
INTRODUCTION 

The use of the asymptotic test with small sample 
sizes usually yields an incorrect p-value, and 
may therefore lead to a false acceptance or rejec-
tion of the null hypothesis. Application of the 
asymptotic test when the sample size is smaller 
than the allowable sample size for the particular 
test statistic can lead to a wrong decision.  In an 
attempt to avoid these wrong decisions, an algo-
rithm for obtaining exact permutation distribu-
tion is presented with the Savage test as the prin-
cipal focus. The Savage test involves the null 
hypothesis that there is no difference in spread, 
which is tested against the two-tailed alternative 
that there is a difference in variability. 

There are two approaches to a permutation test 
viz; conditional and unconditional approaches.  
In the unconditional exact permutation approach, 
row and column totals are not fixed as it is done 
in the conditional exact permutation approach. 
Computational time for a permutation test is 
highly prohibitive even with very fast processor 
speed of available personal computers. Hall and 
Tajvidi (2002) described the permutation test as 
unattractive because of the large number of per-
mutations required and therefore suggested other 
alternatives such as the bootstrap technique with-
out replacement. Good (2000) only considered 
the tails of permutation distribution and pre-
sented steps that could lead to a permutation test. 
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In recent years, the use of software for the calculation of statistical tests has become widespread.  
For many nonparametric tests, a number of statistical programs calculate significance levels based 
on algorithms appropriate for large samples only. In scientific experiments, small samples are com-
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method of obtaining unconditional exact permutation distribution for test statistics involving small 
samples.  The exact critical values for the savage test statistic are generated and the probability of a 
type I error is exactly α. 
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According to the survey on permutation sam-
pling procedures carried out by Opdyke (2003), 
three procedures in SAS v8.2: PROC 
NPAR1WAY, PROC MULTTEST, and PROC 
PLAN, one procedure in Cytel’s Proc StatXact 
v5.0: PROC TWOSAMPL can be used to per-
form two-sample nonparametric permutation 
tests. All of these procedures can perform con-
ventional Monte Carlo sampling without replace-
ment within a sample but none can avoid the 
possibility of drawing the same sample more 
than once. Considering this associated difficulty 
in obtaining the distinct and exhaustive permuta-
tions coupled with the prohibitive runtimes, the 
algorithm presented in this paper ensures that a 
complete and systematic enumeration of the per-
mutations is carried out. 

Mundry and Fischer (1998) observed that for 
many parametric and nonparametric tests, some 
of the statistical programs available calculate 
significance levels based on algorithms appropri-
ate for large samples only. The asymptotic ver-
sion of a nonparametric test with small sample 
sizes usually yields an incorrect p-value, and 
may lead to a false acceptance or rejection of the 
null hypothesis. Mundry and Fischer (1998) re-
ported their earlier findings, where they exam-
ined the results of nonparametric tests with small 
sample sizes published in some issues of 
“Animal Behaviour” and found that in more than 
half of the articles examined, the asymptotic tests 
had apparently been inappropriately used and 
incorrect p-values had been presented. 
 
MATERIALS AND METHODS 

Permutation tests provide exact p-values for Sav-
age test, especially when complete enumeration 
is possible.  A discussion on the properties of 
permutation tests can be found in Good (2000) 
and Pesarin (2001).  The problem with permuta-
tion tests has been high computational demands, 
viz; space and time complexities.  Sampling from 
the permutation sample space rather than carry-
ing out complete enumeration of all possible 
distinct rearrangements is what most of the avail-

able permutation procedures do (Opdyke 2003).  
Several approaches have been suggested as alter-
natives to the computationally intensive uncondi-
tional exact permutation approach.  For example, 
Fisher (1935) and Agresti (1992) give a discus-
sion on exact conditional permutation distribu-
tion. Also Efron (1979), Hall and Tajvidi (2002), 
Efron and Tibshirani (1993), Opdyke (2003) 
have discussed the Monte Carlo approaches. 

The purpose of this paper is to provide exact p-
values of the Savage test statistic for positive 
random variables.  This therefore ensures that the 
probability of making a Type I error is exactly α.  
This paper also provides computer algorithms for 
achieving the unconditional exact distribution of 
the Savage test statistic. Contrary to what Fa-
hoome (2002) noted that when α = 0.05, sample 
size should exceed 10 for the large sample ap-
proximation to be adopted for the Savage test, 
the p-values for max(m, n) ≤ 10 for the Savage 
test are generated in this work. The unconditional 
permutation approach is employed in obtaining 
these exact p-values. 
 

Exact versus Asymptotic Test Procedures 

Almost all statistical tests are based on the same 
idea, viz; (i) formulate the null and alternative 
hypotheses, (ii) choose a level of significance, 
(iii) calculate the test statistic and (iv) compare 
the calculated test statistic with a critical value. 

