Journal of Science and Technology, Vol. 35, No.2)(5), pp52-59 52
© 2015 Kwame Nkrumah University of Science and Teology (KNUST)
http://dx.doi.org/10.4314/just.v35i3.5

RESEARCH PAPER

FORECASTING WITH NONLINEAR TIME SERIES MODEL:
A MONTE-CARLO BOOTSTRAP APPROACH

N. EkhosuehiandS. E. Omosigho
Department of Mathematics, University of Benin, Benin City, Nigeria.
Corresponding author: ekhosu@yahoo.com

ABSTRACT

In this paper, we propose a new method of foreaagtivith nonlinear time series model using
Monte-Carlo Bootstrap method. This new method givsstter result in terms of forecast root
mean squared error (RMSE) when compared with thaditional Bootstrap method and Monte-
Carlo method of forecasting using a special nonlaretime series model, called logistic smooth
transition autoregressive (LSTAR) model. We illuate this new method using some simulation
experiments
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INTRODUCTION it involves an integrable function whose dimen-
One of the major reasons for building a timesion increases as forecast horizon increases and
series model is for the purpose of forecastingherefore, usually replaced by simulation meth-
Basically, there are two kinds of time seriesnds. The simulation methods include: the
models for forecasting, viz: the linear time seMonte-Carlo and the Bootstrap techniques.
ries model and the nonlinear time series modeDetails of these techniques are found in
Point forecast using linear time series model i§ranger and Terasvirta (1993), Fransesal
without difficulty because forecasts can be gen2000), Franses and Van Dijk (2000),
erated recursively up to any step greater thahundbergh and Terasvirta (2002). Besides,
one. For nonlinear time series model, pointhere is yet another method of forecasting
forecast for step one can be done easily like inalled the Naive method. This method is not
the linear case but forecast for a step greateommonly used because it produces biased
than or equal to two is no longer easy to handleesults; see Lin and Granger (1994) for exposi-
In practice, however, the exact method of foretion. Many authors have made tremendous ef-
casting is difficult to compute. This is becausédort in forecasting using nonlinear model. Some
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claimed that forecast using linear models ares bounded between 0 and 1.The transition
superior to their nonlinear models fitted to thefunction could either be of the logistic type or
samedata. Stock and Watson (1999a), Marcelthe exponential type. The variabfis called
lino (2004), Terui and van Dijk (2002) and athe transition variable which could be assumed
host of others also used a combination of foreto be a lagged endogenous variable thatisy
cast. Their findings is that combining the fore~q4for certain integerd > 0 or a linear trendy
casts from several methods on average pes t), which gives rise to smoothly changing
formed better than simply relying on forecastparameters. The STAR model could be seen as
from individual models such as neural neta regime switching model that allows for two
works, LSTAR or autoregressions. regimes associated with the extreme values of
the transition function((s;;y, €)= 0 andG(s;,
As noted by Franses (1998), a typical method)=1, where the transition from one regime to
of evaluating forecast is to keep m observationthe other is smooth. For a survey on STAR
to evaluate forecasts from models which arenodel, see Terasvirta (1994), Franses and Van
fitted to the first n observations. We use thidDijk (2000), Van Dijket.al (2002) and a host of
idea to illustrate the usefulness of the proposedthers.
Monte-Carlo bootstrap method of forecastin . . .
with nonlinear time series model by comparingf the transition function is of the logistic type,
the RMSE with the traditional bootstrap and’€ have
Monte-Carlo method of forecasting. We use the 1
logistic smooth transition autoregressivé>(V;G:§) = ™ - 3)
(LSTAR) model as a case study. (A+exptus —ol)

and if it is of the exponential type, we have
We first consider a linear model called the AR

.(p) model of orc-ier p which sgtlsﬂes the foIIow-G(y, c5) = A-exply(s _C)Z}) (4)
ing linear equation for some integerlp

, MATERIALS AND METHODS
Y, :¢wt +&, (1) The methods of forecasting with nonlinear
model discussed in this Section are based on
where w, = (1, , ' the work of Granger and Terasvirta (1993),
¢ = LYYz Vi) and Franses and Van Dijk (2000), Lundbergh and

¢:(a'0,a'1,...,a' ) are real parameters SuchTeriaisvir_ta (_2002). Now, let us rewrite the
P STAR given in equation (2) as:

that the zeroes offf(z) =1-a,z-...-a z°

' Ty = gway) + e (5)
lie outside the unit disk anglis normally dis- . ,
tributed with mean 0 and variancg, where 9(W:¢) = pw, +(6w)G(y,c:s) and

