gyps indicus* Vulture Populations. Biology Conservation (109): 381-390.
- Sekercioglu, C.H, Schneider, S.H, Fay, J.P and Loarie, S.R. (2008). Climate Change, Elevational Range Shifts, and Bird Extinctions. Conservation Bio. 22(1):140-50. doi: 10.1111/j.1523 1739.2007. 00852.x PMID: 18254859.
- Serle, W, Morel, G.J and Hartwig, W. (1997). Birds of West Africa. The Stephen Greene Press. Pp 1-351.
- Wenny, D. G. and Levey, D. J. (1998). Directed seed dispersal by bellbirds in a Tropical Cloud Forest. Proceedings of the National Academy of Sciences of the United States of America (95): 6204-6207.