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FORECASTING WITH NONLINEAR TIME SERIES MODEL: 
A MONTE-CARLO BOOTSTRAP APPROACH 

ABSTRACT 
In this paper, we propose a new method of forecasting with nonlinear time series model using 
Monte-Carlo Bootstrap method. This new method gives better result in terms of forecast root 
mean squared error (RMSE) when compared with the traditional Bootstrap method and Monte-
Carlo method of forecasting using a special nonlinear time series model, called logistic smooth 
transition autoregressive (LSTAR) model. We illustrate this new method using some simulation 
experiments. 

INTRODUCTION 
One of the major reasons for building a time 
series model is for the purpose of  forecasting. 
Basically, there are two kinds of time series 
models for forecasting, viz: the linear time se-
ries model and the nonlinear time series model. 
Point forecast using linear time series model is 
without difficulty because forecasts can be gen-
erated recursively up to any step greater than 
one. For nonlinear time series model, point 
forecast for step one can be done easily like in 
the linear case but forecast for a step greater 
than or equal to two is no longer easy to handle. 
In practice, however, the exact method of fore-
casting is difficult to compute. This is because 

it involves an integrable function whose dimen-
sion increases as forecast horizon increases and 
therefore, usually replaced by simulation meth-
ods. The simulation methods include: the 
Monte-Carlo and the Bootstrap techniques. 
Details of these techniques are found in 
Granger and Terasvirta (1993), Franses et. al 
(2000),  Franses and Van Di jk (2000), 
Lundbergh and Teräsvirta (2002). Besides, 
there is yet another method of forecasting 
called the Naïve method. This method is not 
commonly used because it produces biased 
results; see Lin and Granger (1994) for exposi-
tion. Many authors have made tremendous ef-
fort in forecasting using nonlinear model. Some  
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claimed that forecast using linear models are 
superior to their nonlinear models fitted to the 
same data. Stock and Watson (1999a), Marcel-
lino (2004), Terui and van Dijk (2002) and a 
host of others also used a combination of fore-
cast. Their findings  is that combining the fore-
casts from several methods on average per-
formed better than simply relying on forecasts 
from individual models such as neural net-
works, LSTAR or autoregressions.  
 
As noted by Franses (1998), a typical method 
of evaluating forecast is to keep m observations 
to evaluate forecasts from models which are 
fitted to the first n observations.  We use this 
idea to illustrate the usefulness of the proposed 
Monte-Carlo bootstrap method of forecasting 
with nonlinear time series model by comparing 
the RMSE with the traditional bootstrap and 
Monte-Carlo method of forecasting. We use the 
logistic smooth transition autoregressive 
(LSTAR) model as a case study. 
 
We first consider a linear model called the AR
(p) model of order p which satisfies the follow-
ing linear equation for some integer p≥1, 

is bounded between 0 and 1.The transition 
function could either be of the logistic type or 
the exponential type. The variable St is called 
the transition variable which could be assumed 
to be a lagged endogenous variable that is st = y 
t-d for certain integer  d > 0 or a linear trend (st 
= t), which gives rise to smoothly changing 
parameters. The STAR model could be seen as 
a regime switching model that allows for two 
regimes associated with the extreme values of 
the transition function, G(st ;γ, c)= 0 and G(st ;γ, 
c)=1, where the transition from one regime to 
the other is smooth. For a survey on STAR 
model, see Teräsvirta (1994), Franses and Van 
Dijk (2000), Van Dijk et.al (2002) and a host of 
others.  
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Then, the smooth transition autoregressive 
(STAR) model for a univariate time series yt  
which is observed at t = 1,2,…, n is given by: 
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If the transition function is of the logistic type, 
we have  
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and if it is of the exponential type, we have 
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MATERIALS AND METHODS 
The methods of forecasting with nonlinear 
model discussed in this Section are based on 
the work of Granger and Teräsvirta (1993), 
Franses and Van Dijk (2000), Lundbergh and 
Teräsvirta (2002). Now, let us rewrite the 
STAR given in equation (2) as: 

 ttt wgy εψ += );(         (5) 

where 
 );,()'(');( tttt scGwwwg γθφψ += and 

 );,( tscG γ is a logistic transition function. A  

one-step ahead forecast for this model in equa-
tion (5) is given by:  

 ).;()/( 111 ψ+++ == ttt
f

t wgIyEy    (6) 

Equation (6) is called an unbiased forecast of  
made at time t given the past information up till 
that time. The relevant information is contained 
in  
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where the presence of ɛt+2 is ignored. 

where each of the n(ɛ) values of ɛt+1 in 

 '),...,,,1( )1(11 −−−+ = ptttt yyyw . 

