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ABSTRACT
The society and the environment have great influence on the attitudes and the decisions made 
by her residents. The age at which a woman enters marriage to some extent is influenced by the 
society and the environment she lives in and some other socio-demographic factors. This study 
employs a hierarchical survival analysis which account for state differences in the age at first 
marriage among Nigerian women using the dataset from 2018 National Demographic Health 
survey. The Cox model with two independent random effects was used to provide parameter 
estimates as well as estimates of the random effects variances at all the levels. It was found 
that state heterogeneity had the highest contribution and location of residence within the 
state also contributed to the differences in the timing of marriage. The study also revealed that 
region, location of residence, wealth index, respondent age at first sex, birth cohort, religious 
affiliation and educational qualification of the women were significant factors in determining 
the age at first marriage.
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INTRODUCTION
Marriage is considered an important 
institution both for the individual and the 
society at large. It is a significant event that 
marks the beginning of the formation process 
of a family and child bearing. Marriage marks 
the beginning of transition to adulthood as 
the individual separates from the parental 
home, even if they continue to be socially 
and economically interdependent through the 
extended family. The ages at which individuals 
enters marriage contributes greatly to fertility 
as the timing a woman enters marriage 
determines the time to have children and 
the total number of children they will have 
over their lifetime (Islam, 2009; Godha, 2013; 
Ajala, 2014; Singh & Maheshwari, 2014; Global 
Health Metrics, 2018; Shakya, et. al., 2020). 
The timing of first marriage or union also have 
implication on their social status, women 
who marry at a younger age are likely to find 
motherhood as the sole focus of their lives at 
the expense of developing in other areas of 
their lives such as training for employment, 
work experience, formal education and 
personal growth (Susheela & Renee, 1996; 
Zahangir & Kamal 2011; Chau-Kuang, et. al., 
2013; Kamal et. al., 2015; Arnab & Siraj, 2020).

The differences in age at first marriage is 
not uniform among all women. Age at first 
marriage among women differs between 
different cultures, from one region to another 
and even among different groups of people 
(Glick & Landau, 1950; Bongaarts, 2007; 
Indongo & Pazvakawamba, 2015; Odimegwu, 
et al., 2015; Farooq & Deen, 2016). Spatial 
demographers assume that location of 
residence is an important determinant of 
attitudes and behaviours, both because 
geographic features can restrain or facilitate 
behaviours and it is through spatial clustering 
of people that clustering of norms typically 
occurs (Week, 2004; Week, 2016). Therefore, 
the different groupings, communities and 
clusters of individuals is also of interest in 

investigating the variations in the ages at 
which individual women enters marriage 
(Biswas, et al., 2019).

Nigeria been the most populous Africa 
Country with over 521 languages, over 1150 
dialects and ethnic groups scattered in the 36 
states within the six geopolitical zone cannot 
be said to have uniformity in the ages at which 
her women enter marriage due to the great 
diversity inherent in her. Issues relating to early 
marriage could be seen as a general problem 
affecting all regions and group of people in 
the country with her diversity. Studies have 
explored the factors associated with age at 
first marriage among women of reproductive 
age (Obikeze & Okeibunor, 2002; Adebowale, 
et al., 2012; Efobi, et al., 2021; Bolarinwa, et 
al., 2022; Bolarinwa, et al., 2022; Rasul, et al., 
2022). Despite these studies, the variation that 
exist in the age at which marriage is initiated 
between the different region of residence 
of the women have not been examined in a 
survival analysis setting. The environment, 
group and location of one’s residence has 
a great influence on the attitudes and 
involvements of an individual. Therefore, the 
goal of this paper is to investigate the variation 
in age at first marriage among the states and 
other factors that may be associated with it 
among the women of reproductive age in 
Nigeria while controlling for the individual 
women characteristics. In other words, we 
want to identify and estimate the variations 
from the location and or state of residence 
as a factor influencing age at first marriage. 
The knowledge of these state differences is a 
critical step in identifying and addressing issues 
related to building women socioeconomic 
capacities for nation’s development.

This paper is organized as follows; the data 
source and the variables description as well as 
the methodology intended to achieve the set 
objective are discussed under the materials 
and method section. The result of the analysis 
and the discussions are presented in the result 
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and discussion section while the conclusion 
includes the findings from the work, limitation 
of the work and the suggestions to curb the 
menace of early marriage among Nigeria 
women.

MATERIALS AND METHOD

Data source and variables description
Dataset from the 2018 Nigeria Demographic 
and Health Survey (NDHS) were analysed. 
Individual data were available for 41465 
women aged 15-49. The survey was designed 
to provide information on age at first marriage 
of the women at national, regional and state 
for both urban and rural areas. The socio 
demographic and economic factors considered 
to affect the age at the first marriage as made 
available in the dataset are religion (Islam and 
Christianity), highest educational qualification 
(no education, primary, secondary, higher), 
birth cohort (less than 20, 20-29, 30-39, 
40-49), age at sex (at marriage, before 
marriage, never had sex), wealth index (poor, 
middle, rich), geo-political zone (North central, 
North east, North west, South east, South-
south, South west) and location of residence 
(urban, rural). The first categories are the 
reference categories for all the factors. The 
selection of these variables is based on the 
available information of the NDHS data and 
women individual factors considered to affect 
the timing of marriage.

Proposed Approach
Survival time models often assume that 
subjects in a population are homogeneous 
conditional on observed factors (covariates) 
and therefore assume that the random 
components at the contextual level are 
independent. The Cox proportional hazard 
model assumes independence of survival 
times thereby ignoring the effect of the 
clusters that the subjects belong to which 
could be of interest at it affects the event 

times. Ignoring clustering when it exist 
could lead to biases not only the regression 
estimates but also their standard errors. 
Several estimation procedures have been 
proposed to model Cox with two additive 
random effects which is capable of handling 
the random effect at the group level and at the 
individual level Xue and Brookmeyer (1996), 
Ripatti and Palmgren (2000), Duchateau and 
Janssen (2008) and Wienke (2010).

Two additive random effects Cox 
models framework
Suppose there are G-independent clusters (i 
= 1, ..., G) Tij is the survival times for subject 
j (j = 1, ...,ni)from group I and Cij is the 
corresponding right censoring time. Assuming 
the censoring times are independent of the 
survival times, the observations are Yij = min 
(Tij, Cij) and the censoring indicator δij=I{Tij≤Cij}. 
For each subject, the explanatory variable xij 
is observed. The hazard for the jth subject in 
the ith cluster with random group effect bi0 (i.e. 
hazard for the jth subject in the ith cluster that 
takes into account the correlation occurring in 
the data due to clustering with random cluster 
effects) is given by

Brookmeyer (1996), Ripatti and Palmgren (2000), Duchateau and Janssen (2008) and Wienke 
(2010). 

Two additive random effects Cox models framework 

Suppose there are G-independent clusters (𝑖𝑖 = 1, … , 𝐺𝐺). Tij is the survival times for subject j 
(𝑗𝑗 = 1, … , 𝑛𝑛𝑖𝑖) from group I and Cij is the corresponding right censoring time. Assuming the 
censoring times are independent of the survival times, the observations are𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑛𝑛(𝑇𝑇𝑖𝑖𝑖𝑖, 𝐶𝐶𝑖𝑖𝑖𝑖)  
and the censoring indicator𝛿𝛿𝑖𝑖𝑖𝑖 = 𝐼𝐼{𝑇𝑇𝑖𝑖𝑖𝑖≤𝐶𝐶𝑖𝑖𝑖𝑖}. For each subject, the explanatory variable 𝑥𝑥𝑖𝑖𝑖𝑖is 
observed. The hazard for the jth subject in the ith cluster with random group effect bi0 (i.e. 
hazard for the jth subject in the ith cluster that takes into account the correlation occurring in 
the data due to clustering with random cluster effects) is given by 

ℎ𝑖𝑖𝑖𝑖(𝑡𝑡\𝑏𝑏𝑖𝑖0, 𝑋𝑋𝑖𝑖𝑖𝑖) = ℎ0(𝑡𝑡)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + ∑ 𝛽𝛽𝑘𝑘𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘
𝑝𝑝
𝑘𝑘=1 ) 1 

where ℎ0(𝑡𝑡) is the unspecified baseline hazard function at time t, β is the fixed effect parameter, 
𝑏𝑏𝑖𝑖0 is the random effect for the ith cluster. The random effects 𝑏𝑏𝑖𝑖0 are assumed to be 
independently and identically distributed.  

When variation between the cluster exists and is large, there is need to investigate whether 
there is variation in the predictor effect between the clusters. To achieve this, an extra random 
effect is added to the model in Eq. (1) which is the interaction between the observable and the 
unobservable variables. Then, the Cox model with two additive random effect models is 
expressed as; 

ℎ𝑖𝑖𝑖𝑖(𝑡𝑡\𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = ℎ0(𝑡𝑡)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖1 + ∑ 𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑝𝑝
𝑘𝑘=1 )  2 

where 𝑏𝑏𝑖𝑖1is the random predictor effect also known as random coefficient or random 
interaction. The random effects are assumed to follow a multivariate normal distribution with 

mean 0 and a variance-covariance matrix Σ, 𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)~𝑁𝑁(0, Σ) with Σ = [ 𝜎𝜎0
2 𝜎𝜎01

𝜎𝜎10 𝜎𝜎1
2 ]. The 

variance 𝜎𝜎0
2  of the bi0 represents the heterogeneity between the clusters of the overall baseline 

hazard and the variance 𝜎𝜎1
2 of bi1 is the heterogeneity between clusters of the overall effect β1. 

If the variance 𝜎𝜎0
2  is null, then the observations from the same cluster are independent. A larger 

variance indicates greater heterogeneity across clusters and a greater correlation of the survival 
times for subjects belonging to the same cluster. A null 𝜎𝜎1

2 implies no heterogeneity of the 
effect over clusters. 

Given the random effects (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1), observations within cluster i are assumed to be 
independent. The full marginal log likelihood function for cluster i is given as; 

𝑙𝑙(ℎ0(𝑡𝑡), 𝛽𝛽|𝑏𝑏𝐼𝐼0, 𝑏𝑏𝑖𝑖1)

= 𝑙𝑙𝑛𝑛 ∏ ∫ ∫ [∏ ℎ(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)𝛿𝛿𝑖𝑖𝑖𝑖𝑠𝑠(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)
𝑛𝑛𝑖𝑖

𝑖𝑖=1
] 𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑑𝑑𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1

𝐺𝐺

𝑖𝑖=1
 

where h0 is the unspecified baseline hazard 
function at time t, β is the fixed effect 
parameter, bi0 is the random effect for the ith 
cluster. The random effects bi0 are assumed to 
be independently and identically distributed.

