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ABSTRACT:  
This study provides a realistic appraisal of the use of entropy measures in manpower systems. 
The appraisal shows that the existing entropy measures for manpower systems give a partial pic-
ture of the behavioural mechanism of the system. Consequent upon this, we propose the use of 
transition probabilities of the imbedded Markov chain for manpower systems as inputs in the 
entropy statistic. The proposal is illustrated by refining the basic Shannon entropy rate and im-
plemented in Matlab computing environment.  
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INTRODUCTION  
Manpower systems are well-known hierarchical 
systems in literature that consist of individual 
stocks and flows (Bartholomew et al., 1991; 
and McClean et al., 1992). As a consequence, a 
unified framework is employed in the study of 
manpower systems. Most authors rely on 
Markov chain methodologies as an analytic tool 
to unify the states of a manpower system with 
the axiomatic foundation that there is a one-
stage dependence of events, i.e. each event de-
pends immediately on the preceding event, but 
not on the other prior events. The works of 
Feichtinger and Mehlmann (1976), Raghaven-
dra (1991), Setlhare (2007) and Tsaklidis 
(1994) are just a few references. The approach 
by these aforementioned authors is enough 
driving force to assume that any model for 
manpower systems should unify the states of 

the system. 
 
The implementation of Markovian manpower 
models (MMMs) is characterized by computa-
tional complexities. For this reason, several 
software packages such as KENT, PROSPECT, 
MICROPROSPECT, CAMPLAN, and MAN-
SIM (Bartholomew et al., 1991; Smith and Bar-
tholomew, 1988); and FORMASY (Verhoeven, 
1981) have been developed to facilitate the use 
of MMMs. These packages are tailored towards 
specialized problems and thus cannot be easily 
modified. Ekhosuehi and Osagiede (2010a) 
employed the Matlab package as a computa-
tional tool in analyzing manpower systems. The 
suitability of Matlab for manpower systems 
emanates from the hierarchical nature of the 
system which is often represented in a matrix 
form. Matlab has several computational and 
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graphic visual advantages arising from its inter-
active interface and independent plotting de-
vices. Details on the essential features of Mat-
lab are contained in Highman and Highman 
(2000), Martinez and Martinez (2002) and 
Hahn and Valentine (2010).   
 
The term entropy refers to a measure of the 
degree of disorderliness, flexibility, uncertainty 
or randomness in a system (see Tirtiroglu, 
2005). Entropy-theoretic methodologies have 
been applied to diverse and substantive areas 
such as: queuing systems (Tirtiroglu, 2005), 
external debt stock (Osagiede and Ekhosuehi, 
2007), gender inequality (Ekhosuehi and 
Osagiede, 2010b), goodness-of-fit tests (Lee et 
al., 2011) and, in particular, to manpower sys-
tems (McClean and Abodunde, 1978). How-
ever, we shall primarily limit our scope of 
study to entropy-theoretic measures for man-
power systems. 
 
MATERIALS AND METHODS 
Some preliminaries to entropy-theoretic meas-
ures  
The concept of entropy can be formalized from 
different perspectives. In statistical physics, 
entropy, denoted as S, is related logarithmically 
to the number of microstates, W, as  
 
S = kB In W                (1) 
 
where the constant kB could in principle be cho-
sen arbitrarily; but for convenience, as Boltz-
mann constant (Kneen et al., 1972). Suppose   
n0, n1, n2 ... (are the numbers of atoms with no 
energy quanta, 1 quantum, 2 quanta, and so on) 
represent the numbers of the energy levels, then 
the number of ways W for the Boltzmann distri-
bution of energy is  

          (2) 
 

                         
where N is the total number of atoms in the 
system (Kneen et al., 1972). For two blocks, W1 
and W2,  the number of ways of distributing 
energy at the instant of contact is given by 
Toda et al. (1978) as  

W=W1 xW2    (3)  
 
Frequently in chemistry, entropy changes are 
determined by making experimental 
(calorimetric) measurements on the system. 
The calorimetric measurement of entropy for an 
infinitesimal change is  

 
                  (4) 
 

 
where dq is the quantity of heat and T is the 
temperature. Kneen et al. (1972) reported that 
this calorimetric measurement form is the way 
in which the idea of entropy was introduced 
before a molecular understanding of the con-
cept. To apply equation (4), we use  

 
 
            (5) 
 

 
where 1 and 2 denote the initial and final states, 
and  ∆S = S2 - S1. 
 
