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ABSTRACT  
Birth-death Markov models have been widely used in the study of natural and physical processes. The 
analysis of such processes, however, is mostly performed using time series analysis. In this report, a 
finite state birth‑‑‑‑death Markov process is analyzed using the z‑‑‑‑transform approach. The performance 
metrics of the system and their variation with the system parameters are then derived and presented. 
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INTRODUCTION  
The study of physical systems has relied heavily 
on the approach of building models, and using the 
models to both analyze and design the systems. 
Some of such models initially developed to study 
problems in mathematics and physics have turned 
out to be very novel tools for investigating and 
solving problems in other fields of study 
(Rojdestvenski and Cottam, 2000; Drummond, 
2004). One of such models is the birth-death 
markov model, which  is used to characterize 
processes involving some kind of population. 
Since many processes can be analyzed using this 
model, it has been widely used to study the dy-
namics of natural and physical systems. Among 
the areas in which birth-death models have been 
employed are communication systems, computer 
data storage, and biological systems. In communi-

cation systems the models have been used to inves-
tigate packet transmission in CDMA‑based com-
munication (Perez‑Romero et al., 2003), diversity 
in systems employing receiver diversity (Yang and 
Alouini, 2004), block error processing for systems 
operating in fading environments (Hueda and Rod-
rigruez, 2004), and synchronization in high speed 
communication systems (Kundaeli, 1998; 2002). In 
computer systems the models have been used to 
characterize the storage and flow of information 
(Kleinrock, 1975) and the allocation of channels in 
networks supporting mobile computing (Lee et al., 
1999). In biological systems the models have been 
used to study population extinction times (Tomiuk 
and Loeschcke, 1994) and the evolution of genes 
(Karev et al., 2004). Birth-death models have and 
can therefore be used to solve a diversity of prob-
lems. 
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The approach normally used to study processes exhibiting Markovian characteristics is time series analy-
sis. The derivation of the performance metrics, however, can also be accomplished by using the z-
transform, which is quite applicable to cases where the systems under investigation exhibit discrete‑time 
dependence (Kleinrock, 1975). In this report, the z‑transform is used to investigate the performance of a 
process exhibiting birth‑death Markovian properties. The performance parameters of the process are de-
rived, and it is then shown how the derived scheme can be used to characterize various real life processes. 
 
SYSTEM ANALYSIS  
The transition diagram of the system analyzed in this report is given in Fig. 1, having N+1 states numbered 
0 to N with the transition probabilities between the states also shown. The transition diagram can be re-
duced to that of Fig. 2 using state reduction techniques found in Howard (1971). In making the derivations 
in this report however, the same notations used in earlier reports by the author (e.g. Kundaeli, 2002) have 
been maintained in order to ensure consistency. We then introduce the following extra parameters: K = n, 
M = m ‑ n and J = N - m with 0≤ n<m≤N to obtain the partial transfer functions in Fig. 2 as 
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Fig. 1:  The transition diagram of a finite state birth-death process with N = 5  

Fig. 2:  The reduced transition diagram of Fig. 1. 

Journal of Science and Technology, Vol. 28, No. 2, August, 2008 76 

The Z-Transform applied to birth-death Markov processes Kundaeli 





 ≤

1>    Mz),(M,F+z)(J,F

1  M          z),(J,F
 = (z)F

mmmm

mm
mm

[ ]















1>K  z,P +
z)(K,TzPQ-z)(K,Tz)Q-(1

z)(K,TzPQ-z)(K,Tz)Q-(1zPQ

1=K  z,P + 
z)Q-(1
zPQ

0,=K  z,Q

 = z)(K,F

11
22

2
01210

23
2

01220
2

11

11

0

2
01

0

nn













≠ 0n     ,
z)(M,T

z)(M,TzQP

0=n     ,
z)(M,T

z)(M,TzQP

 = z)(M,F

21

22
2

11

21

22
2

10

nn

where 

[ ]















1>J  z,P +
z)(J,TzQP-z)(J,Tz)P-(1

z)(J,TzQP-z)(J,Tz)P-(1zQP

1=J  z,P + 
z)P-(1
zQP

0=J  z,P

 = z)(J,F

11
22

2
N121N

23
2

N122N
2

11

11
N

2
N1

N

mm

(4) 