When variation between the cluster exists 
and is large, there is need to investigate 
whether there is variation in the predictor 
effect between the clusters. To achieve this, 
an extra random effect is added to the model 
in Eq. (1) which is the interaction between the 
observable and the unobservable variables. 
Then, the Cox model with two additive random 
effect models is expressed as;

   2



Adeniyi et al

22 Journal of Science and Technology © KNUST 2023

Brookmeyer (1996), Ripatti and Palmgren (2000), Duchateau and Janssen (2008) and Wienke 
(2010). 
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𝑛𝑛𝑖𝑖

𝑖𝑖=1
] 𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑑𝑑𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1

𝐺𝐺

𝑖𝑖=1
 

The variance 

Brookmeyer (1996), Ripatti and Palmgren (2000), Duchateau and Janssen (2008) and Wienke 
(2010). 

Two additive random effects Cox models framework 

Suppose there are G-independent clusters (𝑖𝑖 = 1, … , 𝐺𝐺). Tij is the survival times for subject j 
(𝑗𝑗 = 1, … , 𝑛𝑛𝑖𝑖) from group I and Cij is the corresponding right censoring time. Assuming the 
censoring times are independent of the survival times, the observations are𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑛𝑛(𝑇𝑇𝑖𝑖𝑖𝑖, 𝐶𝐶𝑖𝑖𝑖𝑖)  
and the censoring indicator𝛿𝛿𝑖𝑖𝑖𝑖 = 𝐼𝐼{𝑇𝑇𝑖𝑖𝑖𝑖≤𝐶𝐶𝑖𝑖𝑖𝑖}. For each subject, the explanatory variable 𝑥𝑥𝑖𝑖𝑖𝑖is 
observed. The hazard for the jth subject in the ith cluster with random group effect bi0 (i.e. 
hazard for the jth subject in the ith cluster that takes into account the correlation occurring in 
the data due to clustering with random cluster effects) is given by 

ℎ𝑖𝑖𝑖𝑖(𝑡𝑡\𝑏𝑏𝑖𝑖0, 𝑋𝑋𝑖𝑖𝑖𝑖) = ℎ0(𝑡𝑡)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + ∑ 𝛽𝛽𝑘𝑘𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘
𝑝𝑝
𝑘𝑘=1 ) 1 

where ℎ0(𝑡𝑡) is the unspecified baseline hazard function at time t, β is the fixed effect parameter, 
𝑏𝑏𝑖𝑖0 is the random effect for the ith cluster. The random effects 𝑏𝑏𝑖𝑖0 are assumed to be 
independently and identically distributed.  

When variation between the cluster exists and is large, there is need to investigate whether 
there is variation in the predictor effect between the clusters. To achieve this, an extra random 
effect is added to the model in Eq. (1) which is the interaction between the observable and the 
unobservable variables. Then, the Cox model with two additive random effect models is 
expressed as; 

ℎ𝑖𝑖𝑖𝑖(𝑡𝑡\𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = ℎ0(𝑡𝑡)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖1 + ∑ 𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑝𝑝
𝑘𝑘=1 )  2 

where 𝑏𝑏𝑖𝑖1is the random predictor effect also known as random coefficient or random 
interaction. The random effects are assumed to follow a multivariate normal distribution with 

mean 0 and a variance-covariance matrix Σ, 𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)~𝑁𝑁(0, Σ) with Σ = [ 𝜎𝜎0
2 𝜎𝜎01

𝜎𝜎10 𝜎𝜎1
2 ]. The 

variance 𝜎𝜎0
2  of the bi0 represents the heterogeneity between the clusters of the overall baseline 

hazard and the variance 𝜎𝜎1
2 of bi1 is the heterogeneity between clusters of the overall effect β1. 

If the variance 𝜎𝜎0
2  is null, then the observations from the same cluster are independent. A larger 

variance indicates greater heterogeneity across clusters and a greater correlation of the survival 
times for subjects belonging to the same cluster. A null 𝜎𝜎1

2 implies no heterogeneity of the 
effect over clusters. 

Given the random effects (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1), observations within cluster i are assumed to be 
independent. The full marginal log likelihood function for cluster i is given as; 

𝑙𝑙(ℎ0(𝑡𝑡), 𝛽𝛽|𝑏𝑏𝐼𝐼0, 𝑏𝑏𝑖𝑖1)

= 𝑙𝑙𝑛𝑛 ∏ ∫ ∫ [∏ ℎ(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)𝛿𝛿𝑖𝑖𝑖𝑖𝑠𝑠(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)
𝑛𝑛𝑖𝑖

𝑖𝑖=1
] 𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑑𝑑𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1

𝐺𝐺

𝑖𝑖=1
 

of the bi0 represents the 
heterogeneity between the clusters of the 
overall baseline hazard and the variance 

Brookmeyer (1996), Ripatti and Palmgren (2000), Duchateau and Janssen (2008) and Wienke 
(2010). 

Two additive random effects Cox models framework 

Suppose there are G-independent clusters (𝑖𝑖 = 1, … , 𝐺𝐺). Tij is the survival times for subject j 
(𝑗𝑗 = 1, … , 𝑛𝑛𝑖𝑖) from group I and Cij is the corresponding right censoring time. Assuming the 
censoring times are independent of the survival times, the observations are𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑛𝑛(𝑇𝑇𝑖𝑖𝑖𝑖, 𝐶𝐶𝑖𝑖𝑖𝑖)  
and the censoring indicator𝛿𝛿𝑖𝑖𝑖𝑖 = 𝐼𝐼{𝑇𝑇𝑖𝑖𝑖𝑖≤𝐶𝐶𝑖𝑖𝑖𝑖}. For each subject, the explanatory variable 𝑥𝑥𝑖𝑖𝑖𝑖is 
observed. The hazard for the jth subject in the ith cluster with random group effect bi0 (i.e. 
hazard for the jth subject in the ith cluster that takes into account the correlation occurring in 
the data due to clustering with random cluster effects) is given by 

ℎ𝑖𝑖𝑖𝑖(𝑡𝑡\𝑏𝑏𝑖𝑖0, 𝑋𝑋𝑖𝑖𝑖𝑖) = ℎ0(𝑡𝑡)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + ∑ 𝛽𝛽𝑘𝑘𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘
𝑝𝑝
𝑘𝑘=1 ) 1 

where ℎ0(𝑡𝑡) is the unspecified baseline hazard function at time t, β is the fixed effect parameter, 
𝑏𝑏𝑖𝑖0 is the random effect for the ith cluster. The random effects 𝑏𝑏𝑖𝑖0 are assumed to be 
independently and identically distributed.  

When variation between the cluster exists and is large, there is need to investigate whether 
there is variation in the predictor effect between the clusters. To achieve this, an extra random 
effect is added to the model in Eq. (1) which is the interaction between the observable and the 
unobservable variables. Then, the Cox model with two additive random effect models is 
expressed as; 

ℎ𝑖𝑖𝑖𝑖(𝑡𝑡\𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = ℎ0(𝑡𝑡)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖1 + ∑ 𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑝𝑝
𝑘𝑘=1 )  2 

where 𝑏𝑏𝑖𝑖1is the random predictor effect also known as random coefficient or random 
interaction. The random effects are assumed to follow a multivariate normal distribution with 

mean 0 and a variance-covariance matrix Σ, 𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)~𝑁𝑁(0, Σ) with Σ = [ 𝜎𝜎0
2 𝜎𝜎01

𝜎𝜎10 𝜎𝜎1
2 ]. The 

variance 𝜎𝜎0
2  of the bi0 represents the heterogeneity between the clusters of the overall baseline 

hazard and the variance 𝜎𝜎1
2 of bi1 is the heterogeneity between clusters of the overall effect β1. 

If the variance 𝜎𝜎0
2  is null, then the observations from the same cluster are independent. A larger 

variance indicates greater heterogeneity across clusters and a greater correlation of the survival 
times for subjects belonging to the same cluster. A null 𝜎𝜎1

2 implies no heterogeneity of the 
effect over clusters. 

Given the random effects (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1), observations within cluster i are assumed to be 
independent. The full marginal log likelihood function for cluster i is given as; 

𝑙𝑙(ℎ0(𝑡𝑡), 𝛽𝛽|𝑏𝑏𝐼𝐼0, 𝑏𝑏𝑖𝑖1)

= 𝑙𝑙𝑛𝑛 ∏ ∫ ∫ [∏ ℎ(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)𝛿𝛿𝑖𝑖𝑖𝑖𝑠𝑠(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)
𝑛𝑛𝑖𝑖

𝑖𝑖=1
] 𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑑𝑑𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1

𝐺𝐺

𝑖𝑖=1
 

of bi1 is the heterogeneity between clusters of 
the overall effect β1. If the variance 

Brookmeyer (1996), Ripatti and Palmgren (2000), Duchateau and Janssen (2008) and Wienke 
(2010). 

Two additive random effects Cox models framework 

Suppose there are G-independent clusters (𝑖𝑖 = 1, … , 𝐺𝐺). Tij is the survival times for subject j 
(𝑗𝑗 = 1, … , 𝑛𝑛𝑖𝑖) from group I and Cij is the corresponding right censoring time. Assuming the 
censoring times are independent of the survival times, the observations are𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑛𝑛(𝑇𝑇𝑖𝑖𝑖𝑖, 𝐶𝐶𝑖𝑖𝑖𝑖)  
and the censoring indicator𝛿𝛿𝑖𝑖𝑖𝑖 = 𝐼𝐼{𝑇𝑇𝑖𝑖𝑖𝑖≤𝐶𝐶𝑖𝑖𝑖𝑖}. For each subject, the explanatory variable 𝑥𝑥𝑖𝑖𝑖𝑖is 
observed. The hazard for the jth subject in the ith cluster with random group effect bi0 (i.e. 
hazard for the jth subject in the ith cluster that takes into account the correlation occurring in 
the data due to clustering with random cluster effects) is given by 

ℎ𝑖𝑖𝑖𝑖(𝑡𝑡\𝑏𝑏𝑖𝑖0, 𝑋𝑋𝑖𝑖𝑖𝑖) = ℎ0(𝑡𝑡)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + ∑ 𝛽𝛽𝑘𝑘𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘
𝑝𝑝
𝑘𝑘=1 ) 1 

where ℎ0(𝑡𝑡) is the unspecified baseline hazard function at time t, β is the fixed effect parameter, 
𝑏𝑏𝑖𝑖0 is the random effect for the ith cluster. The random effects 𝑏𝑏𝑖𝑖0 are assumed to be 
independently and identically distributed.  