In information theory, the amount of informa-
tion contained in a piece of data is quantified in 
Shannon entropy. The Shannon entropy func-
tion is used to measure message uncertainty 
and communication channel capacity. Shannon 
entropy relates the notion of information pro-
vided by a probability distribution for predict-
ing outcomes to uncertainty and ‘‘choice’’ 
wherein a source transmits discrete signals      
X={ x1,x2,...,xn} through a noiseless channel 
according to a probability distribution .  

The uncertainty of the system is measured by  
Ui = - logb (p (xi)), where b  is the base of the 
logarithm. Logarithm is used here to provide 
the additive characteristic for uncertainty. The 
lower the probability p(xi)  i.e. p(xi) → 0  the 
higher the uncertainty i.e. Ui → ∞, for the out-
come x1. The average uncertainty 〈U〉 , with  〈•〉
being the average operator is given as ...  
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Equation (6) is referred to as Shannon entropy 
(Ciuperca and Girardin, 2005). According to 
Ciuperca and Girardin (2005), entropy rate was 
first defined by Shannon for an ergodic Markov 
chain with finite state space E as the sum of the 
entropies of the transition probabilities (pij), j = 
1,2,..., s weighted by the probability of occur-
rence of each state i  according to the stationary 
distribution éá  of the chain, namely 

 

  
Shannon entropy has the property of symmetry 
i.e. the measure is unchanged if the outcomes  
xi are re-ordered, and it increases with the num-
ber of outcomes i.e. 

 

  
where Hn(•) is the entropy measure. With Shan-
non formula the entropy of a system can be 
calculated from the entropy of its sub-systems 
if we know how the sub-systems interact with 
each other. For instance, for positive integers bi  
where bi + … +  bk  = n, we have 
 

 
  (9) 
 
 

In most applications, Shannon entropy is pre-
ferred to other entropy measures because it is 
less mathematically rigorous than either ther-
modynamic entropy or Boltzmann’s entropy, 
and it relies solely on probabilities rather than 
on causal statements. Further details on Shan-
non entropy are found in the publication: De-
partmento de Matematica (2001). 
 
Extension of the information-theoretic en-
tropy measure  
Girardin and Limnios (2003) expressed Shan-
non entropy for a finite measure ãG absolutely 
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continuous with respect to a σ-finite measure  ã=

with Radon-Nikodym derivative f as 
 
 
 
 
For a discrete measure ãG with support E , 

                                                                                     
            
 

For a discrete-time process X= (Xn)nÏN, the en-
tropy at time n is defined as the Shannon en-
tropy of the n-dimensional marginal distribu-
tion of X , namely 
                                       
 
 
where      is the density function of the random 
vector X = (X1, X2,...,Xn) with respect to some 
reference measure ãn.  
 
Barron (1985) proved that if {Xn}is a stationary 
ergodic process with probability densities f(X1, 

X2,...,Xn) , then the sequence of relative entropy 
densities  (1/n) log f (X1, X2,...,Xn) converges 
almost surely to the relative entropy rate, and to 
the shift invariant random variable E log f 
(X0|X-∞,-1), for nonergodic processes. Barron 
(1986) expressed Shannon entropy in terms of 
normal entropy and D(X)  as:  

 
           
                   
 

where    
 
 
fn(x) is a probability density function, Ñ= (x)  is 
the normal density function, and σ2 is the vari-
ance. 
 
