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ABSTRACT

This paper proposes a new algorithm for boosting karnel density estimation (KDE). This algo-
rithm enjoys the property of a bias reduction tedhne like other existing boosting algorithms and
also enjoys the property of less function evaluaisowhen compared with other boosting schemes.
Numerical examples are used and compared with éngstalgorithm and the findings are compara-
tively interesting.
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INTRODUCTION guaranteed to produce an error rate which is bet-
Kernel density estimation (KDE) is a process oter than "random guessing".
constructing a density function from a given sem

of data. The process depends on the choice azio and Taylor (2004) proposed an algorithm

th thi i hich i i | which a kernel density classifier is boosted by
€ smoothing parameter which 1S not €asi %uitably re-weighting the data. This weight placed

found (Silverman, 1986; Jones and S|gnor|n|?n the kernel estimator is a ratio of the log func-

3h9'97; V\t/)?nd afn?_ \gjc_)nes, 1995)t'h' As a resultt Qlon in which the denominator is a leave-one-out
IS probiem of finding a Smoothing parametery gt of the density function. Also, Mazio and

the idea of boosting in KDE is born. Taylor's (2004) work theoretically gave an expla-
The area of boosting is relatively new in kernehation and finally showed how boosting is able to
density estimation. It was first proposed byreduce the bias in the asymptotic mean integrated
Schapire (1990). Other contributors are Freundquared error (AMISE) of Silverman (1986).

(1995), Freund and Schapire (1996), Schapian section 2, we shall see how the Mazio and Tay-

and Singer (1999). Boosting is a means of iml’or's (2004) algorithm is a bias reduction tech-

E)hrovmg thethp?rfc_)rmanc?f_of at \évetak _Itearnelrd glrwique. Section 3 shall show a proposed meshsize
€ sense that given sufhcient data, 1t wou eollgorithm and its limitations. Numerical examples
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are used to justify this algorithm in section 4 andvhere W,(y) is taken to be 1. We shall take our
compare the results with that of Mazio and Taykernel function to be Gaussian (since all distribu-

lor (2004). tions tend to be normal as n, the sample size, be-
comes large through central limit theory (Towers,

Algorithm on boosting kernel density 2002). The first approximation in the Taylor's

estimates and bias reduction series, valid for h < 1 provided that the deriva-

Throughout this paper, we shall assume our dataves of f(x) are properly behaved, is
to be univariate. The algorithm of Mazio and

Taylor (2004) is briefly summarized in algo- f(l)(x)z f(x)+m
rithm 1. 2

and so we observe the usual bias of orde?) @f
Algorithm 1 Wand and Jones (1995). If we now let

Step 1: Given Xy, i=1.2...1}, initialize W;=1/n .
Step 2: Seledt (the smoothing parameter). Wz(X) = f (x)
Step 3: For m =1, 2, ... M, obtain a weighted

kernel estimate fzxz Mflxsz +hzf"(X+Z')+ H _lf i+ 71d3
f ()ZW—()k(—X‘j 3 8 Jzk("){( e L2l sl
" = h h o=1- hz::()(:)()w(h“) (2.4)

wherex can be any value within the range of the =~ )
xi's, k is the kernel function and w is a weightThis gives an overall estimator at the second step

function; and then update the weights accordingS

to
RN 2 £°00 a4 PP E(9) L s
) iy ()T (%) f(x}{1+h 72f(x)+o(h )}{1 270) +oh?)

