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ABSTRACT

In this paper we present a version of the Genetic Algorithm (GA), which we call XSGA to find inte-
gral suboptimal global solution of one variable multimodal functions. XSGA makes use of local
search and restarts. Our proposed XSGA works better than the elite Genetic Algorithm for small
generation size and small number of iterations. Both versions of the GA work well for larger gen-

eration size and larger number of iterations.
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INTRODUCTION

in a previous article, “Exact versus heuristics
methods in Operations Research” (Amponsah
and Darkwah, 2005) showed that real lifc prob-
lems are difficult to solve by exact algorithms
that find optimal solutions in finite number of
steps. Hence the need for heuristic methods.

Among the heuristic methods discussed was
Genetic Algorithm (GA) and Ant Colony Opti-
mization (ACO). These are biologically inspired
search algorithms and use population of solu-
tions to search greater number of points in the
search space. However, GA is an evolutionary
algorithm while ACO is an algorithm of emerg-
ing intelligence. We also considered heuristics
algorithms like Simulated Annealing (SA) and
Tabu Search (TS).

These are point-wise local search algorithms that
search the neighbourhood of current solution to
find the next solution. They use one solution at a
time

This paper focuses on the use of GA in integral
function optimization.

Genetic algorithm is an evolutionary algorithin
inspired by Darwin’s theory of ‘the survival of
the fittest’. The following principles in biologi-
cal evolution inspired GA.

Species live in a competitive world.

i) The continued survival of the species de-
pends on fitness competition and having
offsprings who are stronger or equally as
strong as their parents.
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i)

iit)

iv)

The offsprings genetically take the charac-
teristics of their parents,

The offsprings ‘are however unique and
there is probability of slight variations in
some of their genes, and

In the competitive environment less fit indi-
viduals die off and may not become parents

for breeding. If they should breed they have‘

only a small probability for breeding.

Rechenberg introduced Evolutionary Computing
(Rechenberg, 1960) and in further development,
Holland invented Genetic Algorithm as an adap-
tive search procedure (Holland, 1975). Koza
used GA to develop programmes with graph
networks and trees and called them Genetic Pro-
gramming (Koza, 1992). As shown in Table 1
below the Genetic Algorithm introduced by

Table 1: Simulation of evolutionary principles by Genetic Algorithm

Evolutikon

Genetic Algorithm

An individual is a genotype of the species.
Chromosomes define the structure of an individual.

Chromosome consists of sequence of cells called genes
which contain the structural information.

The genetic information or trait in each gene is called
an allele,

Fitness of an individual is an interpretation of how the

chromosomes have adapted to the competition environ-
ment.

A popuiation is a collection of the species found in a
given location.

A generation is a given number of individuals of the
population identified over a period of time.

Selection is pairing of individuals as parents for re-
production

Crossover is mating and breeding of offspring by pairs
of parents whereby chromosome characteristics are
exchanged to form new individuals.

Mutation is a random chromosomal process of maodifi-
cation whereby the inherited genes of the offspring
from their parents are distorted.

Recombination is a process of nature’s survival of the
fittest.

An individual is a solution of the optimization prob-
lem.

Chromosomes are used to represent the data structure
of the solution.

Chromosome consists of a sequence of gene species
which are placeholder boxes containing string of data
whose unique combination give the solution value.

An allele is an element of the data structure stored in a
gene placeholder.

Fitness of a solution consists in evaluation of measures
of the objective functions for the solution and compar-
ing it to the evaluations for other solutions.

A population is a set of solutions that form the domain
search space

A generation is a set of solutions taken from the popu-

lation (domain) and generated at an instant of time or in
an iteration.

Selection is the operation of selecting parents from the
generation to produce offsprings.

Crossover is the operation whereby pairs of parents
exchange characteristics of their data structure to
produce two new individuals as offsprings.

Mutation is random operation whereby the allele of a
gene in a chromosome of the offspring is changed by
a probability py,

Recombination is the operation whereby elements of
the generation and elements of the offspring form an
intermediate generation and less fit chromosomes are
taken from the generation.
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Holland had the following simulations of the ¥ sin ( \/—( (3x+94 ))) + 3560
evolutionary principles. 2

In this paper, we shall use the computational
ability of genetic algorithm to find the optimal or
sub optimal solution of a function selected from
the suite of test functions for GA. One of the
motivations for the paper is to show the useful-
ness of function evaluation optimizer like the
GA over calculus based algorithms where de-
rivatives need to be calculated in the process of
optimization. ‘

The remainder of the paper is organized as fol-
lows:

Section 2, discusses the study problem, the evo-
lutionary strategy of

(Holland, 1975) and the simple genetic algo-
rithm (SGA) introduced by (Goldberg, 1989).

