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ABSTRACT 
This paper proposes a new algorithm for boosting in kernel density estimation (KDE). This algo-
rithm enjoys the property of a bias reduction technique like other existing boosting algorithms and 
also enjoys the property of less function evaluations when compared with other boosting schemes. 
Numerical examples are used and compared with existing algorithm and the findings are compara-
tively interesting. 
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INTRODUCTION 
Kernel density estimation (KDE) is a process of 
constructing a density function from a given set 
of data. The process depends on the choice of 
the smoothing parameter which is not easily 
found (Silverman, 1986; Jones and Signorini, 
1997; Wand and Jones, 1995).  As a result of 
this problem of finding a smoothing parameter, 
the idea of boosting in KDE is born. 

The area of boosting is relatively new in kernel 
density estimation. It was first proposed by 
Schapire (1990). Other contributors are Freund 
(1995), Freund and Schapire (1996), Schapire 
and Singer (1999). Boosting is a means of im-
proving the performance of a "weak learner" in 
the sense that given sufficient data, it would be 

guaranteed to produce an error rate which is bet-
ter than "random guessing". 

Mazio and Taylor (2004) proposed an algorithm 
in which a kernel density classifier is boosted by 
suitably re-weighting the data. This weight placed 
on the kernel estimator is a ratio of the log func-
tion in which the denominator is a leave-one-out 
estimate of the density function. Also, Mazio and 
Taylor’s (2004) work theoretically gave an expla-
nation and finally showed how boosting is able to 
reduce the bias in the asymptotic mean integrated 
squared error (AMISE) of Silverman (1986). 

In section 2, we shall see how the Mazio and Tay-
lor's (2004) algorithm is a bias reduction tech-
nique. Section 3 shall show a proposed meshsize 
algorithm and its limitations. Numerical examples 
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are used to justify this algorithm in section 4 and 
compare the results with that of Mazio and Tay-
lor (2004). 
 
Algorithm on boosting kernel density  
estimates and bias reduction 
Throughout this paper, we shall assume our data 
to be univariate. The algorithm of Mazio and 
Taylor (2004) is briefly summarized in algo-
rithm 1. 
 
Algorithm 1 
Step 1: Given {x1, i=1.2…n}, initialize W1=1/n 
Step 2: Select h (the smoothing parameter). 
Step 3: For m =1, 2, … M, obtain a weighted 

kernel estimate 
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where x  can be any value within the range of the 
x1‘s, k is the kernel function and w is a weight 
function; and then update the weights according 
to 
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Step 4: Provide output as 
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ˆ renormalized  to integrate to unity  

For full implementation of this algorithm see 
Marzio and Taylor (2004). 

 
Boosting as a Bias Reduction in Kernel Den-
sity Estimation 
 Suppose we want to estimate f(x) by a multipli-
cative estimate. We also suppose that we use 
only "weak" estimates which are such that h 
does not tend to zero as n→∞. Let us use a 
population version instead of sample in which 
our weak learner, for h >0 is given by 
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where W1(y) is taken to be 1. We shall take our 
kernel function to be Gaussian (since all distribu-
tions tend to be normal as n, the sample size, be-
comes large through central limit theory (Towers, 
2002). The first approximation in the Taylor's 
series, valid for h < 1 provided that the deriva-
tives of f(x) are properly behaved, is 
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and so we observe the usual bias of order 0(h2) of 
Wand and Jones (1995). If we now let    
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This gives an overall estimator at the second step 
as 

( )( ) ( )( ) ( ) ( )
( ) ( ) ( )

( ) ( )








+
′′

−








+
′′

+=⋅ 4
2

42
21 0

2
10

2
1ˆˆ h

xf

xfh
h

xf

xf
hxfxfxf

( ) ( )40hxf +

(2.4) 

(2.5) 

which is clearly of order four and so we can see a 
bias reduction from order two to order four. 
 