Girardin and Limnios (2003) obtained the en-
tropy rate of semi-Markov processes by extend-
ing the Shannon-McMillan-Breiman theorem. 
The Shannon-McMillan-Breiman theorem (or 
asymptotic equirepartition property (AEP)) 
constitutes the analogue of the law of large 
numbers for information theory.  This theorem 
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 integer n as where  
 

 
 
and   and  
 
 

 
 
 

Application of entropy-theoretic methodolo-
gies to manpower systems  
The use of entropy-theoretic concepts in man-
power systems has produced interesting results. 
McClean and Abodunde (1978) resolved one of 
the problems associated with Shannon entropy 
(which is the absence of a fixed maximum 
value) by modifying the basic Shannon entropy 
so that it lies within the closed interval [0,1]  as  
 

 
 
           (15)                                                                                  
 
 

for a steady-state manpower system. In equa-
tion (15), k  is the maximum number of tenure 
classes; and pi  is the probability that a member 
of staff is in tenure class i. McClean and 
Abodunde (1978) used the transition probabili-
ties generated from the McClean’s steady-state 
model (McClean, 1977) as inputs to the for-
mula in equation (15) so as to measure the sta-
bility of the length of service in a system. The 
work of McClean and Abodunde (1978) has 
been extended by Vassiliou (1984) to find the 
probability of person in a specific length of 
service class as t→∞ .  
 
Omosigho and Osagiede (1999) estimated the 
entropy value for an organisation based on 
wastage rate. The log-normal model of Chu and 
Lin (1994) was modified as  

                                                                                                     
       (16) 
 

where 
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ensures the almost sure convergence of the  
 
sequence                         to H(X), where  
 
is the densi ty funct ion of the random  
vector X = (X1,...,Xn)   and H(X)  is the entropy 
rate. Since semi-Markov processes belong to a 
class of non-stationary continuous-time proc-
esses, Girardin and Limnios (2003) presented 
the entropy of the process Z as  
 
 
 
 
Ciuperca and Girardin (2005) derived an esti-
mator for the entropy rate based on the maxi-
mum likelihood method of the transition matrix 
with proofs of its properties. The entropy rate is  
of the form 
 

            
 
 
 

where X=(Xn)   is a homogeneous ergodic (that 
is irreducible and aperiodic) Markov chain with 
finite state space  E={1,···,s}, πi ,i=1,···,s, is the 
stationary distribution,π(i ,j)= πiPi j   and    
Pi j = P(Xn=j/Xn-1=i), nPi j≥1. The stationary dis-
tribution (πi) is estimated as  
 

 

and 
 
 

for the one observation of the chain, (X=X0,...,Xn).   
 

 

C i u -
perca and Girardin (2005) obtained an estimate 
of the stationary probability for given K   inde-
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W(t)is the wastage rate when the length of ser-
vice is t,w  is the mean of 1n t, and σ  is the 
standard deviation of 1n t. Using the Bowey’s 
stability curve for the actual wastage rates, 
Omosigho and Osagiede (1999) validated the 
entropy value for the organisation.  
 
McClean (1986) developed a new definition of 
entropy for a manpower system based on con-
tinuous-time tenure profile as 

 
 
                  (17) 
        
 
                                                                 

where F(x)= the survivor function,   
 
and w  is the maximum possible completed 
length of service (C. L. S.). The entropy meas-
ure in McClean (1986) was aimed at correcting 
the anomaly of ‘time-based drift’ of the discrete 
entropy definition in McClean and Abodunde 
(1978). The crux of the entropy measure in 
McClean (1986) is the survivor function and 
the assumption that the modelled manpower 
system is in a steady-state. The limitations in 
the use of McClean’s entropy measure are that 
the tail of the distribution of the survivor func-
tion is frequently ignored (Tyler, 1986) and that 
large statistical samples covering a short time 
span are required to achieve the steady-state 
property. Ebrahimi et al. (2010) had also men-
tioned that the information methodologies are 
often developed in isolation, i.e. a particular 
measure is used without consideration of the 
larger picture. 
 