When variation between the cluster exists and is large, there is need to investigate whether 
there is variation in the predictor effect between the clusters. To achieve this, an extra random 
effect is added to the model in Eq. (1) which is the interaction between the observable and the 
unobservable variables. Then, the Cox model with two additive random effect models is 
expressed as; 

ℎ𝑖𝑖𝑖𝑖(𝑡𝑡\𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = ℎ0(𝑡𝑡)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖1 + ∑ 𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑝𝑝
𝑘𝑘=1 )  2 

where 𝑏𝑏𝑖𝑖1is the random predictor effect also known as random coefficient or random 
interaction. The random effects are assumed to follow a multivariate normal distribution with 

mean 0 and a variance-covariance matrix Σ, 𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)~𝑁𝑁(0, Σ) with Σ = [ 𝜎𝜎0
2 𝜎𝜎01

𝜎𝜎10 𝜎𝜎1
2 ]. The 

variance 𝜎𝜎0
2  of the bi0 represents the heterogeneity between the clusters of the overall baseline 

hazard and the variance 𝜎𝜎1
2 of bi1 is the heterogeneity between clusters of the overall effect β1. 

If the variance 𝜎𝜎0
2  is null, then the observations from the same cluster are independent. A larger 

variance indicates greater heterogeneity across clusters and a greater correlation of the survival 
times for subjects belonging to the same cluster. A null 𝜎𝜎1

2 implies no heterogeneity of the 
effect over clusters. 

Given the random effects (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1), observations within cluster i are assumed to be 
independent. The full marginal log likelihood function for cluster i is given as; 

𝑙𝑙(ℎ0(𝑡𝑡), 𝛽𝛽|𝑏𝑏𝐼𝐼0, 𝑏𝑏𝑖𝑖1)

= 𝑙𝑙𝑛𝑛 ∏ ∫ ∫ [∏ ℎ(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)𝛿𝛿𝑖𝑖𝑖𝑖𝑠𝑠(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)
𝑛𝑛𝑖𝑖

𝑖𝑖=1
] 𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑑𝑑𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1

𝐺𝐺

𝑖𝑖=1
 

is null, 
then the observations from the same cluster 
are independent. A larger variance indicates 
greater heterogeneity across clusters and a 
greater correlation of the survival times for 
subjects belonging to the same cluster. A null 

Brookmeyer (1996), Ripatti and Palmgren (2000), Duchateau and Janssen (2008) and Wienke 
(2010). 

Two additive random effects Cox models framework 

Suppose there are G-independent clusters (𝑖𝑖 = 1, … , 𝐺𝐺). Tij is the survival times for subject j 
(𝑗𝑗 = 1, … , 𝑛𝑛𝑖𝑖) from group I and Cij is the corresponding right censoring time. Assuming the 
censoring times are independent of the survival times, the observations are𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑛𝑛(𝑇𝑇𝑖𝑖𝑖𝑖, 𝐶𝐶𝑖𝑖𝑖𝑖)  
and the censoring indicator𝛿𝛿𝑖𝑖𝑖𝑖 = 𝐼𝐼{𝑇𝑇𝑖𝑖𝑖𝑖≤𝐶𝐶𝑖𝑖𝑖𝑖}. For each subject, the explanatory variable 𝑥𝑥𝑖𝑖𝑖𝑖is 
observed. The hazard for the jth subject in the ith cluster with random group effect bi0 (i.e. 
hazard for the jth subject in the ith cluster that takes into account the correlation occurring in 
the data due to clustering with random cluster effects) is given by 

ℎ𝑖𝑖𝑖𝑖(𝑡𝑡\𝑏𝑏𝑖𝑖0, 𝑋𝑋𝑖𝑖𝑖𝑖) = ℎ0(𝑡𝑡)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + ∑ 𝛽𝛽𝑘𝑘𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘
𝑝𝑝
𝑘𝑘=1 ) 1 

where ℎ0(𝑡𝑡) is the unspecified baseline hazard function at time t, β is the fixed effect parameter, 
𝑏𝑏𝑖𝑖0 is the random effect for the ith cluster. The random effects 𝑏𝑏𝑖𝑖0 are assumed to be 
independently and identically distributed.  

When variation between the cluster exists and is large, there is need to investigate whether 
there is variation in the predictor effect between the clusters. To achieve this, an extra random 
effect is added to the model in Eq. (1) which is the interaction between the observable and the 
unobservable variables. Then, the Cox model with two additive random effect models is 
expressed as; 

ℎ𝑖𝑖𝑖𝑖(𝑡𝑡\𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = ℎ0(𝑡𝑡)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖1 + ∑ 𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑝𝑝
𝑘𝑘=1 )  2 

where 𝑏𝑏𝑖𝑖1is the random predictor effect also known as random coefficient or random 
interaction. The random effects are assumed to follow a multivariate normal distribution with 

mean 0 and a variance-covariance matrix Σ, 𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)~𝑁𝑁(0, Σ) with Σ = [ 𝜎𝜎0
2 𝜎𝜎01

𝜎𝜎10 𝜎𝜎1
2 ]. The 

variance 𝜎𝜎0
2  of the bi0 represents the heterogeneity between the clusters of the overall baseline 

hazard and the variance 𝜎𝜎1
2 of bi1 is the heterogeneity between clusters of the overall effect β1. 

If the variance 𝜎𝜎0
2  is null, then the observations from the same cluster are independent. A larger 

variance indicates greater heterogeneity across clusters and a greater correlation of the survival 
times for subjects belonging to the same cluster. A null 𝜎𝜎1

2 implies no heterogeneity of the 
effect over clusters. 

Given the random effects (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1), observations within cluster i are assumed to be 
independent. The full marginal log likelihood function for cluster i is given as; 

𝑙𝑙(ℎ0(𝑡𝑡), 𝛽𝛽|𝑏𝑏𝐼𝐼0, 𝑏𝑏𝑖𝑖1)

= 𝑙𝑙𝑛𝑛 ∏ ∫ ∫ [∏ ℎ(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)𝛿𝛿𝑖𝑖𝑖𝑖𝑠𝑠(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)
𝑛𝑛𝑖𝑖

𝑖𝑖=1
] 𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑑𝑑𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1

𝐺𝐺

𝑖𝑖=1
 

implies no heterogeneity of the effect over 
clusters.

Given the random effects (bi0,bi1), observations 
within cluster i  are assumed to be 
independent. The full marginal log likelihood 
function for cluster i is given as;

Brookmeyer (1996), Ripatti and Palmgren (2000), Duchateau and Janssen (2008) and Wienke 
(2010). 

Two additive random effects Cox models framework 

Suppose there are G-independent clusters (𝑖𝑖 = 1, … , 𝐺𝐺). Tij is the survival times for subject j 
(𝑗𝑗 = 1, … , 𝑛𝑛𝑖𝑖) from group I and Cij is the corresponding right censoring time. Assuming the 
censoring times are independent of the survival times, the observations are𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑛𝑛(𝑇𝑇𝑖𝑖𝑖𝑖, 𝐶𝐶𝑖𝑖𝑖𝑖)  
and the censoring indicator𝛿𝛿𝑖𝑖𝑖𝑖 = 𝐼𝐼{𝑇𝑇𝑖𝑖𝑖𝑖≤𝐶𝐶𝑖𝑖𝑖𝑖}. For each subject, the explanatory variable 𝑥𝑥𝑖𝑖𝑖𝑖is 
observed. The hazard for the jth subject in the ith cluster with random group effect bi0 (i.e. 
hazard for the jth subject in the ith cluster that takes into account the correlation occurring in 
the data due to clustering with random cluster effects) is given by 

ℎ𝑖𝑖𝑖𝑖(𝑡𝑡\𝑏𝑏𝑖𝑖0, 𝑋𝑋𝑖𝑖𝑖𝑖) = ℎ0(𝑡𝑡)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + ∑ 𝛽𝛽𝑘𝑘𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘
𝑝𝑝
𝑘𝑘=1 ) 1 

where ℎ0(𝑡𝑡) is the unspecified baseline hazard function at time t, β is the fixed effect parameter, 
𝑏𝑏𝑖𝑖0 is the random effect for the ith cluster. The random effects 𝑏𝑏𝑖𝑖0 are assumed to be 
independently and identically distributed.  

When variation between the cluster exists and is large, there is need to investigate whether 
there is variation in the predictor effect between the clusters. To achieve this, an extra random 
effect is added to the model in Eq. (1) which is the interaction between the observable and the 
unobservable variables. Then, the Cox model with two additive random effect models is 
expressed as; 

ℎ𝑖𝑖𝑖𝑖(𝑡𝑡\𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = ℎ0(𝑡𝑡)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖1 + ∑ 𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑝𝑝
𝑘𝑘=1 )  2 

where 𝑏𝑏𝑖𝑖1is the random predictor effect also known as random coefficient or random 
interaction. The random effects are assumed to follow a multivariate normal distribution with 

mean 0 and a variance-covariance matrix Σ, 𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)~𝑁𝑁(0, Σ) with Σ = [ 𝜎𝜎0
2 𝜎𝜎01

𝜎𝜎10 𝜎𝜎1
2 ]. The 

variance 𝜎𝜎0
2  of the bi0 represents the heterogeneity between the clusters of the overall baseline 

hazard and the variance 𝜎𝜎1
2 of bi1 is the heterogeneity between clusters of the overall effect β1. 

If the variance 𝜎𝜎0
2  is null, then the observations from the same cluster are independent. A larger 

variance indicates greater heterogeneity across clusters and a greater correlation of the survival 
times for subjects belonging to the same cluster. A null 𝜎𝜎1

2 implies no heterogeneity of the 
effect over clusters. 

