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ABSTRACT 

Analysis of circular cylindrical shell under the action of hydrostatic and stiffening ring forces is 

carried out in this work. The differential equation of equilibrium, similar to that of beam on 

elastic foundation, was obtained from static principles on the assumptions of P. L. Pasternak. 

The initial value method was used to solve the obtained fourth order differential equation for 

both cases of hydrostatic and ring forces. Combined actions of hydrostatic and ring forces were 

studied as the location of the ring was varied along the height of the reservoir. It appears that the 

most favourable location for the ring is 2/3 of its height measured from the top. Bending mo-

ment, shear force and hoop tension diagrams, essentially necessary for design of the reservoir, 

were plotted under the action of these forces. 
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INTRODUCTION 
The economy or feasibility of many modern 

constructions necessitates lightweight, thin-

walled members. Indeed the objective of struc-

tural engineering has always been to lower as 

much as possible the cost and thus the quantity 

of construction material without compromising 

the integrity of the structure. Thin-walled struc-

tures, which include both thin plates and thin 

shells, satisfy the afore-mentioned objective. 

Shells are for most part the deep-seated struc-

tures in manufacturing submarines, missiles, 

tanks and their roofs, and fluid reservoirs 

(Golzan et al, 2008). Circular cylindrical shells 

are used in a large variety of civil engineering 

structures, e.g. off-shore platforms, chimneys, 

silos, pipelines, bridge arches or wind turbine 

towers (Winterstetter et al, 2002). This work is 

concerned with the analysis of circular cylindri-

cal shell subjected to hydrostatic pressure in 

combination with the action of local forces in-

duced by stiffening rings (Fig.1).   

Stiffening ringsStiffening rings 

Fig. 1: Stiffened circular cylindrical shell  
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In Nigeria, most reservoir constructors intro-

duce stiffening rings with the purpose to over-

come bulging due to internal hydrostatic pres-

sure. The location of these rings is generally 

subject to the very arbitrary appreciation of the 

constructor. However the introduction of rings 

so randomly located induces local forces which 

complicate the stress and strain distribution. 

Therefore the objective of this study is to give a 

clear picture of stress and strain distribution in 

the presence of such induced forces, and to 

establish the optimum location of the stiffening 

ring. 

The moment theory of shells developed by 

Aron (Darkov, 1989), and Love (1888) using 

the analogy of plates due to Kirchoff (1877), in 

spite of its attractive accuracy, is seldom ap-

plied by an average design engineer due to the 

involved rigorous mathematics. Subsequently, 

Finsterwalder (1933), Vlasov (1948), and 

Pasternak (1932), by ignoring the effects of 

longitudinal bending moment, shear forces and 

torques arrived at the so-called semi-moment 

theory. is found to give acceptable results. This 

method which has been experimentally verified 

or cylindrical shell whose ratio of length to 

diameter ranges between 2 to 8 (Timoshenko, 

1959). 

Pasternak (1932) later showed that when the 

load on a circular cylindrical shell is axi-

symmetric, the stresses and strains are func-

tions of only one variable along the axis of the 

cylinder. The differential equation of equilib-

rium of the shell in this circumstance reduces to 

a fourth order linear differential equation 

equivalent to that of Beam on Elastic Founda-

tion (BEF). This latter equation will be used 

here on the basis of initial value solution due to 

Krylov (1931) to study the stresses and strains 

distribution in cylindrical shell tank subjected 

to hydrostatic pressure as the location of the 

stiffening ring varies along the height of the 

cylinder. The best location of the stiffening ring 

will be obtained as that location with the least 

stress and strain on the cylindrical shell. 

An abundant literature is available on the use of 

numerical methods, specially the finite element 

method, for the analysis of cylindrical shells 

(Jaroslav, 2005); but recent studies have shown 

the great dangers of using numerical modelling 

without a sufficient deep understanding of the 

effects of choosing different analysis options 

(Federico et al, 2008). Thus the use of analyti-

cal methods, such as the initial value approach, 

in the analysis of cylindrical shells cannot be 

overemphasised.   

 

Differential Equation of Equilibrium 

The equations of equilibrium of a cylindrical 

shell according to the semi-moment theory are 

(Timoshenko et al, 1959): 
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where x, y and z axes at a given point O of the 

middle surface are taken in the directions of the 

axis of the cylinder, the tangent to the circum-

ference, and the normal to the middle surface of 

the shell respectively; X, Y, and Z are the com-

ponents of the transverse distributed load in x, 

y, and z directions respectively; u, v, and w are 

the displacement components in x, y, and z di-

rections respectively; 

h is the thickness of the shell; 

E is Young modulus of the material; 

R is the radius of the cylinder; 

and μ is Poisson’s ratio. 
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On the assumptions that (i) the middle surface 

of the shell is inextensible in y – direction such 

that v =0, and (ii) the normal force Nx acting on 

the transverse section of the shell is neglected, 

Pasternak (1932) arrived at the following rela-

tions: 

Where: 
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Nφ is the hoop tension; 

S is the membrane shearing force; 

Mx is the longitudinal moment; and 

Mφ is the transverse moment. 