In Omosigho and Osagiede (2002) the assump-

tion of a constant workforce size in the 
McClean/Abodunde’s entropy measure was 
criticized as unrealistic. Thus, Omosigho and 
Osagiede (2002) introduced the augmented  
 
ratio of squares measure given as   
 
 
 
w h e r e          
 
 
k is the highest grade in the organization, Ej  is 
the expected number of workers in grade j in 
the organization and Oj   is the observed num-
ber of workers in grade j  in the organization. 
Omosigho and Osagiede (2002) therefore re-
calibrated f(x)  so as to detect the development 
of a chaotic situation in manpower systems as  

 
 
 
 

 
A stable and desirable workforce is indicated 
when F(x)=0 , whereas F(x)=1 indicates an 
abnormal situation. For F(x)>1, a chaotic situa-
tion develops in the workforce of the organiza-
tion. The stability measures proposed by 
Omosigho and Osagiede (2002) have some 
limitations such as: 
i. The measures do not take into considera-

tion   the transition of individuals from one 
grade/cadre to another. 

ii. The range of f(x), i.e. f (x)∈[0,1], is unrea 
istic in practice as the highest grade in any 
organization, k, is known and finite. Thus 
k→∞ as claimed by Omosigho and 
Osagiede (2002) cannot hold in practice. 

 
Tyler (1989) developed an entropy measure for 
manpower systems based on the concepts of 
thermodynamics. Tyler (1989) assumed that the 
size of the manpower system is analogous to 
the absolute temperature and that the size of the 
tenure class satisfies the McClean’s steady-
state manpower model. Tyler (1989) evaluated 
the entropy of a manpower system from the 
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transition probability matrix, and W is the 
wastage probability vector. The maximum 
number of grades in the system is the total 
number of the states in the transition matrix, i.e.  
k=6 .  
 
If we decide to apply the formula in equation 
(15) to estimate the entropy of the system, then 
we consider the survival of individuals from 
one grade to the other as described by the tran-
sition matrix, P. Now, for a direct transition 
from grade 1 to other grades, we have  p1=0, 
p2=0.9891,, and p1= 0, i = 3,4,5,6. In this case,  
 
 
we find that the axiom that            does  
 
 
not hold.  The same result holds if the other 
grades are chosen as a starting point. The rea-
son for this is that the transition matrix P  is sub
-stochastic as a result of wastages in the sys-
tem. Thus, we cannot use the entropy measure 
in McClean and Abodunde (1978) as well as its 
variants in Vassiliou (1984), Omosigho and 
Osagiede (1999) and Omosigho and Osagiede  
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Boltzmann’s formula as well as the internal 
energy of the manpower system using 
 
 
,                              (18) 
 
                                                                                                                
where HB is the Boltzmann’s formula expressed 
as                                                                                  
 
,                                                      
                                                                      (19) 
 
 
 
,  
 
 
 
are the McCleans’ steady-state number of 
members of the population belonging to each 
tenure class  c, c is the number of tenure  
c l a s s e s ,              i s  t h e  t o t a l     
 
 
size of the population, and pi is the probability 
of surviving from one tenure class i to tenure 
class i+1 . The thermodynamic entropy meas-
ure proposed by Tyler (1989) has a critical 
limitation emanating from the assumption that 
the size of the manpower system is analogous 
to absolute temperature.  
 
This assumption is unrealistic as it has no theo-
retical basis. More so, the mathematical com-
plexities inherent in the application of the en-
tropy measure limit its use only to the mathe-
matically sophisticated researcher. 
 
RESULTS AND DISCUSSION  
Suppose we are interested in estimating the 
entropy value of a manpower system described 
by the following transition mechanism: 
 

where P0 is the recruitment vector, P is the 
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(2002) to do this because flows such as recruit-
ment and wastage flows are neglected. Conse-
quently, the entropy measures in McClean and 
Abodunde (1978), Vassiliou (1984), Omosigho 
and Osagiede (1999) and Omosigho and 
Osagiede (2002) give a partial picture of the 
behaviour of the system. In a similar manner, 
the thermodynamic entropy measure in Tyler 
(1989) cannot be applied because there is no 
sufficient reason to assume that the size of the 
manpower system is analogous to absolute tem-
perature. Similarly, if we decide to use the ba-
sic Shannon entropy rate or the entropy formula 
of Ciuperca and Girardin (2005), we again en-
counter the problem of dealing with a sub-
stochastic transition matrix  
 