Then, the smooth transition autoregressivE (V:C:S) is a logistic transition function. A
(STAR) model for a univariate time serigs

which is observed at= 1,2,....n is given by: one-step ahead forecast for this model in equa-

tion (5) is given by:

¢ ' : 2
Vi = G + GawG(siiy.0)+ & @y =BGl 1) = g(wei). (6)
where ¢ =(qyo,ai1,...,q'p)', iz12, ¥>0 w Equation (6) is called an unbiased forecast of
] . ) made at time t given the past information up till
ande;are as defined in equation (1). that time. The relevant information is contained

G(s;¥,C) is called the transition functiotiat ~ in
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_— ' Using equation (10) said to be asymptotically
Woiy = @ Y Yoo yt'(P'l)) ' unbiased aM - « (By the weak law of large

Now when the forecast period is greater thaRUmbers).
one, forecast becomes difficult to handle. WeB

use two-step ahead forecast to demonstrate th ootstrap method
e 1 P . . A equivalent simulation method of forecasting
difficulties. An analytic expression for two-step

P “Vinstead of using the Monte-Carlo method is
ahead forecasy ., , is given by the expressioncalled the bootstrap method. This is given by

f @) equation (11):
2= oy + + n}= 121 /1
o SR )1} =B P e B)bg_lmw&z,b;w)
where W' =@ v/ +¢ - }
Woo = 0 Yo+ Yoo Yoy where each of thB values of i1 in V\4f+2b is

There are four basic methods of handling equag yrawn independently from the set of the re-
tion (7). They are as follows: siduals of the estimated model in equation (2)

. with replacement were B is usually taken to be
Naive method very large.

This method of forecast considers the direct use
of the skeleton of the model, which can be writMonte-Carlo bootstrap method

(11)

ten as: We propose a new method of forecasting with
the STAR model which we call the Monte-

v, = g(w/' L) (8)  carlo bootstrap method. It is a combination of

o the Monte-Carlo and bootstrap method. It is in

where the presence af,is ignored. fact, a repeated bootstrap based on equation
(11). The method is given by the following:

The exact method M n(e)

The exact method is defined by making use of'7, =@w/m) 3 [1 Y g (Wtf%;w)] (12)

the direct analytic expression of the mathemati- i=1\ n(¢) b=

cal expectation of a function of a random vari- . .

able. This is given by: where each of the(e) values of.1in Weop is

o drawn independently from the set of the residu-
v, =ElgW.i)/1} = [aw.;)dgz)dz (9) als of the estimated model equation (2) with

- replacemenM number of times. The difference
where ¢f2) is the cumulative distribution func- Petween equation (11) and equation(12) is that
tion of ey, Obtaining this forecast requiresthe bootstrap for equation (11) terminates after
numerical integration and the integral will have2 single large bootstrap sample is drawn from

to be determined at each time point. the residual with replacement, while in equa-
tion(12), the bootstrap is dord number of
Monte-Carlo method times having sample size of the length of the

The Monte Carlo method of forecasting is aesiduals generated from the estimated model in
simulation method used in replacement of th€duation (2). It is a Monte-Carlo experiment

exact method. It is given by the expression: ~ Using the bootstrap sample mean which con-
verges to the true expected value (by the weak

M
yim = (@1/M) Z_ g(Wtf-i-Z,m;l//) (10) law of large numbers).
m=1 Measuring Forecast Accuracy

where each of th®l values ofeminwtlz,m is As noted by Franses (1998), a typical method

drawn independently from the assumed erro?f evaluating forecast is to keep m observations
P y to evaluate forecasts from models which are

distribution in equation (2). The forecast madefitted to the first n observations. Another
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method is to check whether 95% of the foreThe sequence of errore which is normally
casts lie within the 95%orecast interval. Typi- distributed with mean 0 and variance 1, was
cally, evaluation can be based on forecast rogienerated using the random number generator
mean squared error (RMSE) or mean absoluiea MATLAB 7.5.0. We generated (300 r)
percentage error (MAPE) which are given by: sample sizes using Models (I) and (II). Only the
lastn observations are kept, while the first 300
(13) are discarded to minimize initialization effect.
Among then generated artificial time series
observations, the first n(- m) observations
were used for modelling while the remainimg
observations are kept for out-of-sample per-
" ) formance. The modelling cycle which involves
where Y, is the forecast made at time t for aesting for non-linearity, model specification
specific horizon h andi+n the expected future and evaluation such as in Luukonnenal.

