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ABSTRACT 

Mode-locked fiber lasers with femtosecond pulse durations have become attractive for numerous 

applications in science and industry. Amplifier similariton shaped pulses typically have pulse energies 

of a few nanojoules and sub-100 fs pulse width. The work presented seeks to demonstrate the 

generation of femtosecond amplifier similariton pulses from an all-fiber erbium doped fiber laser cavity. 

Mode-locking in the erbium-doped fiber laser was achieved by nonlinear polarization evolution which 

produced pulses at a wavelength of 1572 nm with an average output power of 24 mW and a pulse 

energy of 0.46 nJ. These pulses at transform limit have a pulse duration of 73 fs. 

Keywords: Fiber laser, amplifier similariton, erbium-doped, femtosecond pulse, ultrashort pulse, nonlinear 

polarization evolution 

 

1.0 INTRODUCTION 

Fiber lasers have become increasingly popular over 

the years due to their alignment-free operation, high 

beam quality, low intensity noise, stability, ease of 

use, compact nature and low cost as compared to 

bulkier solid-state lasers. There has been significant 

progress in the development of ultrashort pulse fiber 

lasers, making them suitable for a broad range of 

applications such as material processing (Voisiat et 

al., 2015), ultrafast spectroscopy (Liao et al., 2018), 

biomedical applications (Erdoǧan et al., 2011; Kong 

et al., 2017), optical imaging (Charan et al., 2018; 

Murashova et al., 2017), surgery (Morin et al., 2009; 

Traxer & Keller, 2020), metrology (Lazarev et al., 

2016), and optical communications (Lopera et al., 

2021). Generation of ultrashort pulses in fiber lasers 

can be achieved through either Q-switching (Laroche 

et al., 2002; Williams et al., 2010), or mode-locking 

(Ilday et al., 2003; Nie et al., 2011; Wang, Zhan, et 

al., 2016). Mode- locking techniques however have 

proven to yield the shortest pulse durations, on the 

order of femtoseconds, while Q-switched techniques 
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typically yield pulses in the range of nanoseconds. 

Mode-locked pulses are generated either by active 

mode-locking or by passive mode-locking. In active 

mode-locking, an external periodic signal is used to 

modulate the optical resonant cavity parameters 

(Koliada et al., 2013; Tahhan et al., 2019). Passive 

mode-locking uses the nonlinear absorption 

characteristics of the laser cavity, either by a real 

saturable absorber (Gomes et al., 2004; Shtyrina et 

al., 2009), or by an artificial saturable absorber 

(Fermann et al., 1993; Mahmoodi et al., 2021; Zhang 

et al., 2022) inside the resonant cavity which 

modulates the optical field and generates the short 

pulses.  

The major physical parameters for pulse shaping are 

nonlinearity and group velocity dispersion (GVD). 

The soliton pulse is the most common pulse shape 

resulting from a balance of the nonlinear self-phase 

modulation and anomalous GVD yielding stable, 

almost transform limited pulses (Chen et al., 1992; 

Richardson et al., 1991). Pulse parameters are in the 

typical range of picojoules, with nanosecond to 

femtosecond pulse duration. Dispersion managed 

soliton pulses are produced from a cavity with a 

dispersion map, where pulses are stretched and 

compressed as they propagate through anomalous 

and normal dispersion portions of the cavity  

(Dvoretskiy et al., 2015; Tamura et al., 1993). The 

shortest pulses are obtained when the net group 

dispersion is close to zero. Average energies of these 

pulses are in nanojoules, with sub-100 fs pulse 

durations. An all-normal GVD cavity with the 

addition of a spectral filter yields dissipative solitons 

which are highly up-chirped and have a cat-ear 

spectral profile (Chong et al., 2006; Chong et al., 

2007; Peng et al., 2012) . High pulse energies of 20 

nJ and beyond are achievable with pulse widths in the 

hundreds of femtoseconds. Sub 100 fs pulses can be 

generated but have lower energies, typically a few 

nanojoules.  