W)=, )+ o] £ 2 4

1 () 2 £(x)+qlr) 25)
Step 4: Provide output as which is clearly of order four and so we can see a
Mo bias reduction from order two to order four.
|_| f (X) renormalized to integrate to unity
m=1 _ _ _ _ Proposed meshsize algorithm in boosting
For full implementation of this algorithm seen this section, we shall see how the leave-one-
Marzio and Taylor (2004). out estimator of the (2.2) in the weight function

can be replaced by a meshsize estimator due to
Boosting as a Bias Reduction in Kernel Den- the time complexity involved in the leave-one-out
sity Estimation estimator. In the leave-one-out estimator, we re-
Suppose we want to estimate f(x) by a multipliquire (n+(n-1)).n function evaluations of the den-
cative estimate. We also suppose that we ussity for each boosting step. Thus, we are using a
only "weak" estimates which are such that meshsize in its place. The only limitation on this
does not tend to zero as-mo. Let us use a meshsize algorithm is that we must first deter-
population version instead of sample in whichmine the quantityl/nh so as to know what the

our weak learner, for h >0 is given by meshsize that would be placed on the weight
A 1 - function of (2.2) would be. The need to use a
f (x)= J'th(y)K(hny (y)dy (2.3) meshsize in place of the leave-one-out lies on the
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fact that boosting is like the steepest-desceWe can see that the weight function uses a mesh-
algorithm in unconstrained optimization andsize instead of the leave-one-out log ratio func-
thus a good substitute that approximates thton of Mazio and Taylor (2004).

leave-one-out estimate of the function (Duffyr.. imerical

and Helmbold, 2000; Taha, 1971; Ratsthal,
2000; Mannoeet al, 2001).

The new meshsize algorithm is stated as:

Algorithm 2

Step 1: Given X, i=1.2...1}, initialize W;=1/n,
initialize

Step 2: Seledt (the smoothing parameter).

Step3: Form =1, 2, ... M,

i) Get

TRSIERY

verification of this algorithm
would be seen in section 4.

NUMERICAL RESULTS

In this section, we shall use three sets of data
(data 1 is the lifespan of a car battery in years,
data 2 is the number of written words without
mistakes in every 100 words by a set of students
and data 3 is the scar length of patients randomly
sampled. See Ishiekwene and Osemwenkhae,
2006) which were suspected to be normal to illus-
trate algorithms 1 and 2 and compare their results.
BASIC programming language is used to gener-
ate the results for a specifigd(Ishiekwene and
Osemwenkhae (2006) and their corresponding

wherex can be any value within the rangegraphs shown in figures 1a — 1c for data 1(n=40),
of thex; 's, k is the kernel function and W is figres 2a — 2¢ for data 2(n=64) while figures 3a

a weight function
i) Update
W (i) =W i) +mesh

Step 4: Provide output

r 7.

m=1

and normalize to integrate to unity

Table 4.1 Showing bias reduction

— 3c is for data 3(n=110). Also, table 4.1 shows
the bias reduction we discussed in section 2 for
the three sets of data used.

We can clearly see the bias reduction between the
normal kernel estimator and the boosted kernel
estimator. We also compared our boosted kernel
estimator with the fourth-order kernel estimator
of Jones and Signorini (1997) which is arguably
the best smoothing parameter choice and an
equivalent of Ishiekwene and Osemwenkhae’s
(2006) higher-order choice at order four.

CONCLUSION
From the graphs in figures 1A — 3C for the three
sets of data , we can clearly see that our proposed

NORMAL (conventional order two)

Bias2 Var AMISE Bias2

H4 (as in Jones and Signorini 1997 and
Ishiekwene and Osemwenkhae 2006)

BOOSTED (proposed scheme)

var AMISE Bias2 var AMISE

Data 1 0.005276637 0.019811685 0.250883225

Data 2 0.000293946  0.001130402  0.001424348

Data 3 0.004697604  0.016623515  0.021321119

0.0@P371 0.014789245
0.0@9108 0.000809307

0.0@1767 0.011342162

0.016861048 0.002078009 0.015168458.017246655

0.000917898  0.000108715 0.000822153.000930868

0.013109779  0.001768218 0.011446210.013214437
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algorithm compares favorably if not arguably
better than that of Mazio and Taylor (2004). Also,
the results of Table 4.1 has revealed the bias re-
duction targeted by both algorithms.

Since our algorithm does the same task with
fewer function evaluations and in fact better in
terms of time complexity, we are recommending
it for use in boosting in KDE.
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