Section 3, discusses Elitist Genetic Algorithin
(EGA) :

Section 4 introduces our proposed algorithm
which uses the SGA together with restarts and
local search while keeping track of the best
global solution. We call the procedure XSGA.
Sections 5 and 6 provide the results of the EGA
and XSGA algorithms and the conclusion re-
spectively.

STUDY PROBLEM

Genetic algorithm has been used to solve a vari-
ety of combinatorial (discrete) optimization
problems. They include function optimization,
evaluation of algebraic expressions, the traveling
salesman problem (TSP), the bin packing prob-
lem and the knapsack problem.

In this paper we shall use the optimization of a
function as a case study to compare the elitist
genetic algorithm (EGA) and the XSGA.

We use the single variable form of the multimo-
dal Whitley test function

f(x)=x*sin£(0.4)*([(&%f‘l)))]+(x+47)

to find the global minimum, x = 0,1,2,3, ....,
2050 is an integral domain. Since the domain is
integral the optimal solution may not be found if
there is decimal placement in the optimal solu-
tion. In such a case we shall obtain suboptimal
solution. Since the domain is discrete the prob-

lem is combinational and also an NP-hard prob-
lem. The solution (x) will be given as a chromo-
some representation of a string of binary num-
bers and for any (x) the evaluation of the meas-
ure of fitness will be based on the objective
function f{x).

Genetic Algorithm

Calculus based algorithms for solving function
optimization involves computing and solving
derivatives and the use of possible solutions to
evaluate the function. Computing derivatives
could be complex and sometimes intractable.
Implementing an algorithm for such method
becomes more difficult as the problem assumes
greater complexity. However, heuristic methods
such as Genetic Algorithm solve such problems
through function evaluation and hence the rele-
vant algorithm is easier to implement. Genetic
Algorithm was introduced by (Holland et al,
1975) as a computational analogy of adaptive
systems, which find the global solution irrespec-
tive of the initial solution. The result was an
evolutionary strategy, which was called genetic
plan and later named Genetic Algorithm (Rana,
1999). Genetic Algorithm is a discrete popula-
tion event simulation. Given a population at time
t, genetic operators are applied to produce a new
population at time ¢ + 1. A step-wise evolution
of the population from time ¢ to #+1 is called a
generation. The Genetic Algorithm for a single
generation is based on the general GA frame-
work of Selection, Crossover, Mutation and Re-
combination.

The evolution of a population at time ¢ to time
t+1 is analysed by schema. A schema is a tem-
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plate made up of concatenation of the set {0,1,*}
into a binary string of length L. The total number
of 0 and 1 bits in the schema is the order of the
schema. “*’ is a wild card used to represent 0 or
1. The instances of a schema are the binary
string realisation of the schema by replacing **’
with 0 or 1. One of the eight instances of the six
character schema H=1%**0*0 is the string ele-
ment 101010.

It is assumed that a generation of population has
a proportional representation of the total number
of schemata available that corresponds to the
length () of the chromosome representation of
the individuals (solutions) of the optimization
problem. The GA framework processes sche-
mata by using the current population to hold
competition between schemata implicitly
through the population.

The result of the competition is that lower order
schemata with higher fitness are processed into
higher order schemata with yet higher fitness.

Higher order schema will mean the wild cards
£** have been replaced by specific binary digits.
Subsequent iterations will lead to the repetition
of the same schema which implies convergence
to the schema representation of the optimal solu-
tion.

Let p(H,t) be the proportion of schema H found

in the population at time t then the average pro-.

portion of schema H found in the population at
time t+1 is p(H,t+1) and is given by the Schema
Theorem (Holland, 1975).

e[ 5 2o
. foep

The formula is a lower hound for computing the
proportional representation of a single schema
(H) in the next generation, (+1).