Proposed meshsize algorithm in boosting 
In this section, we shall see how the leave-one-
out estimator of the (2.2) in the weight function 
can be replaced by a meshsize estimator due to 
the time complexity involved in the leave-one-out 
estimator. In the leave-one-out estimator, we re-
quire (n+(n-1)).n function evaluations of the den-
sity for each boosting step. Thus, we are using a 
meshsize in its place. The only limitation on this 
meshsize algorithm is that we must first deter-
mine the quantity 1/nh so as to know what the 
meshsize that would be placed on the weight 
function of (2.2) would be. The need to use a 
meshsize in place of the leave-one-out lies on the 
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fact that boosting is like the steepest-descent 
algorithm in unconstrained optimization and 
thus a good substitute that approximates the 
leave-one-out estimate of the function (Duffy 
and Helmbold, 2000;  Taha, 1971; Ratsch et al., 
2000; Mannor et al., 2001). 

The new meshsize algorithm is stated as: 
Algorithm 2 
Step 1: Given {x1, i=1.2…n}, initialize W1=1/n, 

initialize  
Step 2: Select h (the smoothing parameter). 
Step 3: For m =1, 2, … M, 
i) Get 
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where x can be any value within the range 
of the x1 ‘s, k is the kernel function and w is 
a weight function  

 
ii) Update 
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and normalize to integrate to unity  

We can see that the weight function uses a mesh-
size instead of the leave-one-out log ratio func-
tion of  Mazio and Taylor (2004). 

The numerical verification of this algorithm 
would be seen in section 4. 
 

NUMERICAL RESULTS 
In this section, we shall use three sets of data 
(data 1 is the lifespan of a car battery in years, 
data 2 is the number of written words without 
mistakes in every 100 words by a set of students 
and data 3 is the scar length of patients randomly 
sampled. See Ishiekwene and Osemwenkhae, 
2006) which were suspected to be normal to illus-
trate algorithms 1 and 2 and compare their results. 
BASIC programming language is used to gener-
ate the results for a specified h (Ishiekwene and 
Osemwenkhae (2006) and their corresponding 
graphs shown in figures 1a – 1c  for data 1(n=40), 
figures 2a – 2c  for data 2(n=64) while figures 3a 
– 3c is for data 3(n=110). Also, table 4.1 shows 
the bias reduction we discussed in section 2 for 
the three sets of data used. 

We can clearly see the bias reduction between the 
normal kernel estimator and the boosted kernel 
estimator. We also compared our boosted  kernel 
estimator with the fourth-order kernel estimator 
of Jones and Signorini (1997) which is arguably 
the best smoothing parameter choice and an 
equivalent of Ishiekwene and Osemwenkhae’s 
(2006)  higher-order choice at order four. 
 

CONCLUSION 
From the graphs in figures 1A – 3C for the three 
sets of data , we can clearly see that our proposed 

  

NORMAL (conventional  order two) 
H4 (as in Jones and Signorini 1997 and 
Ishiekwene and Osemwenkhae 2006) 

                 BOOSTED (proposed scheme) 

  Bias2 Var AMISE Bias2 var AMISE Bias2 var AMISE 

Data 1 0.005276637 0.019811685 0.250883225 0.002071803 0.014789245 0.016861048 0.002078009 0.015168456 0.017246655 

Data 2 0.000293946 0.001130402 0.001424348 0.000108591 0.000809307 0.000917898 0.000108715 0.000822153 0.000930868 

Data 3 0.004697604 0.016623515 0.021321119 0.001767617 0.011342162 0.013109779 0.001768218 0.011446219 0.013214437 

Table 4.1 Showing bias reduction 
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Fig. 1B (Meshsize Algorithms) 
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Fig. 2A (Leave-One-Out Algorithms) 
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Fig. 3C (Comparison of both Algorithms) 

algorithm compares favorably if not arguably 
better than that of Mazio and Taylor (2004). Also, 
the results of Table 4.1 has revealed the bias re-
duction targeted by  both algorithms.  

Since our algorithm does the same task with 
fewer function evaluations and in fact better in 
terms of time complexity, we are recommending 
it for use in boosting in KDE. 
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