Given the random effects (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1), observations within cluster i are assumed to be 
independent. The full marginal log likelihood function for cluster i is given as; 

𝑙𝑙(ℎ0(𝑡𝑡), 𝛽𝛽|𝑏𝑏𝐼𝐼0, 𝑏𝑏𝑖𝑖1)

= 𝑙𝑙𝑛𝑛 ∏ ∫ ∫ [∏ ℎ(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)𝛿𝛿𝑖𝑖𝑖𝑖𝑠𝑠(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)
𝑛𝑛𝑖𝑖

𝑖𝑖=1
] 𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑑𝑑𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1

𝐺𝐺

𝑖𝑖=1
 

= ∑𝑙𝑙𝑙𝑙∫∫𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽|𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1)𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑑𝑑𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1
𝐺𝐺

𝑖𝑖=1
 

 The conditional likelihood function for cluster i is 

𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽, 𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = ∏ ℎ(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)
𝛿𝛿𝑖𝑖𝑖𝑖𝑠𝑠(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)

𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖=1   3 

where  

𝑆𝑆𝑖𝑖𝑖𝑖(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖) = 𝑒𝑒𝑥𝑥𝑒𝑒[−𝐻𝐻0(𝑡𝑡𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖)] 

Assuming the conditional independence of observation within a cluster and independence 
between clusters, the overall marginal likelihood function can be written as, 

𝑙𝑙(ℎ0(. ), 𝛽𝛽, Σ) = ∑ 𝑙𝑙𝑙𝑙 ∫ ∫ 𝑒𝑒𝑥𝑥𝑒𝑒{−𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)}𝑑𝑑𝑏𝑏𝑖𝑖0𝑑𝑑𝑏𝑏𝑖𝑖1𝐺𝐺
𝑖𝑖=1       4 

where 

𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = −𝑙𝑙𝑙𝑙(𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) − 𝑙𝑙𝑙𝑙(𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) 

When the correlation structure for the two random effects is modelled by(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)~𝑁𝑁(0, Σ), 
we have 

𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) =
1

(2𝜋𝜋)(𝑑𝑑𝑒𝑒𝑡𝑡Σ)1 2⁄
𝑒𝑒𝑥𝑥𝑒𝑒 [−1

2 (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)Σ
−1(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)′] 

Hence, we obtain for 𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1): 

𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = −𝑙𝑙𝑙𝑙(𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) − 𝑙𝑙𝑙𝑙(𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) 

= ∑[𝛿𝛿𝑖𝑖𝑖𝑖{ln ℎ0(𝑡𝑡𝑖𝑖𝑖𝑖) + 𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖} − 𝐻𝐻0(𝑡𝑡𝑖𝑖𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖)]
𝑛𝑛𝑖𝑖

𝑖𝑖=1
 

= 𝑙𝑙𝑙𝑙(2𝜋𝜋) + 1
2 (𝑑𝑑𝑒𝑒𝑡𝑡Σ) +

1
2 (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)Σ

−1(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)′ 

With 𝐻𝐻𝑖𝑖𝑖𝑖(. ) = ∫ℎ𝑖𝑖𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡 the cumulative hazard function and 𝐻𝐻𝑖𝑖𝑖𝑖(. |𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) =
𝐻𝐻𝑖𝑖𝑖𝑖(. )𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖) the conditional cumulative hazard function and 𝑑𝑑𝑒𝑒𝑡𝑡Σ =
𝜎𝜎02𝜎𝜎12(1 − 𝜌𝜌2) and  

1
2 (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)Σ

−1(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) =
1

2(1 − 𝜌𝜌2) [
𝑏𝑏𝑖𝑖02
𝜎𝜎02

+ 𝑏𝑏𝑖𝑖12
𝜎𝜎12

− 2𝜌𝜌 𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1𝜎𝜎0𝜎𝜎1
] 

The marginal log-likelihood in Eq. (4) cannot be used as it were to estimate the parameters of 
model Eq. (2) because of unspecified parameter of the baseline hazard which depends on 
integrations that cannot be solved analytically. The Penalized partial likelihood is considered 
in work to estimate the parameters of the Cox model with two additive random effects. 

Penalized Partial Likelihood Procedure 

 The conditional likelihood function for cluster i is
= ∑𝑙𝑙𝑙𝑙∫∫𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽|𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1)𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑑𝑑𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1

𝐺𝐺

𝑖𝑖=1
 

 The conditional likelihood function for cluster i is 

𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽, 𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = ∏ ℎ(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)
𝛿𝛿𝑖𝑖𝑖𝑖𝑠𝑠(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)

𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖=1   3 

where  

𝑆𝑆𝑖𝑖𝑖𝑖(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖) = 𝑒𝑒𝑥𝑥𝑒𝑒[−𝐻𝐻0(𝑡𝑡𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖)] 

Assuming the conditional independence of observation within a cluster and independence 
between clusters, the overall marginal likelihood function can be written as, 

𝑙𝑙(ℎ0(. ), 𝛽𝛽, Σ) = ∑ 𝑙𝑙𝑙𝑙 ∫ ∫ 𝑒𝑒𝑥𝑥𝑒𝑒{−𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)}𝑑𝑑𝑏𝑏𝑖𝑖0𝑑𝑑𝑏𝑏𝑖𝑖1𝐺𝐺
𝑖𝑖=1       4 

where 

𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = −𝑙𝑙𝑙𝑙(𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) − 𝑙𝑙𝑙𝑙(𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) 

When the correlation structure for the two random effects is modelled by(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)~𝑁𝑁(0, Σ), 
we have 

𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) =
1

(2𝜋𝜋)(𝑑𝑑𝑒𝑒𝑡𝑡Σ)1 2⁄
𝑒𝑒𝑥𝑥𝑒𝑒 [−1

2 (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)Σ
−1(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)′] 

Hence, we obtain for 𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1): 

𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = −𝑙𝑙𝑙𝑙(𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) − 𝑙𝑙𝑙𝑙(𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) 

= ∑[𝛿𝛿𝑖𝑖𝑖𝑖{ln ℎ0(𝑡𝑡𝑖𝑖𝑖𝑖) + 𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖} − 𝐻𝐻0(𝑡𝑡𝑖𝑖𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖)]
𝑛𝑛𝑖𝑖

𝑖𝑖=1
 

= 𝑙𝑙𝑙𝑙(2𝜋𝜋) + 1
2 (𝑑𝑑𝑒𝑒𝑡𝑡Σ) +

1
2 (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)Σ

−1(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)′ 

With 𝐻𝐻𝑖𝑖𝑖𝑖(. ) = ∫ℎ𝑖𝑖𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡 the cumulative hazard function and 𝐻𝐻𝑖𝑖𝑖𝑖(. |𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) =
𝐻𝐻𝑖𝑖𝑖𝑖(. )𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖) the conditional cumulative hazard function and 𝑑𝑑𝑒𝑒𝑡𝑡Σ =
𝜎𝜎02𝜎𝜎12(1 − 𝜌𝜌2) and  

1
2 (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)Σ

−1(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) =
1

2(1 − 𝜌𝜌2) [
𝑏𝑏𝑖𝑖02
𝜎𝜎02

+ 𝑏𝑏𝑖𝑖12
𝜎𝜎12

− 2𝜌𝜌 𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1𝜎𝜎0𝜎𝜎1
] 

The marginal log-likelihood in Eq. (4) cannot be used as it were to estimate the parameters of 
model Eq. (2) because of unspecified parameter of the baseline hazard which depends on 
integrations that cannot be solved analytically. The Penalized partial likelihood is considered 
in work to estimate the parameters of the Cox model with two additive random effects. 

Penalized Partial Likelihood Procedure 

where

= ∑𝑙𝑙𝑙𝑙∫∫𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽|𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1)𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑑𝑑𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1
𝐺𝐺

𝑖𝑖=1
 

 The conditional likelihood function for cluster i is 

𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽, 𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = ∏ ℎ(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)
𝛿𝛿𝑖𝑖𝑖𝑖𝑠𝑠(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)

𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖=1   3 

where  

𝑆𝑆𝑖𝑖𝑖𝑖(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖) = 𝑒𝑒𝑥𝑥𝑒𝑒[−𝐻𝐻0(𝑡𝑡𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖)] 

Assuming the conditional independence of observation within a cluster and independence 
between clusters, the overall marginal likelihood function can be written as, 

𝑙𝑙(ℎ0(. ), 𝛽𝛽, Σ) = ∑ 𝑙𝑙𝑙𝑙 ∫ ∫ 𝑒𝑒𝑥𝑥𝑒𝑒{−𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)}𝑑𝑑𝑏𝑏𝑖𝑖0𝑑𝑑𝑏𝑏𝑖𝑖1𝐺𝐺
𝑖𝑖=1       4 

where 

𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = −𝑙𝑙𝑙𝑙(𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) − 𝑙𝑙𝑙𝑙(𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) 

When the correlation structure for the two random effects is modelled by(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)~𝑁𝑁(0, Σ), 
we have 

𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) =
1

(2𝜋𝜋)(𝑑𝑑𝑒𝑒𝑡𝑡Σ)1 2⁄
𝑒𝑒𝑥𝑥𝑒𝑒 [−1

2 (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)Σ
−1(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)′] 

Hence, we obtain for 𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1): 

𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = −𝑙𝑙𝑙𝑙(𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) − 𝑙𝑙𝑙𝑙(𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) 

= ∑[𝛿𝛿𝑖𝑖𝑖𝑖{ln ℎ0(𝑡𝑡𝑖𝑖𝑖𝑖) + 𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖} − 𝐻𝐻0(𝑡𝑡𝑖𝑖𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖)]
𝑛𝑛𝑖𝑖

𝑖𝑖=1
 

= 𝑙𝑙𝑙𝑙(2𝜋𝜋) + 1
2 (𝑑𝑑𝑒𝑒𝑡𝑡Σ) +

1
2 (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)Σ

−1(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)′ 

With 𝐻𝐻𝑖𝑖𝑖𝑖(. ) = ∫ℎ𝑖𝑖𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡 the cumulative hazard function and 𝐻𝐻𝑖𝑖𝑖𝑖(. |𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) =
𝐻𝐻𝑖𝑖𝑖𝑖(. )𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖) the conditional cumulative hazard function and 𝑑𝑑𝑒𝑒𝑡𝑡Σ =
𝜎𝜎02𝜎𝜎12(1 − 𝜌𝜌2) and  

1
2 (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)Σ

−1(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) =
1

2(1 − 𝜌𝜌2) [
𝑏𝑏𝑖𝑖02
𝜎𝜎02

+ 𝑏𝑏𝑖𝑖12
𝜎𝜎12

− 2𝜌𝜌 𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1𝜎𝜎0𝜎𝜎1
] 

The marginal log-likelihood in Eq. (4) cannot be used as it were to estimate the parameters of 
model Eq. (2) because of unspecified parameter of the baseline hazard which depends on 
integrations that cannot be solved analytically. The Penalized partial likelihood is considered 
in work to estimate the parameters of the Cox model with two additive random effects. 