The three factors of the formula respectively
medel selection, crossover and mwtation opera-
tions

lip(ll,t)ﬁ—%]_ﬁ:l models the effect of selection,

f(H 1) is average fitness of schema,
f is average fitness of population and

[1'1& (LA{{—J[I p(fl,t)'”?’”ﬂ

models the effect of
crossover, where

P, is crossover probability, AH = defining lerigth
of the schema, L=length of chromosome siring
P,, is mutation probability, 0(#]) = order of the
schema,

[(1-pm)" ™} models mutation,

Based on schema processing, (Goldberg, 1989)
presented a standard genetic algorithui, which
was called simple genctic alporithur {5GA).
SGA was based on Holland’s schiciaa theorem.
The steps of the SGA are given in Table 2.

Table 2: Algorithm steps of Simple Genetic Algorithm

Step 1: Code the individual of the search space
Step 2: Initialize the generation counter (g=1)

Step 3: Choose initial generation of population
(solution)

Step 4: Bvaluate the fitness of cach individual in the
population

Step 5: Sclect individuals of best fitness tanking by
fitness proportionate probability.

Step 6: Apply crossover operation on selected parents
Step 7: Apply mutation operation on offspring
Step 8: Evaluate fitness of offspring

Step 9: Obtain a new generation of population by
combining elements of the offspring and the
old generation by keeping the gencration size
unchanged

Step 10: Stop, if termination condition is satisiicd

Step 11: Blse g = g + 1
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Termination conditions
The algorithm terminates when a set of condi-
tions are satisfied. At that point the solution with
highest fitness among the current generation of
the population is taken as the global solution or
the algorithm may terminate if one or more of
the following are satisfied.

i) A specified number of total iterations are
completed.

ii) A specified number of iterations are com-
pleted within which the solution of best fit-
ness has not changed.

iii) The standard deviation of the generation of
the population approaches a given large
value.

iv) The average fitness of the generations of
population do not differ significantly from
the solution of best fitness.

Illustration

The implementation of the SGA on the basis of

the schema theorem will involve

a) Using fitness proportionate selection proce-
dure.

b) Using single crossover point for the cross-
over operation

We provide an example of function optimization
by processing a population to get a new popula-
tion. In order to illustrate the selection procedure
used in the XSGA procedure, we take the cross-
over probability to be P, =1such that all selected
parents will have the crossover operation.

4
X

min £ (x) =2 T 04 x5, x=01,2,3,..,10
4 3

Step 1: Encoding: The search space is x= 0, 1,

2,...,10. We encode elements of the search space

in a binary sequence. Express x=10 and x=0 in
-binary sequence to obtain

10=1010, and 0 = 0000,. Thus x = 10 is an indi-
vidual and 1010 is its chromosome representa-

tion. The chromosome has 4 genes placeholders .

for the alleles such that x =

The allele information in the genes will be the -

binary numbers 0 and 1

The chromosome for x = 9 is therefore

1 0|01

The objective evaluation is f{9) = 449.25

There are 2* permutations for a binary string of
length 4. These 2* permutations consist of both
infeasible and feasible solutions. There are 11
feasible solutions, which constitute our search
space and the rest form the infeasible set. Since
the solution set is restricted to the integers we
look for suboptimal solution.

Step 2: Generation counter for populations: we
set g=1 to set the counter tag for the initial popu-
lation. Since we are processing only the initial
population there will be no further incremerit of
the counter.

Steps 3 and 4: Initial population: we select at
random 4 individuals (solutions). We choose the
number to be the same as the length of a chro-
mosome string.

Take x, =5, x, =1, x,=3, x,=9

Table 3, gives the serial number, the chromo-
some representation, the solution and objective
evaluation of each solution.

Table 3: Serial listing of Chromosomes and their
objective values

Serial Chromosome Solution L.
No o) ® Objective f(x)
1 0101 5 1458
2 0001 | 11.92
3 0011 3 11.25
4 1001 9 449.25
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Step 5: Selection of parents: Since the problem
is a minimization problem we use the fitness
formula F=(f,., — f)+ 1 (Cox, 2005) to reverse
the magnitude of the objective. We then use fit-
ness proportionate selection rule that requires the
calculation of:

i) Probability of selection

p(select)=

ii) Expected count = F(x) s F(x)

is the average fitness of the population

iii) Actual count = Round up of expected
count to nearest integer

Table 4 provides basis for the determination of
the number of times an individual will be se-
lected as a parent. It is obtained by adding 1 to
the individual’s actual count. This means x = 5,
1, 3 will be selected twice while x = 9 will be
selected once.