 

Substituting the above relations into equation 

[3] and considering the hydrostatic loading, we 

obtain: 
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Equation (9) is due to Pasternak (1932) and is 

only applicable to cylindrical shell subject to 

axi-symmetric loading i.e. stresses and strains 

are constant along the circumferential section. 

The Initial Value Solution 

Let   Z  =  βx  

Differentiating the above with respect to x 

gives: 
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dz
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Initial Value Homogeneous Solution 

The homogeneous solution can be put in the 

form: 

4

1

)()(
k

kkh zYczw (11) 

zzdzzc kk sinsinhcossinh

The constants ak, bk, ck, dk (k = 1, 2, 3, 4), 16 in 

number are obtained by differentiating eqn (12) 

with respect to z till the fourth order and mak-

ing use of the supplementary initial conditions 

which are given as: (Krylov, 1931) 

Y1 (0)  =  1    Y1
i (0)  =  0     Y1

ii (0)  =  0  

Y1
iii (0)  =  0   Y2 (0)   =  0     Y2

i (0)  =  1  

Y2
ii (0)  =  0   Y2

iii (0)  =  0   Y3 (0)  =  0    

Y3
i (0)  =  0   Y3

ii (0)  =  1    Y3
iii (0) =  0  

Y4 (0)  =  0   Y4
i (0)  =  0     Y4

ii (0) =  0  

Y4
iii (0)  =  1  

We therefore obtain: 
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(16) 
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where:  

1 (z) = coshz cosz 

2 (z) = coshz sinz 

3 (z) = sinhz cosz 

4 (z) = sinhz sinz 

 

It can be seen that Yk, k=1, 2, 3, 4 are four inde-

pendent expressions. The homogeneous solu-

tion will thus be written as:  

where the subscript h stands for “homoge-

neous”. 

Taking Wo, qo, Mo, and Qo as initial value of Wh

(z), qh(z), Mh(z) and Qh(z) respectively, the arbi-

trary constants ck are found by making use of 

the initial supplementary conditions: 

17) 

The arbitrary constants c1, c2, c3, and c4 are to 

be determined using the initial conditions. The 

derivatives of the functions Yk, essential for the 

determination of the other stresses and strains, 

are tabulated [Table 1]. 

Table 1: Yk functions and their derivatives 
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The relationships between the deflec-

tion (w(z)) and the rotation (q(z)), mo-

ment (M(z)), shear force (Q(z)) and 

hoop tension  (N(z)) are derived in the 

following manner. 
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Substituting for c1, c2, c3, and c4 in eqns (22) 

through (21) we obtain: 
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Initial Value Particular Solution for the Hy-

drostatic Pressure 

To find the particular solution we proceed to an 

origin transformation (Fig. 2). The origin that 

was previously at point A (top of the tank) is 

shifted to point B along the height of the tank, 

introducing thus a new variable x’ (at the loca-

tion of an arbitrary point C along the height of 

the tank). Let dx’ be an infinitesimal distance 

taken from point B. Due to the hydrostatic pres-

sure acting on the vertical side of the tank, a 

differential (point) load dQ will result at B. Qo 

is the (initial) shear force acting at A. x stands 

for the coordinate of the arbitrary point C when 

the origin is taken at A. L is the height of the 

tank  

Therefore the elemental force can be expressed 

as: 
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Fig. 2: Hydrostatic loading and origin trans-

formation 
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The distributed load at the new origin B is 

given by: 
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With the shift of origin the initial values be-

come: 

Qo= - dQ and Mo = θo = wo = 0 

Using these values in the expressions of the 

homogeneous solution, the elemental expres-

sions for the particular solution are obtained: 
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where the subscript p denotes “particular”. 

Integrating the above expressions gives the 

actual particular solution: 
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Analysis of Radial Ring Force by Displace-

ment Approach 

Fig. 3(a) shows the behaviour of a reservoir 

under hydrostatic pressure: the deflection curve 

is outward. In order to reduce the effect of the 

outward deflection, a ring is introduced at a 

distance c from the top end. It produces an in-

ward deflection (Fig. 3(b)). One can easily see 

that the deflection due to hydrostatic pressure 

and that caused by the ring are opposite one 

another. 

The effects of the hydrostatic and ring forces 

are first analysed separately and then added to 

get the combined action. The hydrostatic hav-

ing been handled in the previous section, the 

ring force effect is analysed by displacement 

approach. The difference between the hydro-

static and ring cases lies only in the particular 

solution which depends on the loading condi-

tions. 