Penalized Partial Likelihood Procedure 

Assuming the conditional independence of 
observation within a cluster and independence 

between clusters, the overall marginal 
likelihood function can be written as,

= ∑𝑙𝑙𝑙𝑙∫∫𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽|𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1)𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑑𝑑𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1
𝐺𝐺

𝑖𝑖=1
 

 The conditional likelihood function for cluster i is 

𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽, 𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = ∏ ℎ(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)
𝛿𝛿𝑖𝑖𝑖𝑖𝑠𝑠(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)

𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖=1   3 

where  

𝑆𝑆𝑖𝑖𝑖𝑖(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖) = 𝑒𝑒𝑥𝑥𝑒𝑒[−𝐻𝐻0(𝑡𝑡𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖)] 

Assuming the conditional independence of observation within a cluster and independence 
between clusters, the overall marginal likelihood function can be written as, 

𝑙𝑙(ℎ0(. ), 𝛽𝛽, Σ) = ∑ 𝑙𝑙𝑙𝑙 ∫ ∫ 𝑒𝑒𝑥𝑥𝑒𝑒{−𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)}𝑑𝑑𝑏𝑏𝑖𝑖0𝑑𝑑𝑏𝑏𝑖𝑖1𝐺𝐺
𝑖𝑖=1       4 

where 

𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = −𝑙𝑙𝑙𝑙(𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) − 𝑙𝑙𝑙𝑙(𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) 

When the correlation structure for the two random effects is modelled by(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)~𝑁𝑁(0, Σ), 
we have 

𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) =
1

(2𝜋𝜋)(𝑑𝑑𝑒𝑒𝑡𝑡Σ)1 2⁄
𝑒𝑒𝑥𝑥𝑒𝑒 [−1

2 (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)Σ
−1(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)′] 

Hence, we obtain for 𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1): 

𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = −𝑙𝑙𝑙𝑙(𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) − 𝑙𝑙𝑙𝑙(𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) 

= ∑[𝛿𝛿𝑖𝑖𝑖𝑖{ln ℎ0(𝑡𝑡𝑖𝑖𝑖𝑖) + 𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖} − 𝐻𝐻0(𝑡𝑡𝑖𝑖𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖)]
𝑛𝑛𝑖𝑖

𝑖𝑖=1
 

= 𝑙𝑙𝑙𝑙(2𝜋𝜋) + 1
2 (𝑑𝑑𝑒𝑒𝑡𝑡Σ) +

1
2 (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)Σ

−1(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)′ 

With 𝐻𝐻𝑖𝑖𝑖𝑖(. ) = ∫ℎ𝑖𝑖𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡 the cumulative hazard function and 𝐻𝐻𝑖𝑖𝑖𝑖(. |𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) =
𝐻𝐻𝑖𝑖𝑖𝑖(. )𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖) the conditional cumulative hazard function and 𝑑𝑑𝑒𝑒𝑡𝑡Σ =
𝜎𝜎02𝜎𝜎12(1 − 𝜌𝜌2) and  

1
2 (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)Σ

−1(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) =
1

2(1 − 𝜌𝜌2) [
𝑏𝑏𝑖𝑖02
𝜎𝜎02

+ 𝑏𝑏𝑖𝑖12
𝜎𝜎12

− 2𝜌𝜌 𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1𝜎𝜎0𝜎𝜎1
] 

The marginal log-likelihood in Eq. (4) cannot be used as it were to estimate the parameters of 
model Eq. (2) because of unspecified parameter of the baseline hazard which depends on 
integrations that cannot be solved analytically. The Penalized partial likelihood is considered 
in work to estimate the parameters of the Cox model with two additive random effects. 

Penalized Partial Likelihood Procedure 

where

= ∑𝑙𝑙𝑙𝑙∫∫𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽|𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1)𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑑𝑑𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1
𝐺𝐺

𝑖𝑖=1
 

 The conditional likelihood function for cluster i is 

𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽, 𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = ∏ ℎ(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)
𝛿𝛿𝑖𝑖𝑖𝑖𝑠𝑠(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)

𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖=1   3 

where  

𝑆𝑆𝑖𝑖𝑖𝑖(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖) = 𝑒𝑒𝑥𝑥𝑒𝑒[−𝐻𝐻0(𝑡𝑡𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖)] 

Assuming the conditional independence of observation within a cluster and independence 
between clusters, the overall marginal likelihood function can be written as, 

𝑙𝑙(ℎ0(. ), 𝛽𝛽, Σ) = ∑ 𝑙𝑙𝑙𝑙 ∫ ∫ 𝑒𝑒𝑥𝑥𝑒𝑒{−𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)}𝑑𝑑𝑏𝑏𝑖𝑖0𝑑𝑑𝑏𝑏𝑖𝑖1𝐺𝐺
𝑖𝑖=1       4 

where 

𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = −𝑙𝑙𝑙𝑙(𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) − 𝑙𝑙𝑙𝑙(𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) 

When the correlation structure for the two random effects is modelled by(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)~𝑁𝑁(0, Σ), 
we have 

𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) =
1

(2𝜋𝜋)(𝑑𝑑𝑒𝑒𝑡𝑡Σ)1 2⁄
𝑒𝑒𝑥𝑥𝑒𝑒 [−1

2 (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)Σ
−1(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)′] 

Hence, we obtain for 𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1): 

𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = −𝑙𝑙𝑙𝑙(𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) − 𝑙𝑙𝑙𝑙(𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) 

= ∑[𝛿𝛿𝑖𝑖𝑖𝑖{ln ℎ0(𝑡𝑡𝑖𝑖𝑖𝑖) + 𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖} − 𝐻𝐻0(𝑡𝑡𝑖𝑖𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖)]
𝑛𝑛𝑖𝑖

𝑖𝑖=1
 

= 𝑙𝑙𝑙𝑙(2𝜋𝜋) + 1
2 (𝑑𝑑𝑒𝑒𝑡𝑡Σ) +

1
2 (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)Σ

−1(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)′ 

With 𝐻𝐻𝑖𝑖𝑖𝑖(. ) = ∫ℎ𝑖𝑖𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡 the cumulative hazard function and 𝐻𝐻𝑖𝑖𝑖𝑖(. |𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) =
𝐻𝐻𝑖𝑖𝑖𝑖(. )𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖) the conditional cumulative hazard function and 𝑑𝑑𝑒𝑒𝑡𝑡Σ =
𝜎𝜎02𝜎𝜎12(1 − 𝜌𝜌2) and  

1
2 (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)Σ

−1(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) =
1

2(1 − 𝜌𝜌2) [
𝑏𝑏𝑖𝑖02
𝜎𝜎02

+ 𝑏𝑏𝑖𝑖12
𝜎𝜎12

− 2𝜌𝜌 𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1𝜎𝜎0𝜎𝜎1
] 

The marginal log-likelihood in Eq. (4) cannot be used as it were to estimate the parameters of 
model Eq. (2) because of unspecified parameter of the baseline hazard which depends on 
integrations that cannot be solved analytically. The Penalized partial likelihood is considered 
in work to estimate the parameters of the Cox model with two additive random effects. 

Penalized Partial Likelihood Procedure 
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= ∑𝑙𝑙𝑙𝑙∫∫𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽|𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1)𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑑𝑑𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1
𝐺𝐺

𝑖𝑖=1
 

 The conditional likelihood function for cluster i is 

𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽, 𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = ∏ ℎ(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)
𝛿𝛿𝑖𝑖𝑖𝑖𝑠𝑠(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)

𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖=1   3 

where  

𝑆𝑆𝑖𝑖𝑖𝑖(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖) = 𝑒𝑒𝑥𝑥𝑒𝑒[−𝐻𝐻0(𝑡𝑡𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖)] 

Assuming the conditional independence of observation within a cluster and independence 
between clusters, the overall marginal likelihood function can be written as, 

𝑙𝑙(ℎ0(. ), 𝛽𝛽, Σ) = ∑ 𝑙𝑙𝑙𝑙 ∫ ∫ 𝑒𝑒𝑥𝑥𝑒𝑒{−𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)}𝑑𝑑𝑏𝑏𝑖𝑖0𝑑𝑑𝑏𝑏𝑖𝑖1𝐺𝐺
𝑖𝑖=1       4 

where 

𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = −𝑙𝑙𝑙𝑙(𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) − 𝑙𝑙𝑙𝑙(𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) 

When the correlation structure for the two random effects is modelled by(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)~𝑁𝑁(0, Σ), 
we have 

𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) =
1

(2𝜋𝜋)(𝑑𝑑𝑒𝑒𝑡𝑡Σ)1 2⁄
𝑒𝑒𝑥𝑥𝑒𝑒 [−1

2 (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)Σ
−1(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)′] 

Hence, we obtain for 𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1): 

𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = −𝑙𝑙𝑙𝑙(𝐿𝐿𝑖𝑖𝑐𝑐(ℎ0(. ), 𝛽𝛽|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) − 𝑙𝑙𝑙𝑙(𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)) 

= ∑[𝛿𝛿𝑖𝑖𝑖𝑖{ln ℎ0(𝑡𝑡𝑖𝑖𝑖𝑖) + 𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖} − 𝐻𝐻0(𝑡𝑡𝑖𝑖𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖)]
𝑛𝑛𝑖𝑖

𝑖𝑖=1
 

= 𝑙𝑙𝑙𝑙(2𝜋𝜋) + 1
2 (𝑑𝑑𝑒𝑒𝑡𝑡Σ) +

1
2 (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)Σ

−1(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)′ 

With 𝐻𝐻𝑖𝑖𝑖𝑖(. ) = ∫ℎ𝑖𝑖𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡 the cumulative hazard function and 𝐻𝐻𝑖𝑖𝑖𝑖(. |𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) =
𝐻𝐻𝑖𝑖𝑖𝑖(. )𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖) the conditional cumulative hazard function and 𝑑𝑑𝑒𝑒𝑡𝑡Σ =
𝜎𝜎02𝜎𝜎12(1 − 𝜌𝜌2) and  

1
2 (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)Σ

−1(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) =
1

2(1 − 𝜌𝜌2) [
𝑏𝑏𝑖𝑖02
𝜎𝜎02

+ 𝑏𝑏𝑖𝑖12
𝜎𝜎12

− 2𝜌𝜌 𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1𝜎𝜎0𝜎𝜎1
] 

The marginal log-likelihood in Eq. (4) cannot be used as it were to estimate the parameters of 
model Eq. (2) because of unspecified parameter of the baseline hazard which depends on 
integrations that cannot be solved analytically. The Penalized partial likelihood is considered 
in work to estimate the parameters of the Cox model with two additive random effects. 

Penalized Partial Likelihood Procedure 

The marginal log-likelihood in Eq. (4) cannot 
be used as it were to estimate the parameters 
of model Eq. (2) because of unspecified 
parameter of the baseline hazard which 
depends on integrations that cannot be solved 
analytically. The Penalized partial likelihood is 
considered in work to estimate the parameters 
of the Cox model with two additive random 
effects.