Table 4 is then sorted in ascending order accord-
ing to P(select) and the column for cumulative of

QO VAW

F(x) is added to obtain Table 5. The roulette
operation is used to obtain the order of parent
pairings. The roulette was generated by using the
Matlab random function

prb = (m-n)*rand + n where m = max(CumF(x))
and n = min(CumF(x)).

The sequence of values (V) generated by the
random function and the corresponding indi-
viduals selected are:

(rv=769,x=1),;

(rv=352,x=25),

(rv=1262.3,x =3);

(rv=1286.63,x=15);

(rv=285424,x=1),

(rv=912.59, x =3);

(rv=0,x=9)

The order of pairings of parents are then (1,5),
(3,5), (1,3), (9,9). The individual x =9 is paired
to itself since it is the last to be selected and be-
ing an odd (7th) selection it cannot be paired
with any other individual. This unfortunately
breaks the original selection rule

Step 6: Apply crossover operation: The pairings
(1, 5), (3, 5), (1, 3), (9, 9) are used and the space

Table 4: Determination of the actual count of chromosomes

Number chromosome x F(x) P (select)  Expected count  Actual count

1 0101 5 435:6667 0.3316 1.3262

2 0001 1 438.3333 0.3336 1.3343 1

3 0011 3 439.0000 0.3341 1.3364 1

4 1001 9 1.0000 0.0008 0.0030 0

Sum 1314 1 4.0000 3
Average 328.50 0.25 1 0.75

Max 439.0000 0.3341 1.3364 1
Table 5: Chromosomes are arranged in their cumulative positions

Number Chromosome g(x) x F(x) P (select) Ecount Acount Cum.F(x)
4 1001 9 1 0.0008 0.0030 ¢ 1.00

1 0101 5 435.6667  0.3316 13262 1 436.67
2 0001 1 438.3333  0.3336 13343 1 875.00
3 0011 3 439.0000 1.3364 1 1314.00

0.3341
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number 2, representing the crossover point be-
tween the second and third binary digits is cho-
sen. Table 6 below shows the results of the
crossover operations.

Table 6: Results of crossover operations

X i’arents Offsprings

1 00 & 01
5 00 ;1.‘><r01
3 00 " 001
5 01$><111
00 11
00 $:><:Z01

10

10¢ . 01

—

O 0w

Step 7: Apply mutation operation on offsprings:
A random number is assigned to each allele of a
chromosome offspring. Table 7 below lists the
chromosome and random numbers between 0
and 1. Mutation (exchange of 0 and 1) is done if
Rand(i,j) < 0.3; where ‘i’ is serial number of
chromosome and ‘j” is the loci of the allele or
binary bit. The last column shows the mutated
offsprings.

Step 8: Evaluation of mutated offspring: Table 8
shows the mutated offspring, the individual it
represents and the evaluation of the objective

J).

=13 and x = 11 are not evaluated because they
fall outside the domain or solution space. They
are infeasible solutions.

We also delete repeated mutated chromosomes
and join the rest to members of the old genera-
tion to get the recombination. In Table 9 the
serial numbers with asterisks are for chromo-

Table 7: Resuits of mutating offspring chromosomes

Serial Offspring Allele1  Allele2  Allele 3 Allele4 ~ Mutated
Number chromosome chromosome
1 0101 0.539 0.0008 0.341 0.69 0001

2 0001 0.412 02 . 0857 0.888 0101

3 0111 0.49 0.609 0.717 0.431 0111

4 0001 0.275 & 0.029° 0:498 0.972 1101

5 0011 0.325 0.671 0.464 0.292 0010

6 0001 0.478 0.449 0.682 0.73 0001

7 1001 0.3419 0.2897 0.3412 1011

0.660 ,

Table 8: Objective evaluation of mutated offsprings_

Number Mutated chromosome x fix)

1 0001 11.92
2 0101 5 14.58
3 0111 7 101.92
4 1101 13 -

5 0010 2 12.33
6 0001 1 11.92
7 1011 11 -
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Table 9: Combination of offsprings and parent generation

Serial No Chromosome g(x) Solution (x) Objective f{x)
[ 0101 5 14.58
2 0001 1 11.92
3 0011 3 11.25
4 1001 9 449.25
5* 0001 1 11.92
6* 0101 5 14.58
T* 0111 7 101.92
8* 0010 2 12.33

somes from the offsprings. The chromosome
g(x) = 0010 representing x=2 will be added to
the old generation of population to form a new
generation. The chromosome g=(x) = 0001 rep-
resenting x = 1 and which has the lowest f{x) is
already part of the old generation of population,
so is the chromosome g(x) = 0101 representing x
=35.