It should be noted that the ring’s width is as-

sumed to be negligible compared to the height 

L. It is also supposed that the top end of the 

tank is supported with an elastic ring of a negli-

gible rigidity against out of plane rotation while 

the bottom is rigidity fixed to the ground. 

It follows that: 

The Initial Value General Solution for the 

Hydrostatic Pressure 

The general solution is obtained by adding ho-

mogeneous and particular solutions: 
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Fig. 3: Deflections due to (a) hydrostatic and 

(b) ring forces 
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The Particular Solution for the Ring Force 

An origin transformation is made in order to 

formulate the particular solutions. The new 

origin is taken at the distance c from the top 

end. Let the displacement induced by the ring 

be w. 
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The initial values therefore become: 

Wo = - Δw and Mo = Qo = θo 

The variable becomes z – βc. 

Substitution of these into the homogeneous 

solution gives the particular solution for the 

ring case: 

Radius of reservoir, R = 10m 

Height of reservoir, L = 8m 

Thickness of reservoir, h = 0.2m 

Unit weight of water, g = 9.81 KN/m3 

Young’s Modulus of Concrete, E=25x106KN 

m2 

Poisson’s ratio, m = 0.2 

Investigations are carried out for different loca-

tions of the ring along the height of the reser-

voir (2L/3, L/2 and L/3 measured from the top). 

The ring is assumed to induce an inward deflec-

tion equal in absolute value to half of the out-

ward deflection due to the hydrostatic pressure 

at its location. 

For the different ring locations the combined 

deflection curve, bending moment, shear force 

and hoop tension diagrams are plotted. 
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where t = βc  

The General Solution for the Ring Force 

The general solution is obtained by addition of 

the homogeneous solution and ring force par-

ticular solutions and considering the boundary 

conditions (Mo = wo = 0).  

Note that the particular solution terms are only 

added for z – t ≥0.  
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where the subscript r stands for “ring”. 

Numerical Studies 

A concrete circular cylindrical water tank with 

real life dimensions is adopted for numerical 

purposes: 
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DISCUSSION  

Direct Deflection 

For the combined action of hydrostatic and ring 

forces, the maximum deflection would be 

0.904mm (at x =5.6m), 0.850mm (at x = 6.4m) 

and 0.727mm (at x = 6.4m) when the ring is 

located respectively at L/3, L/2 and 2L/3 meas-

ured from the top [Fig. 4(a), 5(a), 6(a)]. There 

is a sudden fall of the deflection at the ring lo-

cation.   

 

Bending Moment 

For the hydrostatic loading, the bending mo-

ment varies from zero, at the top, to -

39.969KNm, at the bottom, describing a con-

cave parabolic-like curve due to the cantilever 

action. With the ring action, the maximum 

bending moment is reduced to 39.847, 39.385, 

and 37.563KNm when the ring is located at 

L/3, L/2 and 2L/3 respectively [Fig. 4(b), 5(b), 

6(b)].  

 
Shear Force 

When the hydrostatic pressure is acting alone, 

the shear force varies from – 0.098KN, at the 

top, to – 79.417KN, at the bottom. It becomes – 

79.214, -78.405, and – 75.166 as the ring is 

placed at L/3, L/2 and 2L/3.  A positive peak is 

reached at the ring location: 6.349, 8.131, and 

5.905KN for the three ring locations respec-

tively [Fig. 4(c), 5(c), 6(c)]. 
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Hoop Tension 

As the hoop tension is directly proportional to 

the deflection, the graphs have the same shape 

as those obtained for direct deflection [Fig. 4

(d), 5(d), 6(d)]. 

 

CONCLUSION 

The initial value method is more convenient for 

analysis of ring force compared to other meth-

ods such as the classical method, which may 

involve a more complex procedure to generate 

the particular integral. The displacement ap-

proach shows that the ring can be considered as 

a way to control the deflection along the height 

of the reservoir. The introduction of stiffening 

ring reduces the deflection, but alters the strain 

distribution at its location. This may explain the 

busting at ring vicinity occurring for many 

cases of tank with stiffening ring subjected to 

hydrostatic pressure. As shown by the plotted 

graphs, the most favourable location for the 

ring appears to be at 2/3 of the height of the 

reservoir measured from its top.  

 Large ring width could be suggested in order 

to avoid subsequent busting at the ring location. 

Further studies could be undertaken in the fol-

lowing areas: 

i) analysis of ring force by the classical 

method; 

ii) comparison between displacement and 

force approaches as applied in the initial 

value method for analysis of ring force; 

iii) behaviour of tanks subject to rings of large 

width. 
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