Penalized Partial Likelihood Procedure

This estimation procedure was proposed 
by Ripatti and Palmgren (2000). Ripatti and 
Palmgren (2000) followed Breslow and 
Clayton (1993) in their approach for GLMM 
with normal random effects and applied 
Laplace’s method for integral approximation 
(1.4) which leads to the approximate marginal 
log-likelihood by

This estimation procedure was proposed by Ripatti and Palmgren (2000). Ripatti and Palmgren 
(2000) followed Breslow and Clayton (1993) in their approach for GLMM with normal random 
effects and applied Laplace’s method for integral approximation (1.4) which leads to the 
approximate marginal log-likelihood by 

𝑙𝑙(ℎ0(. ), 𝛽𝛽, Σ) ≈
1
2 ln|Σ| −

1
2 𝑙𝑙𝑙𝑙 |(

𝜕𝜕2𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0,𝑏𝑏𝑖𝑖1)
𝜕𝜕𝑏𝑏𝑖𝑖0𝜕𝜕𝑏𝑏𝑖𝑖1

|(�̃�𝑏𝑖𝑖0,�̃�𝑏𝑖𝑖1))| + ∑ [𝛿𝛿𝑖𝑖𝑖𝑖[𝑙𝑙𝑙𝑙ℎ0(𝑡𝑡𝑖𝑖𝑖𝑖) + �̃�𝑏𝑖𝑖0 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 +𝑛𝑛𝑖𝑖
𝑖𝑖=1

�̃�𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖] − 𝐻𝐻0(𝑡𝑡𝑖𝑖𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(�̃�𝑏𝑖𝑖0 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 + �̃�𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖)] −
1
2 (�̃�𝑏𝑖𝑖0, �̃�𝑏𝑖𝑖1)Σ

−1(�̃�𝑏𝑖𝑖0, �̃�𝑏𝑖𝑖1)
′
             5                

where  (�̃�𝑏𝑖𝑖0, �̃�𝑏𝑖𝑖1) =
arg𝑚𝑚𝑚𝑚𝑥𝑥

(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝜖𝜖𝑅𝑅2𝐾𝐾𝑖𝑖(�̃�𝑏𝑖𝑖0, �̃�𝑏𝑖𝑖1)            

If both Σ were known and(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)were considered fixed effects parameters, then the second 
line in Eq. (5) is penalized Cox full log likelihood (Green, 1987), where the last term in Eq. (5) 
is the penalty term penalizing for extreme values 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑖𝑖1, 𝑏𝑏𝑖𝑖0and  𝑏𝑏𝑖𝑖1are set of parameters 
and a penalty term, it turns out that it can be maximized using penalized fixed effects partial 
likelihood (PPL), 

𝑙𝑙𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃(ℎ0(. ), 𝛽𝛽, Σ, 𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)

= ∑𝛿𝛿𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖

𝑖𝑖=1
[𝑏𝑏𝑖𝑖0 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑙𝑙𝑙𝑙 ∑ 𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑝𝑝0 + 𝛽𝛽𝑥𝑥𝑝𝑝𝑝𝑝 + 𝑏𝑏𝑝𝑝1𝑥𝑥𝑝𝑝𝑝𝑝)

(𝑝𝑝,𝑝𝑝)𝜖𝜖𝜖𝜖(𝑡𝑡𝑖𝑖𝑖𝑖)
]

− 1
2 (�̃�𝑏𝑖𝑖0, �̃�𝑏𝑖𝑖1)Σ

−1(�̃�𝑏𝑖𝑖0, �̃�𝑏𝑖𝑖1)
′

+∑𝛿𝛿𝑖𝑖𝑖𝑖 [𝑙𝑙𝑙𝑙 (ℎ0(𝑡𝑡𝑖𝑖𝑖𝑖)) + 𝑙𝑙𝑙𝑙∑𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑝𝑝0 + 𝛽𝛽𝑥𝑥𝑝𝑝𝑝𝑝 + 𝑏𝑏𝑝𝑝1𝑥𝑥𝑝𝑝𝑝𝑝)]
𝑛𝑛𝑖𝑖

𝑖𝑖=1
− 𝐻𝐻0(𝑡𝑡𝑖𝑖𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖) 

= 𝑙𝑙𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃(𝛽𝛽, Σ, 𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) + 𝑔𝑔(ℎ0(𝑡𝑡𝑖𝑖𝑖𝑖), 𝛽𝛽, 𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) 

where 𝑅𝑅(𝑡𝑡𝑖𝑖𝑖𝑖) are the risk sets. 

Application to Data on Age at First Marriage 

Dataset from the 2018 Nigeria Demographic and Health Survey (NDHS) were analysed. 
Individual data were available for 41465 women aged 15-49. The survey was designed to 
provide information on age at first marriage of the women at national, regional, and state for 
both urban and rural areas. The age at first marriage of the women were recorded and if the 
woman has not yet married as at the time of the survey, the current age was recorded as 
censored observation. The hierarchical structure of the dataset as used in this study is therefore 
described as follows 

State level: Each woman belongs to one of the 37 distinct geographical locations that represent 
the states. 

Individual level: The woman is considered the lower level and the unit of analysis in this study. 

If both Σ were known and (bi0,bi1) were 
considered fixed effects parameters, then the 
second line in Eq. (5) is penalized Cox full log 
likelihood (Green, 1987), where the last term 
in Eq. (5) is the penalty term penalizing for 
extreme values bi0 ,bi1 and bi1, and are set of 
parameters and a penalty term, it turns out 
that it can be maximized using penalized fixed 
effects partial likelihood (PPL),
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This estimation procedure was proposed by Ripatti and Palmgren (2000). Ripatti and Palmgren 
(2000) followed Breslow and Clayton (1993) in their approach for GLMM with normal random 
effects and applied Laplace’s method for integral approximation (1.4) which leads to the 
approximate marginal log-likelihood by 

𝑙𝑙(ℎ0(. ), 𝛽𝛽, Σ) ≈
1
2 ln|Σ| −

1
2 𝑙𝑙𝑙𝑙 |(

𝜕𝜕2𝐾𝐾𝑖𝑖(𝑏𝑏𝑖𝑖0,𝑏𝑏𝑖𝑖1)
𝜕𝜕𝑏𝑏𝑖𝑖0𝜕𝜕𝑏𝑏𝑖𝑖1

|(�̃�𝑏𝑖𝑖0,�̃�𝑏𝑖𝑖1))| + ∑ [𝛿𝛿𝑖𝑖𝑖𝑖[𝑙𝑙𝑙𝑙ℎ0(𝑡𝑡𝑖𝑖𝑖𝑖) + �̃�𝑏𝑖𝑖0 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 +𝑛𝑛𝑖𝑖
𝑖𝑖=1

�̃�𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖] − 𝐻𝐻0(𝑡𝑡𝑖𝑖𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(�̃�𝑏𝑖𝑖0 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 + �̃�𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖)] −
1
2 (�̃�𝑏𝑖𝑖0, �̃�𝑏𝑖𝑖1)Σ

−1(�̃�𝑏𝑖𝑖0, �̃�𝑏𝑖𝑖1)
′
             5                

where  (�̃�𝑏𝑖𝑖0, �̃�𝑏𝑖𝑖1) =
arg𝑚𝑚𝑚𝑚𝑥𝑥

(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝜖𝜖𝑅𝑅2𝐾𝐾𝑖𝑖(�̃�𝑏𝑖𝑖0, �̃�𝑏𝑖𝑖1)            

If both Σ were known and(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)were considered fixed effects parameters, then the second 
line in Eq. (5) is penalized Cox full log likelihood (Green, 1987), where the last term in Eq. (5) 
is the penalty term penalizing for extreme values 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑖𝑖1, 𝑏𝑏𝑖𝑖0and  𝑏𝑏𝑖𝑖1are set of parameters 
and a penalty term, it turns out that it can be maximized using penalized fixed effects partial 
likelihood (PPL), 

𝑙𝑙𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃(ℎ0(. ), 𝛽𝛽, Σ, 𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)

= ∑𝛿𝛿𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖

𝑖𝑖=1
[𝑏𝑏𝑖𝑖0 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑙𝑙𝑙𝑙 ∑ 𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑝𝑝0 + 𝛽𝛽𝑥𝑥𝑝𝑝𝑝𝑝 + 𝑏𝑏𝑝𝑝1𝑥𝑥𝑝𝑝𝑝𝑝)

(𝑝𝑝,𝑝𝑝)𝜖𝜖𝜖𝜖(𝑡𝑡𝑖𝑖𝑖𝑖)
]

− 1
2 (�̃�𝑏𝑖𝑖0, �̃�𝑏𝑖𝑖1)Σ

−1(�̃�𝑏𝑖𝑖0, �̃�𝑏𝑖𝑖1)
′

+∑𝛿𝛿𝑖𝑖𝑖𝑖 [𝑙𝑙𝑙𝑙 (ℎ0(𝑡𝑡𝑖𝑖𝑖𝑖)) + 𝑙𝑙𝑙𝑙∑𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑝𝑝0 + 𝛽𝛽𝑥𝑥𝑝𝑝𝑝𝑝 + 𝑏𝑏𝑝𝑝1𝑥𝑥𝑝𝑝𝑝𝑝)]
𝑛𝑛𝑖𝑖

𝑖𝑖=1
− 𝐻𝐻0(𝑡𝑡𝑖𝑖𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖) 

= 𝑙𝑙𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃(𝛽𝛽, Σ, 𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) + 𝑔𝑔(ℎ0(𝑡𝑡𝑖𝑖𝑖𝑖), 𝛽𝛽, 𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) 

where 𝑅𝑅(𝑡𝑡𝑖𝑖𝑖𝑖) are the risk sets. 

Application to Data on Age at First Marriage 

Dataset from the 2018 Nigeria Demographic and Health Survey (NDHS) were analysed. 
Individual data were available for 41465 women aged 15-49. The survey was designed to 
provide information on age at first marriage of the women at national, regional, and state for 
both urban and rural areas. The age at first marriage of the women were recorded and if the 
woman has not yet married as at the time of the survey, the current age was recorded as 
censored observation. The hierarchical structure of the dataset as used in this study is therefore 
described as follows 

State level: Each woman belongs to one of the 37 distinct geographical locations that represent 
the states. 

Individual level: The woman is considered the lower level and the unit of analysis in this study. 

where R(tij) are the risk sets.