Table 10: Intermediate generation

We further delete repeating, chromosomes from
the recombination to get the intermediate gen-
eration listed in Table 10 and ordered in'ascend-
ing order.

Step 9: Update of generatxon

Chromosome 4 in the old generation is deleted
and chromosome 5 in the offspring list used re-
places it. The new generation is then given by
Table 11.

Serial No.© Chromoesome g(x) Solution (x) Objective f{x)
1 0011 3 11.25
2 0001 1 11.92
3 0010 2 12.33
4 0101 5 14.58
5 0111 7 101.92
6 1001 9 449.25
Table 11: New generation of population
Serial No. Chromosome g(x)  Solution (x) ~Objective f(x)
1 0011 3 11.25
2 0001 1 11.92
3 0010 2 12.33
4 0101 5 14.58
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ELITIST GENETIC ALGORITHM (EGA)

This is a modification of the SGA obtained by -

introducing intensification of search. This is
achieved by retaining a given number of the best
fit individuals from the previous generation to be
reused in the current generation. This inhibits the
use of greater number of offsprings who could
be in the new generation and therefore could
become parents and thereby participate in the
three ingredients of selection, crossover and mu-
tation. Crossover and Mutation are processes
that produce diversification of movement in the
search space and which is necessary for the GA
framework to exploit the domain space. Thus the
EGA needs to balance intensification which
tends to preserve the solution(s) of best fit in the
old generation so as to be automatically included
in the new generation with diversification result-
ing from the production of offsprings from
crossover and mutation and thereby need to re-
place solutions of the old generation.

Even though the implementation of elitism has
been successful in finding global optimum, the
potential exist for getting trapped in a local opti-
mum especially for multimodal functions
(Godberg, 1989).

Psendocode for EGA

Steps 1 to 8 and Steps 10 to 11 are implemented
as found in the SGA .Step 9 is implemented as
follows:

Set aside the best solution from the old genera-
tion. Combine elements of the rest of the old
generation to elements of the offspring. Add to
the previous best solution so as to get a new gen-
eration of same size as the previous generation.

XSGA

The literature shows a variety of GA’s that use
selection, crossover operations in varying ways
to solve combinatorial optimization problems.
The genetic algorithm proposed here uses the
SGA as basis with modification of restarts and
local search. It is established that as a GA con-
verges to an optimal solution the crossover op-

eration is ineffective in producing diversification
and mutation remains the active operation for
search diversification. Thus if an intensification
procedure such as elitism' (Dejong, 1992) is
added then the effect of diversification will be
greatly diminished and the algorithm can easily
be trapped in a local optimum especially for
multimodal problems. The present algorithm
saves the global best solution into a variable and
for any iteration the current best solution re-
places the global best solution if it is better. As
many offsprings will replace individuals in the
old generation that are less fit than the offsprings
The generation is re-initialized and a local
search for local optimum performed for a given
number of times in the course of the iterations.

“This is to exploit the observation made by

(Hansen and Mladenovic, 2003) that for many
problems local optimum with respect to one or
several neighbourhoods are relatively close to
one another.

Termination of the algorithm is made after a
certain number of iterations. The steps of our
proposed algorithm are:

Step 1: Code the individual of the search space
as L-bit chromosomes.

Step 2: Initialize the generation character (g=1).
Step 3: Randomly choose initial generation of
population of n individuals.

Step 4: Evaluate the fitness of each individual in
the generation. Store the individual of the best fit
as global solution and as current best solution.
Step 5: Select individuals of best fitness rank by
fitness proportionate probability to be paired.
Step 6: Use tournament selection with replace-
ment to pair parent for mating. Apply one point
crossover operation on selected pairs of parents
to produce offspring.