(5) 

(6) 

(7) 













≠ Nm     ,
z)(M,T

z)(M,TzPQ

N=m     ,
z)(M,T

z)(M,TzPQ

 = z)(M,F

21

22
2

11

21

22
2

1N

mm (8) 

( ) ( )zQPzP-1i)k,A(U,)(-1 = z)(U,T 2
11

k
11

i-2k-Uk
U

=0k
2i

i

∑ (9) 







 ≥

otherwise   0,

iU  ,
k!i)!-2k-(U

i)!-k-(U

 = i)k,A(U,
(10) 

and Ui = floor{(U-i)/2}. 

Using (1) and (2), the transfer function from state n to m is given by 
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from which we obtain the transition time from state n to m as 
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We then use the following notations in the ensuing derivations 

| ( )

′ z)(U,T

dz

d
 = T      ,z)(U,T = T ij

z=1

ijUij z=1ijU

and consider two cases: n = 0, M >1 and n>1, M>1 because the other cases can be obtained from them. 

When n = 0 and M > 1 

z)(M,T

zPP = (z)F
21

M1-M
10

nm

.
z)(M,T

z)(M,TzQP +z Q = (z)F
21

41
2

10
0nnand 

(12) 

(13) 

(14) 

(15) 

Therefore 

.
z)(M,TzQP - z)(M,Tz)Q-(1

zPP = (z)
22

2
10210

M1-M
10

nmΦ (16) 

If we apply (12) to (16) and perform some algebraic manipulations we obtain Lnm as 
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The elaborate algebraic manipulations have been omitted in deriving (18) and (19) but interested readers 
can contact the authors for details. Note that when M = 1, GM(P1) = 0 and therefore 
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when n > 1 and M = 1 then 
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when m = N and M > 1 

z)(M,TzPQ - z)(M,Tz)P-(1
zQQ

 = (z)
22

2
1N21N

M1-M
1N

mnΦ

and therefore 

.
QQ

)Q(GQ+T = L 1-M
1N

1MN21M
mn

Likewise, when m < N and M > 1 we obtain 

[ ]
[ ]

[ ]
[ ]













Φ

z)(K,TzQP-z)(K,Tz)P-(1z)(M,TzPQ -   

z)(M,Tz)(K,TzQP-z)(K,Tz)P-(1zQP -   

z)(K,TzQP-z)(K,Tz)P-(1z)(M,Tz)P-(1

z)(K,TzQP-z)(K,Tz)P-(1zQ
 = (z)