Application to Data on Age at First 
Marriage
The age at first marriage of the women were 
recorded and if the woman has not yet married 
as at the time of the survey, the current age 
was recorded as censored observation. The 
hierarchical structure of the dataset as used 
in this study is therefore described as follows

State level: Each woman belongs to one of 
the 37 distinct geographical locations that 
represent the states.

Individual level: The woman is considered 
the lower level and the unit of analysis in this 
study.

Survival information collected on the ith 
woman from the jth state indexed as (tij,δij (t)), 
(i=1,…,41465), j=(1,…,37), where tij is the age at 
first marriage and δij is the censoring indicator 
which takes the value 1 if i woman from state 
j has married and 0 if otherwise. Then, the 
Cox model with random state effect model is 
expressed as;

Survival information collected on the 𝑖𝑖𝑖𝑖ℎ woman from the 𝑗𝑗𝑖𝑖ℎ state indexed as (𝑖𝑖𝑖𝑖𝑖𝑖, 𝛿𝛿𝑖𝑖𝑖𝑖(𝑖𝑖)), 
(𝑖𝑖 = 1, … ,41465), 𝑗𝑗 = (1, … ,37), where 𝑖𝑖𝑖𝑖𝑖𝑖 is the age at first marriage and 𝛿𝛿𝑖𝑖𝑖𝑖 is the censoring 
indicator which takes the value 1 if woman 𝒊𝒊 from state 𝒋𝒋 has married and 0 if otherwise. Then, 
the Cox model with random state effect model is expressed as; 

ℎ𝑖𝑖𝑖𝑖(𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑥𝑥𝑖𝑖𝑖𝑖) = ℎ0(𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + ∑ 𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖
𝑝𝑝
𝑘𝑘=1 ) 6 

When variation between the states exists and is large, there is need to investigate whether there 
is variation in the predictor effect between the states. To achieve this, an extra random effect 
is added to model (6) which is the interaction between the observable and the unobservable 
variables. Then, the Cox model with two additive random effect models is expressed as; 

ℎ𝑖𝑖𝑖𝑖(𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖) = ℎ0(𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑏𝑏𝑤𝑤𝑤𝑤𝑤𝑤𝑠𝑠𝑤𝑤𝑥𝑥𝑔𝑔1 ∑ 𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖
𝑝𝑝
𝑘𝑘=1 ) 7 

where 𝑏𝑏𝑤𝑤𝑤𝑤𝑤𝑤𝑠𝑠𝑤𝑤 is the random predictor effect also known as random coefficient or random 
interaction. The variance 𝜎𝜎0

2 of the 𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 represents the heterogeneity between the states of the 
overall baseline hazard and the variance 𝜎𝜎1

2 of 𝑏𝑏𝑤𝑤𝑤𝑤𝑤𝑤𝑠𝑠𝑤𝑤 is the heterogeneity between states of 
the overall effect 𝛽𝛽1. If the variance 𝜎𝜎0

2 is null, then the observations from the same state are 
independent. A larger variance indicates greater heterogeneity across states and a greater 
correlation of the survival times for subjects belonging to the same state. A null 𝜎𝜎1

2 implies no 
heterogeneity of the effect over clusters. 

The overall aim is to assess the extent to which both observed factors as well as unobserved 
factors at both the individual and state level affects the timing of marriage. Model assessment 
was based on Akaike Information Criterion (AIC) of Akaike (1974), given as  

𝐴𝐴𝐴𝐴𝐴𝐴 = −2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 2𝑒𝑒 

where 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the log likelihood and 𝑒𝑒 is the number of parameters in the model. A model with 
lower 𝐴𝐴𝐴𝐴𝐴𝐴 is preferred. 

The observed factors included in this study are the religion of the woman, place of residence, 
level of education, geopolitical zone, age at first sex, wealth index and birth cohort. 

RESULT AND DISCUSSION 

Fig 1 presents the map of Nigeria with the median age at marriage in each state. In order words, 
the median ages represent the age at which fifty percent of the population of the women in each 
state get married. The least median age at marriage is 15 years while the maximum median age 
at marriage is 23 years. Half of the population of women from Jigawa, Kano, Katsina, Kebbi, 
Sokoto, Yobe and Zamfara states marries at age 15 while fifty percent of the women from Abia, 
Imo and Lagos states women delayed marriage till 23 years. It is evident from Fig 1 that early 
marriage is predominant in the Northern part of the country than other regions. This further 
emphasises the need to investigate the regional/state variation in the ages at which marriage is 
initiated among Nigeria women. 

When variation between the states exists and 
is large, there is need to investigate whether 
there is variation in the predictor effect 
between the states. To achieve this, an extra 

random effect is added to model (6) which 
is the interaction between the observable 
and the unobservable variables. Then, the 
Cox model with two additive random effect 
models is expressed as;

Survival information collected on the 𝑖𝑖𝑖𝑖ℎ woman from the 𝑗𝑗𝑖𝑖ℎ state indexed as (𝑖𝑖𝑖𝑖𝑖𝑖, 𝛿𝛿𝑖𝑖𝑖𝑖(𝑖𝑖)), 
(𝑖𝑖 = 1, … ,41465), 𝑗𝑗 = (1, … ,37), where 𝑖𝑖𝑖𝑖𝑖𝑖 is the age at first marriage and 𝛿𝛿𝑖𝑖𝑖𝑖 is the censoring 
indicator which takes the value 1 if woman 𝒊𝒊 from state 𝒋𝒋 has married and 0 if otherwise. Then, 
the Cox model with random state effect model is expressed as; 

ℎ𝑖𝑖𝑖𝑖(𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑥𝑥𝑖𝑖𝑖𝑖) = ℎ0(𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + ∑ 𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖
𝑝𝑝
𝑘𝑘=1 ) 6 

When variation between the states exists and is large, there is need to investigate whether there 
is variation in the predictor effect between the states. To achieve this, an extra random effect 
is added to model (6) which is the interaction between the observable and the unobservable 
variables. Then, the Cox model with two additive random effect models is expressed as; 

ℎ𝑖𝑖𝑖𝑖(𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖) = ℎ0(𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑏𝑏𝑤𝑤𝑤𝑤𝑤𝑤𝑠𝑠𝑤𝑤𝑥𝑥𝑔𝑔1 ∑ 𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖
𝑝𝑝
𝑘𝑘=1 ) 7 

where 𝑏𝑏𝑤𝑤𝑤𝑤𝑤𝑤𝑠𝑠𝑤𝑤 is the random predictor effect also known as random coefficient or random 
interaction. The variance 𝜎𝜎0

2 of the 𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 represents the heterogeneity between the states of the 
overall baseline hazard and the variance 𝜎𝜎1

2 of 𝑏𝑏𝑤𝑤𝑤𝑤𝑤𝑤𝑠𝑠𝑤𝑤 is the heterogeneity between states of 
the overall effect 𝛽𝛽1. If the variance 𝜎𝜎0

2 is null, then the observations from the same state are 
independent. A larger variance indicates greater heterogeneity across states and a greater 
correlation of the survival times for subjects belonging to the same state. A null 𝜎𝜎1

2 implies no 
heterogeneity of the effect over clusters. 

The overall aim is to assess the extent to which both observed factors as well as unobserved 
factors at both the individual and state level affects the timing of marriage. Model assessment 
was based on Akaike Information Criterion (AIC) of Akaike (1974), given as  

𝐴𝐴𝐴𝐴𝐴𝐴 = −2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 2𝑒𝑒 

where 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the log likelihood and 𝑒𝑒 is the number of parameters in the model. A model with 
lower 𝐴𝐴𝐴𝐴𝐴𝐴 is preferred. 

The observed factors included in this study are the religion of the woman, place of residence, 
level of education, geopolitical zone, age at first sex, wealth index and birth cohort. 

RESULT AND DISCUSSION 

Fig 1 presents the map of Nigeria with the median age at marriage in each state. In order words, 
the median ages represent the age at which fifty percent of the population of the women in each 
state get married. The least median age at marriage is 15 years while the maximum median age 
at marriage is 23 years. Half of the population of women from Jigawa, Kano, Katsina, Kebbi, 
Sokoto, Yobe and Zamfara states marries at age 15 while fifty percent of the women from Abia, 
Imo and Lagos states women delayed marriage till 23 years. It is evident from Fig 1 that early 
marriage is predominant in the Northern part of the country than other regions. This further 
emphasises the need to investigate the regional/state variation in the ages at which marriage is 
initiated among Nigeria women. 

where bwoman is the random predictor effect 
also known as random coefficient or random 
interaction. The variance 

Brookmeyer (1996), Ripatti and Palmgren (2000), Duchateau and Janssen (2008) and Wienke 
(2010). 

Two additive random effects Cox models framework 

Suppose there are G-independent clusters (𝑖𝑖 = 1, … , 𝐺𝐺). Tij is the survival times for subject j 
(𝑗𝑗 = 1, … , 𝑛𝑛𝑖𝑖) from group I and Cij is the corresponding right censoring time. Assuming the 
censoring times are independent of the survival times, the observations are𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑛𝑛(𝑇𝑇𝑖𝑖𝑖𝑖, 𝐶𝐶𝑖𝑖𝑖𝑖)  
and the censoring indicator𝛿𝛿𝑖𝑖𝑖𝑖 = 𝐼𝐼{𝑇𝑇𝑖𝑖𝑖𝑖≤𝐶𝐶𝑖𝑖𝑖𝑖}. For each subject, the explanatory variable 𝑥𝑥𝑖𝑖𝑖𝑖is 
observed. The hazard for the jth subject in the ith cluster with random group effect bi0 (i.e. 
hazard for the jth subject in the ith cluster that takes into account the correlation occurring in 
the data due to clustering with random cluster effects) is given by 

ℎ𝑖𝑖𝑖𝑖(𝑡𝑡\𝑏𝑏𝑖𝑖0, 𝑋𝑋𝑖𝑖𝑖𝑖) = ℎ0(𝑡𝑡)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + ∑ 𝛽𝛽𝑘𝑘𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘
𝑝𝑝
𝑘𝑘=1 ) 1 

where ℎ0(𝑡𝑡) is the unspecified baseline hazard function at time t, β is the fixed effect parameter, 
𝑏𝑏𝑖𝑖0 is the random effect for the ith cluster. The random effects 𝑏𝑏𝑖𝑖0 are assumed to be 
independently and identically distributed.  