Another category of mode-locked pulse is the 

similariton or passive self-similar pulse (Aguergaray 

et al., 2010; Chong et al., 2015; Renninger et al., 

2010). These are generated in optical cavities that 

have normal dispersion fibers and are characterized 

by a parabolic temporal and spectral profile with 

linear frequency chirp which mainly evolve in a long 

passive fiber section. The gain fiber is kept short to 

limit additional pulse evolution to maintain the 

parabolic shape. After each round trip, the parabolic 

pulse is restored to its initial shape through an 

anomalous dispersive element. Fiber laser cavities 

that have appreciable lengths of normal GVD gain 

fiber have also been used to generate optical pulses 

with parabolic profiles known as amplifier 

similaritons or active self-similar pulses (Fermann et 

al., 2000; Nie et al., 2011; Oktem et al., 2010). This 

pulse type is obtained by pulse shaping within the 

gain section of the cavity and is a nonlinear attractor; 

that is, any pulse shape eventually evolves to the self-

similar parabolic pulse profile. The net cavity 

dispersion is therefore not of importance and a   

dispersion map similar to the map for dispersion 

managed soliton can be used to generate dispersion
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managed amplifier similaritons (DMAS) (Olivier & 

Piché, 2016; Renninger et al., 2011; Wang, Zhan, et 

al., 2016). We present a DMAS all-fiber laser that 

generates femtosecond amplifier similariton pulses 

using non-linear polarization rotation. An all-fiber 

laser cavity that uses off the shelf telecommunication 

components is implemented. Er-doped fiber is used 

for the gain section and mode locking is achieved by 

non-linear polarization evolution in the gain fiber. 

 

2.0 EXPERIMENTAL SETUP 

The schematic diagram for the DMAS Er-doped fiber 

laser cavity is given in figure 1. The cavity is made-

up of a normal group velocity dispersion section and 

an anomalous group velocity dispersion section. The 

anomalous group velocity dispersion in the cavity 

arises from a combination of 151 cm of single-mode 

fiber, 21 cm of polarization maintaining fiber (𝛽2 =

23 ps2 km−1), and 63 cm of HI1060 fiber (𝛽2 =

−5.8 ps2 km−1, 𝛾 = 4.0 × 10−3 W−1 m−1). The 

HI1060 fiber is the pigtail of an isolating wavelength 

division multiplexer (IWDM) used to couple pump 

light into the cavity. The single-mode fiber has a 

group velocity dispersion of −22 ps2 km−1 and a 

nonlinearity of 1.4 × 10−3 W−1 m−1. The gain fiber, 

which is an erbium doped fiber (EDF-150), provides 

normal group velocity dispersion of 59 ps2 km−1 

and has a nonlinear parameter value of 6.2 ×

10−3 W−1 m−1. The EDF-150 gain fiber has a high 

erbium concentration, with an absorption of 

103.56 dB m−1 near 980 nm. Its core radius is 

1.24 µm with a numerical aperture of 0.268. The 

length of EDF-150 used in this laser cavity is 

120 cm giving a total cavity length of 355 cm with 

a net cavity dispersion of 0.029 ps2. The laser cavity 

therefore operates in the normal dispersion regime.  

The EDF-150 erbium doped fiber is pumped bi-

directionally by two separate diode lasers: a 

QPhotonics diode laser which operates at a 

wavelength of 974 nm at a maximum power of 

450 mW, and a second diode laser operating at a 

wavelength of 977 nm with maximum power of 

600 mW. Pumping at both ends of the erbium doped 

fiber ensures that population inversion occurs along 

as much of the doped fiber length as possible. 

The 974 nm diode pump laser is coupled to the EDF-

150 fiber through a high-power fused wavelength 

division multiplexer (FWDM). The 977 nm pump 

laser is coupled to the Er-doped gain fiber by the 

HI1060 fiber pigtail port of a hybrid isolating 

wavelength division multiplexer (IWDM). The 

single-mode fiber pigtailed pass-port of the IWDM is 

used to form a quarter wave-plate and a half wave-

plate by wrapping it round a Thorlabs FPC020 fiber 

paddle polarization controller. One loop of single-

mode fiber around a paddle corresponds to a quarter-

wave plate and two loops of fiber corresponds to a 

half-wave plate. The fiber pigtail of the FWDM pass-

port is also used to form a quarter wave-plate. A2 × 2 

polarizing beam splitter (PBS) is spliced to the 

quarter wave-plate leading to the FWDM. One of the   
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Figure 1: Experimental setup for 355 cm erbium-doped fiber laser cavity. QWP: quarter waveplate; 