Step 7: Apply mutation operation on offsprings.
Step 8: Evaluate the offsprings.

Step 9: Obtain a new generation of population
by combining element of offspring and the cur-
rent generation according to fitness and to keep
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the generation size unchanged at n. Update the

current best solution and the current generation,

Step 10:

i) If current best solution is better than global
best solution then replace global best solution
with current best solution and set the local
search gauge counter at k=0,

i) If after a prescribed number of iterations
(k=m) the current best solution is not better
than the global best solution perform local
search centered on the global best solution
and reinitialize the generation. The current
generation, the reinitialize generation and the
local search space are combined to select a
new generation.

Step 11: g = g+1

RESULTS

Procedure

Matlab programs were written for the Elite Ge-
netic Algorithm (EGA) and the XSGA. using the
multimodal function

flx)=x *sin[(o.4)*([ (ﬁ’%ﬂ)})} (x+47)*sin
(\/_(£§3l§f§12)J-+3560

for x= 0,1,2,3,...,2050. For generation sizes of
10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200,
500, 600 and 700 individials, programme itera-
tions of 10, 20, 30 were processed for each of
the generation sizes. A total of 20 runs were
used for any given pair of generation size and
programme iteration. From the solutions ob-
tained for the 20 runs the number of appearances
of the expected solution is counted.

The results for a given number of iterations were

partitioned into 2 sets for the cases where

a) max prod is less than the domain size, and

b) max prod is equal or greater than the domain
size.

prod = (generation size)x(number of iterations)

and

max prod = (generation size)x (30 iterations).
The results are illustrated below for mutation
probability P,, = 0.25, crossover points cop = 6
and the crossover probability P, = 1

Table of Results

Table 12a: Results for 10 iterations, max prod less
than domain size

Generation XSGA : Solution EGA:Solutio

size Count n Count
10 5 0

15 3 0

20 5 0

30 12 1

40 17 1

50 20 0

60 20 2

Table 12b: Result for 10 iterations, max prod
greater than domain size

Generation XSGA: Solution EGA: Solution
size Count Count
70 20 0
80 20 1
90 20 1
100 20 1
200 20 3
500 20 6
600 20 2
700 20 4

Table 13a: Results for 20 iterations, max prod less
than domain size

Generation XSGA: Solution EGA: Solution
size Count Count
10 2 1
15 2 1
20 6 0
30 14 0
40 16 0
50 16 Q
60 19 0
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Table 13b: Result for 20 iterations, max prod
greater than domain size

Generation XSGA:Solution EGA:Solution

size Count Count
70 19 2
80 20 0
90 20 0
100 20 0
200 20 3
500 20 7
600 20 2
700 20 8

Table 14a: Result for 30 iterations, max prod less
than domain size

Generation XSGA: Solution EGA:Solution

size Count Count
10 4 1
i5 5 2
20 11 0
30 17 0
40 i8 0
50 17 0
60 20 1

Table 14b: Result for 30 iterations, max prod
greater than domain size

Generation XSGA Solution EGA Solution
size Count Count
70 20 0
80 20 2
90 20 1
100 20 0
200 20 1
500 20 7
600 20 4
700 20 9
DISCUSSIONS

The results show that EGA performs absymal
for lower population size and lower number of
[dterations. In no situation was the count of the

expected solution greater than 10. This happened
even for cases where prod was greater than the
domain size. This may indicate that the EGA
could not cover the domain space as expected
and that the EGA may have been stuck at local
optima without being able to escape.

It is significant that the EGA was not responding
proportionately to the incteases in generation
size which may suggest that there is larger criti-
cal size at which the response of EGA will be
noticed.

On the other hand the XSGA did better than the
EGA in all cases and was seen to respond to the

increases in the generation size until a size was

reached where the response gave perfect or near
perfect results. When perfect results are reached
they are stable. The range of size for reaching
such perfect results was between generation
sizes of 50 and 60 which gave average prod to
be about half the domain size. This may indicate
that XSGA was able to search the domain even
when prod was about half the domain size. The
results are perfect and stable for iterations with
prod greater than the domain size.