When variation between the cluster exists and is large, there is need to investigate whether 
there is variation in the predictor effect between the clusters. To achieve this, an extra random 
effect is added to the model in Eq. (1) which is the interaction between the observable and the 
unobservable variables. Then, the Cox model with two additive random effect models is 
expressed as; 

ℎ𝑖𝑖𝑖𝑖(𝑡𝑡\𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1) = ℎ0(𝑡𝑡)𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥𝑖𝑖𝑖𝑖1 + ∑ 𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑝𝑝
𝑘𝑘=1 )  2 

where 𝑏𝑏𝑖𝑖1is the random predictor effect also known as random coefficient or random 
interaction. The random effects are assumed to follow a multivariate normal distribution with 

mean 0 and a variance-covariance matrix Σ, 𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)~𝑁𝑁(0, Σ) with Σ = [ 𝜎𝜎0
2 𝜎𝜎01

𝜎𝜎10 𝜎𝜎1
2 ]. The 

variance 𝜎𝜎0
2  of the bi0 represents the heterogeneity between the clusters of the overall baseline 

hazard and the variance 𝜎𝜎1
2 of bi1 is the heterogeneity between clusters of the overall effect β1. 

If the variance 𝜎𝜎0
2  is null, then the observations from the same cluster are independent. A larger 

variance indicates greater heterogeneity across clusters and a greater correlation of the survival 
times for subjects belonging to the same cluster. A null 𝜎𝜎1

2 implies no heterogeneity of the 
effect over clusters. 

Given the random effects (𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1), observations within cluster i are assumed to be 
independent. The full marginal log likelihood function for cluster i is given as; 

𝑙𝑙(ℎ0(𝑡𝑡), 𝛽𝛽|𝑏𝑏𝐼𝐼0, 𝑏𝑏𝑖𝑖1)

= 𝑙𝑙𝑛𝑛 ∏ ∫ ∫ [∏ ℎ(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)𝛿𝛿𝑖𝑖𝑖𝑖𝑠𝑠(𝑇𝑇𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1, 𝑥𝑥𝑖𝑖𝑖𝑖)
𝑛𝑛𝑖𝑖

𝑖𝑖=1
] 𝑓𝑓(𝑏𝑏𝑖𝑖0, 𝑏𝑏𝑖𝑖1)𝑑𝑑𝑏𝑏𝑖𝑖0𝑏𝑏𝑖𝑖1

𝐺𝐺

𝑖𝑖=1
 

of the bstate 
represents the heterogeneity between the 
states of the overall baseline hazard and the 
variance of is the heterogeneity between 
states of the overall effect β1. . If the variance 
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 implies no heterogeneity of the effect 
over clusters.

The observed factors included in this study are 
the religion of the woman, place of residence, 
level of education, geopolitical zone, age at 
first sex, wealth index and birth cohort.
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RESULT AND DISCUSSION

Results
Fig 1 presents the map of Nigeria with the 
median age at marriage in each state. In 
order words, the median ages represent the 
age at which fifty percent of the population 
of the women in each state get married. The 
least median age at marriage is 15 years while 
the maximum median age at marriage is 23 
years. Half of the population of women from 

Jigawa, Kano, Katsina, Kebbi, Sokoto, Yobe 
and Zamfara states marries at age 15 while 
fifty percent of the women from Abia, Imo 
and Lagos states women delayed marriage 
till 23 years. It is evident from Fig 1 that early 
marriage is predominant in the Northern 
part of the country than other regions. This 
further emphasises the need to investigate the 
regional/state variation in the ages at which 
marriage is initiated among Nigeria women.

Fig 1: Nigeria map with the median age at first marriage for each state.

Two additive random effects Cox 
model on age at first marriage
The estimates of the coefficient, hazard ratio 
and p-values for two additive random effects 
Cox model are presented in Table 1. From 
Table 1, all the factors considered were found 
to be significant in determining the timing to 
marriage. As observed, Christian women are 
25% less likely to marry earlier than Muslim 
women (HR=0.7528).

Women who have primary education are 
13% less likely to marry early compared to 
women with no education (HR=0.8666), also, 
women with at least a secondary education 
are 42% less likely to experience early 
marriage (HR=0.5790) while women with 
higher education are 67% not likely to marry 
early compared to women with no education 
(HR=0.3313).
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Table 1: Estimated Coefficient, Hazard Ratio and P-value

Factors  Coef. (SE)  Haz. Ratio  P-value

Religion
Christian -0.2840 (0.0188) 0.7528 <0.0001
Highest Educational Qualification
Primary -0.1431 (0.0186) 0.8666 <0.0001
Secondary -0.5464 (0.0188) 0.5790 <0.0001
Higher -1.1048 (0.0263) 0.3313 <0.0001
Birth Cohort
20-29 years -0.1781 (0.0257) 0.8368 <0.0001
30-39 years -0.2676 (0.0262) 0.7652 <0.0001
40-49 years -0.3676 (0.0272) 0.6923 <0.0001
Age at first sex
Before marriage -1.3923 (0.0142) 0.2485 <0.0001
Never had sex -8.1169 (0.5776) 0.0003 <0.0001
Wealth Index
Middle -0.0640 (0.0171) 0.9380  0.0002
Rich -0.1298 (0.0192) 0.8783 <0.0001
Geo-political Zone
North-east 0.0396 (0.0801) 1.0404 <0.0001
North-west 0.1881 (0.0770) 1.2070 <0.0001
South-east -0.1755 (0.0849) 0.8390  0.0390
South-south 0.0047 (0.0814) 1.0047  0.9500
South-west -0.1133 (0.0807) 0.8929  0.1600
Location of Residence

Rural 0.0825 (0.0274) 1.0860 <0.0001
Random effects

Group  Variable  Std. Dev. Variance

State/Rural  Intercept 0.0943 0.0089

State  Intercept 0.1205 0.0145

Women whose current ages are in the interval 
20-29 years are 16% less likely marry earlier 
(HR=0.8368), women whose current ages are 
in the interval 30-39 years are 23% less likely 
to experience early marriage (HR=0.7652) 
while women whose current age are between 

the interval 40-49 years are 30% less likely to 
marry earlier (HR=0.6924) compare to women 
whose current age is less than 20 years.

Women who initiated sex before marriage are 
75% less likely to marry earlier (HR=0.2485) 
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while women who never has sex are 99% less 
likely to marry early (HR=0.0002) compare to 
women who had their first sexual experience 
at their marriage. Women characterized with 
middle class wealth index are 6% less likely to 
marry earlier (HR=0.9380) while rich women 
are 12% less likely to initiate marriage earlier 
than women who are poor (HR=0.8783).

Women from the Northeast and Northwest 
are more likely to marry early compared to 
women from North central (HR=1.0404 and 
1.2070) respectively. South east women are 
16% less likely to marry earlier compare to 
women from the North central. The estimated 
hazard ratio for South-south and South west 
are not statistically significant. Women living 
in the rural areas are more likely to marry early 
compared to women residing in the urban 
areas (HR=1.0860).

Investigating the regional differences, the 
estimated parameter of the random effect 
presented in Table 1, for the random state 
effect, an estimated intercept (excess risk) for 
each state, has a standard deviation of 0.12. 
It is expected that state of residence has risk 
effect of times on the ages at which marriage 
is initiated. To look at the random location 
of residence (rural/urban) effect within the 
state, an estimated intercept (excess risk), 
has a standard deviation of 0.09, which implies 
that location of residence within the state 
have times risk effect on the ages at which 
marriage is initiated. The state heterogeneity 
has a greater risk on the age at first marriage 
compared to the location of residence within 
the state.

Discussion
Results of the findings shows that early 
marriage is prevalent among Muslim women 
which was also revealed in the result from 
the Northern part of the country who are 
predominantly Muslims. The association 
between religion and age at first marriage 
have been established in other studies 

(Mobolaji, et al., 2020, Amzat, 2020). It should 
be mentioned that religion leaders should 
preach against early marriage that do not 
favour the women folks in order to avert its 
menace.

The educational qualification of the women 
revealed that, early marriage has a high 
correlation with the women educational 
level. The higher the women educational 
qualification, the less the prevalence of early 
marriage. To this, policy initiatives that will 
ensure compulsory basic educational level for 
the girl child should be enforced at all states 
in Nigeria while challenges of insecurities 
which has led to drop out of many school age 
children should receive serious attention of 
the government at all levels (Lawal, 2018; 
Adams, et. al, 2021; Ojo, 2021).

The timing of the onset of sexual intercourse 
is found to significantly affect the age 
at marriage. Reda and Lindstrom, 2014 
established in their work that that women 
who have first sexual intercourse before 
marriage are delaying marriage more than 
was the case among other women. This also 
show that women who are exposed to sex 
earlier than in marriage delays the timing for 
marriage compared to other women.

The region of residence of the women 
contributes significantly to the ages at 
which marriage is initiated, women from the 
Northern region of the country were found 
to initiate marriage at an early age more than 
women from other regions, this was also 
shown for the map of the country showing 
the ages at which half of the population of 
women marries across the states (Islam, et al., 
2016, Nmadu, et al., 2018).

CONCLUSION
The study was carried out on age at first 
marriage among Nigeria women using 
dataset from 2018 Nigeria Demographic and 
Health Survey (NDHS). For the study, a Cox 
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model with two additive random effect was 
incorporated to account for the effect of the 
individual women nested in the state.

It was revealed from the findings that women 
residing the rural part of the country are prone 
to early marriage. The economic capacities of 
the women also indicates that women who 
are characterised as poor are more exposed 
to early marriage than women who are 
economically stable. A holistic strategy which 
includes awareness, change in behaviour and 
implementation of laws and policies is needed 
in putting an end to early marriage, particularly 
child marriage in the Northern part of Nigeria. 
The findings suggests that the hazard of early 
marriage decreases with increasing age of the 
respondents (current age), which implies that 
earlier cohorts of women were less likely to 
marry earlier compared with younger cohorts 
of women.

One finding which is of interest and of great 
concern is that women who initiated sex 
before marriage had a decreased hazard to 
early marriage compared to women who 
initiated sex at marriage. State heterogeneity 
was found to have highest contribution to age 
at marriage. It was also found that location of 
residence within the state has heterogeneity 
that contribute to the model. This implies that 
women in the rural areas are more prone to 
early marriage than their counterpart in the 
urban areas. From the findings, early marriage 
is seen not be a general phenomenon in 
Nigeria but more of a regional issue as the 
location and state of residence (region) were 
found to be significant in determining the 
timing of marriage.

The factors considered to affect the timing 
for marriage in this work have been limited 
to socio-demographic and economic factors 
of women in their reproductive age, future 
studies should consider factors relating 
to ethnicity and the different cultural 
backgrounds in the country. This is necessary 
because of the numerous ethic groups and 

dialects in the country, this will further reveal 
the socio-cultural variation in the timing for 
marriage among Nigeria women.
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