22
2

N121N22
2

11

2123
2

N122N
2

11

22
2

N121N2111

22
2

N121N
MM

1
mn

which gives 

[ ]
QQ

TP +)Q(HQ-)Q(GTPQ+)Q(GQQ+QTQ
 = L 1-J+M

1N

21M
J
11J11J21M1N1M

J
1N

1-J
121MN

mn

From the above results, when m = N-1 and M = 1 then 

QQ
P-Q-Q+1

 = L
1N

111N
mn

.
QQ

)Q(GQ+T = L 1-M
1N

1MN21M
mn

and when m = N and M > 1 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

Journal of Science and Technology, Vol. 28, No. 2, August, 2008 81 

The Z-Transform applied to birth-death Markov processes Kundaeli 



RESULTS AND DISCUSSION 
The results of the analysis are given in Figs. 3 to 
10. In these results, it is assumed that transitions 
between states take place at regular intervals de-
noted by T, and the transition times Lnm and Lmn 
are then given as multiples of T. Also, unless indi-
cated otherwise, the parameters have been fixed at 
P0 = QN = 0.5, P1 = P11 = 0.33, N = 10, n = 2 and 
m = 6. Fig. 3 shows how the transition time from 
state 2 to 6 varies with the transition probability 
(P0) in state 0. As expected, the transition time is 
very high at low values of P0 indicating the high 
reluctance of the system to leave state 0. As P0 
increases, however, the transition time decreases 
as expected. In Fig. 4 it is seen that the transition 
time from state 2 to 6 decreases very sharply as P1 
increases, implying that the high value of P1 forces 
the system to move to state 6 faster. It is also seen 
that P1 has a higher effect on the transition time 
than P0. Fig. 5 shows that the transition time in-
creases with P11. This implies that the system has a 
higher tendency to stay in any state as P11 in-
creases. Fig. 6 shows the transition time as a func-
tion of n when m, the state to which the system is 
supposed to transit to, is fixed. It is seen that the 
transition time does not decrease sharply as n ap-
proaches m as would be expected. This can be 
attributed to the fact that the system spends appre-
ciable time looping in the states below n, and this 
increases the transition time. Fig. 7 shows that the 
transition time increases as m, the state to which 
the system is to transit to, increases. It is also seen 
that this curve takes on a shape that is opposite to 
that of Fig. 6. Fig. 8 shows how the transition time 
from a higher state m to a lower one n varies with 
QN, the transition probability in state N. The shape 
of this curve resembles the one in Fig. 3 as ex-
pected. It is also seen in Fig. 9 that the transition 
time from state m to n decreases as n approaches 
m. This is expected because the distance between 
m and n decreases with n. Finally, Fig. 10 shows 
as expected that the transition time from state m to 
a fixed state n increases as m increases. The be-
haviour of the system has therefore been well il-
lustrated by the presented plots. Whereas these 
results represent some sample behaviours of such 
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Fig. 3: The variation of Lnm with P0 at P1 = P11 
= 0.3, n = 2 and m = 6. 
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P11

0

50

100

150

200

250

300

L
n
m

Fig. 5: The variation of Lnm with P11 at P1 = (1-
P11)/2, P0 = 0.5, n = 2 and m = 6. 

Journal of Science and Technology, Vol. 28, No. 2, August, 2008 82 

The Z-Transform applied to birth-death Markov processes Kundaeli 



0 1 2 3 4 5 6 7 8 9

n

0

50

100

150

200

L
n

m

1 2 3 4 5 6 7 8 9 10

m

0

50

100

150

200

L
nm

Fig. 6: The variation of Lnm with n at P11 = P1 
= 0.33, P0 = 0.5 and m = N = 10. 

Fig. 7: The variation of Lnm with m at P11 = P1 
= 0.33, P0 = 0.5, n = 0 and N = 10. 
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Fig. 10: The variation of Lmn with m at P11 = P1 
= 0.33, QN = 0.5, n = 0 and N = 10. 

a system, other behaviours can be obtained by using 
different parameters. 

As mentioned earlier, some communication sys-
tems can be represented by the birth-death model. 
For example, in some communication systems a 
bidirectional counter is employed to implement the 
synchronization algorithm. In such cases, the syn-
chronization states of the system are represented by 
the states of the counter, and the transition prob-
abilities between the states of the counter represent 
the probabilities of receiving either corrupted or 
uncorrupted synchronization information. The tran-
sition times Lnm and Lmn then represent the time it 
takes the system to gain or lose synchronization 
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respectively. The model can also be employed in 
queuing systems. In this report, however, the 
model is applicable if the single queue single 
server model is employed. In such cases, the dura-
tions needed for the number of users to change 
from n to m or m to n are Lnm and Lmn respec-
tively. Finally, many biological systems can be 
represented by the birth‑death model. In such 
cases, the states used in this report represent the 
population of the biological system. Since the birth 
and death rates in a biological system are not nec-
essarily constant, they need to be normalised to the 
population in each state, thus making the model 
investigated in this paper applicable. The time 
needed for the population to change from n to m is 
then Lnm whereas the time needed for the popula-
tion to change from m to n is Lmn.  
 

CONCLUSION 
The analysis of a birth‑death process in which the 
birth and death transition probabilities are fixed 
has been investigated. It has been shown that the 
obtained results represent the expected behaviour 
of the system, and the investigated model can also 
be used for practical systems. It can for example 
be used to investigate frame synchronization sys-
tems that employ bidirectional counters to store 
the state and status of synchronization, queuing 
systems in which the arrival and service rates are 
constant, and the population dynamics of biologi-
cal birth‑death systems. Further research in this 
area will consider cases where the transition prob-
abilities between the states are not constant. 
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