Now when the forecast period is greater than 
one, forecast becomes difficult to handle. We 
use two-step ahead forecast to demonstrate this 
difficulties. An analytic expression for two-step  

 f
ty 2+ is given by the expression ahead forecast  
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There are four basic methods of handling equa-
tion (7). They are as follows: 
 
Naïve method 
This method of forecast considers the direct use 
of the skeleton of the model, which can be writ-
ten as: 

 );( 22 ψf
t

f
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The exact method 
The exact method is defined by making use of 
the direct analytic expression of the mathemati-
cal expectation of a function of a random vari-
able. This is given by: 
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where φ(z) is the cumulative distribution func-
tion of  ɛt+1. Obtaining this forecast requires 
numerical integration and the integral will have 
to be determined at each time point. 
 
Monte-Carlo method 
The Monte Carlo method of forecasting is a 
simulation method used in replacement of the 
exact method. It is given by the expression: 
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f
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drawn independently from the assumed error 
distribution in equation (2). The forecast made   

Using equation (10) said to be asymptotically 
unbiased as M →∞ (By the weak law of large 
numbers). 
 
Bootstrap method 
An equivalent simulation method of forecasting 
instead of using the Monte-Carlo method is 
called the bootstrap method. This is given by 
equation (11): 
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is drawn independently from the set of the re-
siduals of the estimated model in equation (2) 
with replacement were B is usually taken to be 
very large.  
 
Monte-Carlo bootstrap method 
We propose a new method of forecasting with 
the STAR model which we call the Monte-
Carlo bootstrap method. It is a combination of 
the Monte-Carlo and bootstrap method. It is in 
fact, a repeated bootstrap based on equation
(11). The method is given by the following: 
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drawn independently from the set of the residu-
als of the estimated model equation (2) with 
replacement M number of times. The difference 
between equation (11) and equation(12) is that 
the bootstrap for equation (11) terminates after 
a single large bootstrap sample is drawn from 
the residual with replacement, while in equa-
tion(12), the bootstrap is done M number of 
times having sample size of the length of the 
residuals generated from the estimated model in 
equation (2). It is a Monte-Carlo experiment 
using the bootstrap sample mean which con-
verges to the true expected value (by the weak 
law of large numbers).  
 
Measuring Forecast Accuracy 
As noted by Franses (1998), a typical method 
of evaluating forecast is to keep m observations 
to evaluate forecasts from models which are 
fitted to the first n observations. Another  
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method is to check whether 95% of the fore-
casts lie within the 95% forecast interval. Typi-
cally, evaluation can be based on forecast root 
mean squared error (RMSE) or mean absolute 
percentage error (MAPE) which are given by: 

The sequence of error  ɛt  which is normally 
distributed with mean 0 and variance 1, was 
generated using the random number generator 
in MATLAB 7.5.0. We generated  (300 + n)
sample sizes using Models (I) and (II). Only the 
last n observations are kept, while the first 300 
are discarded to minimize initialization effect. 
Among the n generated artificial time series 
observations, the first  (n - m) observations 
were used for modelling while the remaining m 
observations are kept for out-of-sample per-
formance. The modelling cycle which involves 
testing for non-linearity, model specification 
and evaluation such as in Luukonnen et al. 
(1988a), Luukonnen et al. (1988b), Teräsvirta 
(1994), Van Dijk et al. (2002) was executed 
using a Time series software package called 
JMULTI. After estimation of the model, it is 
then used for forecasting. This stage of compu-
ting point forecast in non-linear LSTAR model 
was written and executed in MATLAB 7.5.0 
since JMULTI does not provide forecast option 
in their package. The forecasting horizon (h) is 
taken from  h=1 to m, so as to agree with the 
number of observations kept for the out-of-
sample performance. Both the methods of fore-
casting used in this paper and the program im-
plementation using MATLAB 7.5.0 was achie-
ved successfully using the idea of Efron and 
Tibshirani (1998) and Martinez and Martinez 
(2002). This process is replicated many times. 
We however, present some results which are 
displayed using Figs. 1, 2, 3, 4 and Table 1. 
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where  hty +ˆ is the forecast made at time t for a  
specific horizon h and   hty + the expected future   
value of the time series. Diebold and Mariano 
(1995) also proposed a method of  testing the 
significant difference of two forecasting models 
say A and B. Their test statistic is given by: 
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where dj is a random variable which equal 1 
when RMSE of model A exceeds RMSE of 
model B and zero otherwise. 
 