 
a s  
 
 
where the shortfalls in the sum of transition 
probabilities, are created by losses and transfers 
in the system, and pij  is the transition probabil-
ity from state i  to state j. Since the states within  
 
the system are transient, then 
 
 
for all i  (see Hillier and Lieberman, 2005). 
This is because the process cannot remain in a 
transient state after a large number of transi-
tions.  To compute the entropy value for the 
system therefore, a transformation of the form: 
I:〈P, w, P0〉 →k x k  matrix space is necessary. 
The imbedded Markov chain formulation 
which is based on the Young/Almond-type 
transition matrix (Feichtinger and Mehlmann, 
1976; Tsaklidis, 1994) is a convenient way to 
achieve this. By so doing, we seek a block ma-
trix of the form: Q=P + wP0 , such that 
Qe'=e'  , where  e' is a column vector conform-
able with matrix  Q containing one as its ele-
ments. In this light, we modify the basic Shan-
non entropy rate using the transition probabili-
ties of the imbedded Markov chain as inputs in 
the Shannon entropy formula and loge k  as a 
scaling factor to constrain the entropy rate to 

the interval [0,1] . The modified version of the 
basic Shannon entropy rate for the manpower 
system under consideration is written in Matlab 
pseudocodes as:  

 
 

 
 

Modified_s hannon_ent ropy ←  
- sum ((PI’*log(Q)))/log(k)’ 
   
where the left arrow ← is used instead of 
equality for an assignment and Q  is a matrix 
formed from Q0  such that the zeros in matrix  
Q0 are replaced by 1. We implement the pro-
gram described by the pseudocodes in Matlab 
R2007b. Subsequently, we obtain the imbedded 
Markov chain and the entropy value for the 
manpower system respectively as  

and 

In matrix Q0 , the entries in columns 1 and 2 
arise from the replacement matrix and the re-
cruitment policy of the system as new recruits 
enter either into grade 1 or grade 2. In particu-
lar, the 1,2 entry is the probability that an indi-
vidual is promoted from grade 1 to grade 2 or 
he is recruited into grade 2 to replace leavers in 
grade 1. Wherever zero entry occurs, it means 
no transition took place between the corre-
sponding grades. The main diagonal elements 
of matrix Q0  are either zero or relatively small, 
whi le the upper off-d iagonal elements 
(‘promotion’ probabilities) are large. The main 
diagonal elements for columns 1 and 2 show 
the consequential replacement of losses by new 
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recruits, while the upper off-diagonal elements  
indicate that there is a normal progression to 
the next higher grade. The entropy value, which 
is closer to zero than to one, indicates that un-
certainty in the transition mechanism of the 
system is low. This inference is what we expect 
as the transition probability matrix  P=(pij) is 
such that pij ≥ 0 , for j=i,i+1  , and pij = 0  , oth-
erwise; and the imbedded Markov chain  Q0 
has a ‘sparse’ block structure. In view of these, 
an individual in the system is almost sure of the 
next grade in the immediate ensuing transition.  
 
From this illustrative example, we are able to 
make the Shannon entropy rate robust using the 
imbedding transformation to unify the plethora 
of transitions in the system. 
 
CONCLUSION  
This study contains a survey of entropy-
theoretic literature with particular reference to 
manpower systems. Although the existing en-
tropy measures give a partial picture of the real-
world intricacies of a typical manpower system 
and thus limit their use in describing the en-
tropy of the entire system, yet the study does 
not invalidate the use of entropy in manpower 
systems. The major accomplishments of the 
study are that entropy as a measure of certain 
properties in manpower systems has been ap-
praised to identify future research directions, 
and arising thereof, is a suggestion for the de-
velopment of a robust entropy statistic in which 
all possible transitions in a manpower system 
are inscribed. The suggestion is substantiated 
with an example problem.  
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