CONCLUSIONS

The results show that EGA does not perform
well for small number of iterations and small
generation size. (Earl Cox ,2005), indicated that
generation size for GA may be taken to be 5
times the length of the string representation of
the chromosome or half the domain size, which
ever is smaller. Going by this rule the genera-
tion size should be 60 (which is smaller of 60
and 1025), however the EGA fail to respond to
such generation size for lower number of itera-
tions.

It is significant that for generation size of 60 and
onwards the XSGA generally gave stable perfect
solutions. The authors therefore recommend the
XSGA over EGA for the computation of integral
global optimization
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example
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APPENDIX C
Matlab code for the main XSGA programme

function{xglobal,fxglobal k,g,matigene}=mga
(objFun,sdomain,...

ipopsize,mup ,cop,iter);

clear global;

o/

%--Defintion of variables

%
%objFun = objective function
%sdomain = domain
%ipopsize = initial population
Y%mup = mutation probability
Y%cop = Crossover point

- %elite = number of elite individuals
%m = gauge iterations
%

%lnitializing a Generation of n-individuals
%
partpop=round(ipopsize/6);
partdom = round((length(sdomain})/200);
m=round(iter/5);
mindom=min(sdomain);
maxdom=max(sdomain);
igene=createpop(sdomain,ipopsize);
sym X;
objFun;
xglobal=-1 ;
fxglobal=-1;
matigene=[ ];
%
%Set Counter here
%
g=1;
k=0,
while g<iter;
matigene=[matigene,igene];
%Perform Calculations
fx=subs(objFun,'x',igene),
afx=mean(fx);
sfx=sum(fx);
[maxfx,imaxfx]=max(fx);
xmax=igene(imaxfx);
ps=p_select(fx,sfx); %Probability for Selection

9%[For Initial Generation]
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ec=e_count(fx,afx);

ac=round(ec);

%--This array contains all values of the above
calculations

thl=[igene fx ps ac];

(1)
o

%preparing table for roulette
%
ostbl=sortM(tbl,1,3);

stbl=flipud(ostbl);

stbl(:,5)=stbl(:,4);
stbl(:,4)=cumsum(stbl(:,3));

%--getting the parents:FUNCTION ROU-
LETTE:

parents=roulette(stbl);

%--get pair::FUNCTION CHOOSEPAIR::
spairs=choosepair(parents);
%--crossover::FUNCTION VCROSSOVER::
cparents=vcrossover(spairs,cop);
%--mutation:: FUNCTION MUTATE::
b_cparents=dec2bin(cparents);
mut=mutate(b_cparents,mup);
mut(isspace(mut))=";
new_offspring=bin2dec(mut);

%start monitoring from here
someoffspring=outsidedom
(new_offspring,maxdom);
n_igene=[igene;someoffspring];
fit_igene=fitness(n_igene,objFun);
%--Remove repeating new generation from
NEW and OLD offspring
n_igene=removcRepeat(fit_igene);
igene=n_igenc(1:ipopsize,:);

%

%TERMINATION CONDITION

%o

if maxfx>fxglobal;
xglobal=xmax;
fxglobal=maxfx;
k=0;
g=g+l;

else
k=k+1;

end;

if (k>0)&(k<m)

g=gtl;
elseif(k>0)&((k==m)|(k==2*m)|(k==3*m))
if partpop<partdom

upbnd=xglobal+partpop,
lobnd=xglobal-partpop;
clse
upbnd=xglobal+partdom;
lobnd=xglobal-partdom;
end
if upbnd>maxdom,;
upbnd=maxdom;
end
if lobnd<mindom;
lobnd=mindom,;
end
subdom=[lobnd:upbnd];
subfx=subs(objFun,'x',subdom);
[fxlocal,ixlocal}=max(subfx);
xlocal=subdom(ixlocal);
if fxlocal>fxglobal;
xglobal=xlocal;
end
igene;
newigene=createpop(sdomain,ipopsize);
comigenel=compelite(igenc,newigene);
comigene2={igene;comigenell;
comigene3=compelite
(comigene2,subdom");
comigene=[comigene2;comigene3];
gogene=fitness(comigene,objFun);
igene=gogene({1:ipopsizel,:),
g=gtl;
elseif k>0
g=gt+l;
%
%NEW CALCULATION HAPPENS HERE
% -
%[For Initial Generation]
end,
end;
xglobal;
fxglobal;
k;
&
matigene,
return,
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