value of the time series. Diebold and Mariand1988a), Luukonnert al. (1988b), Terasvirta
(1995) also proposed a method of testing thet994), Van Dijket al. (2002) was executed
significant difference of two forecasting modelsuSing @ Time series software package called

say A and B. Their test statistic is given by: ~ JMULTI. After estimation of the model, it is
then used for forecasting. This stage of compu-

- -2, M ting point forecast in non-linear LSTAR model
S=(m/4) [hzzldj (m/2)] (15) was written and executed in MATLAB 7.5.0
) ) ) since JMULTI does not provide forecast option

where djis a random variable which equal 1, their package. The forecasting horizty i6
when RMSE of model A exceedRMSE of  taken from h=1 tom, so as to agree with the
model B and zero otherwise. number of observations kept for the out-of-

For simplicity, in this study, we set m = 10, Sosample perfor_man_ce. Both the methods of fo_re-
that the expected future value is the m valuegasting used in this paper and the program im-
kept for out of sample performance. In this cas€lementation using MATLAB 7.5.0 was achie-
we make use of the three forecasting method4d successfully using the idea of Efron and
given in equation (10), equation (11) and equaT|bsh|ran| (1998) and Martinez and Martinez

tion (12) and compare their results using RMSE2002). This process is replicated many times.
given in equation (13) only. We however, present some results which are

displayed using Figs. 1, 2, 3, 4 and Table 1.

_jrmo. 2
RMSE (h) = th_l(yuh - yt+h)

m .
MAPE= U/ML2, (9o =Y/ Yol (14)

SIMULATION EXPERIMENTS AND RE-
SULTS

We consider the following data generating
process (DGP) using the logistic smooth transi-
tion autoregressive (LSTAR) model. Model (1)
is an LSTAR(1) model while Model (ll) is an
LSTAR(2) model that was also used in
Teravirsta (1994).

Model () y, =08y, - 08y, , (+expflly, ) T+&, Y, =0
Model (1) ¥; =18y, , — 106y, , + (002- 09y, , +0.795y, ,)G(Y,4,) +&, Y, =0

where G (y, ;) = (1+ exp{ —20(y,, - 0.02)}) -1
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Fig.1: Point forecast made using the three forecasiy methods for sample siz&--m = 100,m =
10 using Model (1)
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Fig. 2: Point forecast made using the three forectiag methods for sample siz&-m = 200,m
=10 using Model (1)
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Fig. 3: Point forecast made using the three foreciiag methods for sample sizer--m = 100,m
=10 using Model (I1)
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Fig. 4: point forecast made using the three forectiag methods for sample sizen-m = 200,
m=10 using Model (Il)

Journal of Science and Technology © KNUST DecemB2érn5



Forecasting with nonlinear time series model ... 58

Table 1: RMSE obtained from forecast using estimatk Model (I) and Model (Il) for the
Monte-Carlo, bootstrap and Monte-Carlo bootstrap mehod of forecasting for sample sizes
=100 andn = 200

Forecast method n=100 n =200
Model (1)

Monte-Carlo 1.6195 1.1914

Bootstrap 1.5504 1.1654

Monte-Carlo bootstrap 1.5438 1.1638
Model (11)

Monte-Carlo 1.1952 1.4805

Bootstrap 1.1710 1.4844

Monte-Carlo Bootstrap 1.1591 1.4686

Figs. 1 and 2 show the graph of point forecaghree methods of forecasting using sample sizes

generated using Model (I) when the three foren =100 and 200. From the Table 1, it is clearly

casting methods are employed for sample sizesvident that the Monte-Carlo Bootstrap method

n = 100 and 200 respectively. Similarly, Fig. 2has the smallest RMSE and hence it is consid-

and Fig. 3 also show the graph of point forecastred the best among the three methods.

generated using Model (1) for sample sizes n =

100 and 200 respectively. In Table 1, the studCONCLUSION

present the RMSE obtained using the Monteh this paper, it is clearly evident that the new

Carlo, bootstrap and the Monte-Carlo bootstraponte-Carlo Bootstrap method of nonlinear

methods of forecasting. The RMSE is used tdorecasting out performs the traditional method

compare these three methods. of forecasting using the Monte-Carlo or Boot-
strap method. A measure of performance is the

In Fig. 1, the Bootstrap method and the MonteRMSE in an out of sample performance. The

Carlo Bootstrap (MBootstrap) are undistin-superiority of our newly proposed method of

guishable from step 1 to step 10 forecast whileonlinear forecasting was based on simulation

the Monte-Carlo forecast for the first threestudies using an LSTAR(1) and LSTAR(2)

steps agree favourably with the other two methmodels respectively.

ods but with discrepancies from steps 4 to 8. In

Fig. 2, the three methods agree equally exceREFERENCES
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