For simplicity, in this study, we set m = 10, so 
that the expected future value is the m values 
kept for out of sample performance. In this case 
we make use of the three forecasting methods 
given in equation (10), equation (11) and equa-
tion (12) and compare their results using RMSE  
given in equation (13) only. 

SIMULATION EXPERIMENTS AND RE-
SULTS  
We consider the following data generating 
process (DGP) using the logistic smooth transi-
tion autoregressive (LSTAR) model. Model (I) 
is an LSTAR(1) model while Model (II) is an 
LSTAR(2) model that was also used in 
Teravirsta (1994). 

Model (I)  0,1))10exp(1(8.08.0 0111 =+−−+−= −−− yyyyy ttttt ε

Model (II)  0,)()795.09.002.0(06.18.1 012121 =++−+−= −−−−− yyGyyyyy ttttttt ε
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Fig.1: Point forecast made using the three forecasting methods for sample size n-m = 100, m = 
10 using Model (I) 

Fig. 2: Point forecast made using the three forecasting methods for sample size n-m = 200, m 
= 10 using Model (I) 
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Fig. 4: point forecast made using the three forecasting methods for sample size n-m = 200, 
m=10 using Model (II) 
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Fig. 3: Point forecast made using the three forecasting methods for sample size n-m = 100, m 
= 10 using Model (II) 
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Table 1: RMSE obtained from forecast using estimated Model (I) and Model (II) for the 
Monte-Carlo, bootstrap and Monte-Carlo bootstrap method of forecasting for sample sizes n 
= 100 and n = 200 

 Forecast method 
 

100=n
 

200=n

                     Model (I) 
Monte-Carlo 1.6195 1.1914 
Bootstrap 1.5504 1.1654 
Monte-Carlo bootstrap 1.5438 1.1638 

  
                     Model (II) 

Monte-Carlo 1.1952 1.4805 
Bootstrap 1.1710 1.4844 
Monte-Carlo Bootstrap 1.1591 1.4686 

Figs. 1 and 2 show the graph of point forecast 
generated using Model (I) when the three fore-
casting methods are employed for sample sizes 
n = 100 and 200 respectively. Similarly, Fig. 2 
and Fig. 3 also show the graph of point forecast 
generated using Model (II) for sample sizes n = 
100  and 200 respectively. In Table 1, the study 
present the RMSE obtained using the Monte-
Carlo, bootstrap and the Monte-Carlo bootstrap 
methods of forecasting. The RMSE is used to 
compare these three methods. 
 
In Fig. 1, the Bootstrap method and the Monte-
Carlo Bootstrap (MBootstrap) are undistin-
guishable from step 1 to step 10 forecast while 
the Monte-Carlo forecast for the first three 
steps agree favourably with the other two meth-
ods but with discrepancies from steps 4 to 8.  In 
Fig. 2, the three methods agree equally except 
the Monte-Carlo after step 7. Similarly, Fig. 3 
and Fig. 4 represent point forecast generated 
from Model II using the three methods for sam-
ple sizes n = 100 and 200. Fig. 3 show that the 
three methods are the same with slight differ-
ence from the Monte-Carlo at steps 7 and 8. In 
Fig. 4, the three methods are undistinguishable.  
 
Table 1 displays the RMSE obtained using the  

three methods of forecasting using sample sizes 
n =100 and 200. From the Table 1, it is clearly 
evident that the Monte-Carlo Bootstrap method 
has the smallest RMSE and hence it is consid-
ered the best among the three methods. 
 
CONCLUSION 
In this paper, it is clearly evident that the new 
Monte-Carlo Bootstrap method of nonlinear 
forecasting out performs the traditional method 
of forecasting using the Monte-Carlo or Boot-
strap method. A measure of performance is the 
RMSE in an out of sample performance. The 
superiority of our newly proposed method of 
nonlinear forecasting was based on simulation 
studies using an LSTAR(1) and LSTAR(2) 
models respectively.  
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