HWP: half waveplate; PBS: polarization beam splitter; IWDM: isolating WDM; FWDM: fused 

WDM. The generated pulse propagates in the clockwise direction. 

output ports of the PBS is made with SMF and the 

other with PM fiber. A length of 30 cm of the SMF 

output port is spliced to the halfwave-plate, closing 

the ring cavity. The PM fiber port of the PBS is the 

output for the laser cavity. Because of the sensitivity 

to high power of most monitoring equipment, a 1:99 

fused PM fiber splitter is spliced to this output port 

and laser signal from the 1 percent port of this splitter 

is divided by a 50:50 single-mode coupler. One arm 

of the 50:50 coupler goes to an InGaAs 

photodetector from Thorlabs (DETO1CFC) which 

has a specified maximum input peak power of 

70 mW. The photodetector converts the optical 

signals and gives corresponding electrical signals 

which are monitored with a Picoscope6 oscilloscope 

paired with Signal Hound spectrum analyser 

software. The other arm of the 50:50 coupler is 

connected to a Yokogawa AQ6370 optical spectrum 

analyser. 

 

3.0 RESULTS AND DISCUSSION 

With a pump power of 450 mW from the 974 nm 

pump diode and 290 mW of power from the 977 nm 

pump diode, the polarization controllers are adjusted 

till mode-locked pulses are observed. Characteristics 

of the generated mode-locked pulses are shown in 

Figures 2, 3 and 4. The pulse spectrum (Figure 2) has 

a centre peak at 1572 nm and an FWHM of 50 nm. A 

pulse with this spectral breadth yields a calculated 

transform-limited pulse width of 72.7 fs. As pump 

power is increased towards the most stable mode-

locked condition, a spectral bandwidth increase is 

observed. This spectrum expansion is due to self-
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-phase modulation (SPM) in the gain fibre, indicating 

that the propagating pulse is an amplifier similariton 

rather than a stretched pulse or dispersion managed 

soliton. The pulse train shown in Figure 3, has a 

period of 19.18 ns which gives a repetition rate of 

52.13 MHz, as confirmed by the RF analyzer 

measurement (Figure 4). The pulses are stable and 

self-starting, giving an average power of 24 mW. The 

pulse energy is calculated to be 0.46 nJ. Usually, long 

lengths of gain fiber are used for amplifier similariton 

generation, allowing the asymptotic limits of the 

pulse energy to be reached well within the limits of 

the gain fiber. A gain fiber length of 5.6 m was used 

to generate 60 fs pulses (Wang, Qian, et al., 2016). It 

has however been shown (Olivier & Piché, 2016), 

that it is possible for amplifier similaritons to be 

generated with fiber lengths as short as 0.65 m, nearly 

half the length of gain fiber used in the setup reported 

here. 

Even without the actual physical presences of a 

spectral filter in the cavity, as has been suggested as 

necessary for their generation (Renninger et al., 

2010), amplifier similaritons have nonetheless been 

generated in a manner similar to that of (Olivier & 

Piché, 2016). The polarising beam splitter is a major 

factor in the similariton pulse shaping: Despite the 

absence of a spectral filter, the PBS can function as a 

filter in its own right, excluding some wavelengths 

while permitting others to be used for mode locking. 

In the same manner, the WDMs can exhibit spectral 

filtration. Indeed, the isolating WDM has a pass 

bandwidth of 20 nm and is similarly wavelength 

dependent and can also contribute to the pulse 

shaping. 
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Figure 2: Pulse spectrum of the mode-locked fiber laser. 
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Figure 3: Oscilloscope display of the pulse train from the Er-doped fiber laser. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: RF spectrum of generated pulse. 
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4.0 CONCLUSION 

We demonstrate the generation of amplifier 

similariton pulses from an all-fiber-erbium-doped 

fiber laser with a total cavity dispersion of 0.029 ps2. 

The fiber laser operates at a wavelength of 1572 nm 

and gives transform limited pulses of duration 72.7 fs 

as estimated from the pulse spectrum which implies 

a pulse energy of 0.46 nJ. The pulse spectral shape 

and spectral broadening as pump power is increased 

are indicative of amplifier similariton pulse shaping. 
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