If the value of the test statistic is smaller or larger 
than the critical value, the null hypothesis can be 
accepted or rejected, depending on the test ap-
plied. The critical values are usually determined 
by obtaining the most extreme 5% (say) of the 
theoretical frequency distribution of the test sta-
tistic. When the sample size is small, the exact 
probability of obtaining the calculated value of 
the test statistic or any less likely value has to be 
determined.  The sum of these probabilities is the 
exact p-value of the test statistic. The calculated 
values of the test statistic are compared with the 
tabulated critical values. This procedure, based 
on the calculation of the exact probability of a 
given test statistic, is called exact testing proce-
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dure (Siegel and Castellan, 1988). With large 
sample size, the frequency distribution of a test 
statistic is often asymptotically a normal or a chi-
square distribution. The p-value is obtained by 
transforming the test statistic as required by the 
large sample approximation of the test statistic 
and looking up the transformed value in a table 
of standard normal distribution (Z) or chi-square 
values (χ2). 
 

The Savage test 

The Savage test does not assume that location 
remains the same.  It is assumed that differences 
in scale cause a difference in location. The sam-
ples are assumed to be drawn from continuous 
distributions (Hajek, 1969).  The null hypothesis 
is that there is no difference in spread, which is 
tested against the two-tailed alternative that there 
is a difference in variability.  Savage scores are 
powerful for comparing scale differences in ex-
ponential distributions or location shifts in ex-
treme value distributions. 

Let Sample 1 be x1, x2, …, xm and let Sample 2 be 
y1, y2, …, yn.  The combined samples are ordered, 
keeping track of sample membership.  Let Ri be 
the rank for xi. The test statistic is computed for 
either sample.  The test statistic is 

Methodology 

The p-value of a test statistic represents the prob-
ability of obtaining values of the test statistic that 
are equal to or greater than the observed test sta-
tistic when considering the right-tail of the distri-
bution of the test statistic. For the continuous 
case, find the area under the curve of the theo-
retical distribution of the test statistic in the di-
rection of the alternative hypothesis. For the dis-
crete case, add up the probabilities of events oc-
curring in the direction of the alternative hy-
pothesis that occur at and after the observed 
value of the test statistic. 

If the experiment to be analyzed is made up of 
small or sparse data, large sample procedures for 
statistical inference are not appropriate (Sen-
chaudhuri et al, 1995; Siegel and Castellan, 
1988). In this paper, consideration is given to the 
special case of 2 x n tables with row and column 
totals allowed to vary with each permutation. 
This is the unconditional exact permutation ap-
proach which involves all the possible permuta-
tions rather than the constrained or conditional 
exact permutation approach of fixing row and 
column totals (Agresti, 1992). The tails of per-
mutation distribution can also be considered in 
order to arrive at p-values without actually carry-
ing out complete enumeration required for the 
permutation test.  This approach has no precise 
model for the tail of the distribution from which 
data are drawn (Hall and Weissman, 1997). 

Let p1 p2, …, pn be a set of all distinct permuta-
tions of the ranks of the data set in the experi-
ment. The permutation test procedure for the 
Savage test is as follows: 
 

Permutation test procedure 

1. Rank the combined observed original data 
set of the experiment as required by the Sav-
age test statistic. 

2. Compute the observed value of the Savage 
test statistic (S1 = t0). 

3. Obtain a distinct permutation pi, of the ranks 
in Step 1. 
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Z is compared with the critical value from the 
standard normal distribution. 
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4. Compute the Savage test statistic S1 for per-
mutation pi in Step 3, Si = S(pi). 

5. Repeat Steps 3 and 4 for i=2(1)n. 
6. Construct an empirical cumulative distribu-

tion for S. 

the sufficient condition for a permutation test to 
be exact and unbiased against shifts in the direc-
tion of higher values is the exchangeability of the 
observations in the combined sample (Good, 
2000). 
 
Illustrative implementation 

An illustrative implementation of the systematic 
way of obtaining all the possible permutations of 
the N variates now follows: 
 
Let m = 3 and n = 4 variates, i.e.  
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where φ(t0–Si)=1, if t0≥Si, and φ(t0–Si)=0 if t0< Si. 

7. Under the empirical distribution, if p0 ≤ a, 
 reject the null hypothesis. 
 
Under H0, each distinct permutation of ranks is 
obtained, the value of S determined for each one, 
and the null distribution obtained by counting the 
number of times each value of S occurs. 
 
A 2-sample experiment with m and n as the sizes 
of Sample 1 and Sample 2 respectively has  
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ability  
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The difficulty in permutation test lies in obtain-
ing all the distinct arrangements of the results of 
a given experiment, that is, Step 3 of the permu-
tation procedure. For example, a two-sample 
experiment with 16 variates in Sample 1 and 14 
variates in Sample 2 requires 145,422,675 per-
mutations.  When a complete enumeration of all 
the possible permutations is achieved, p-values 
can be computed.  Permutation test requires very 
few assumptions as a nonparametric procedure, 
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Continuing in the above manner, the number of 
permutations for a 2-sample experiment can be 
written as  

where m ≠ n for unequal sample sizes.  This ini-
tial arrangement is what is permuted and the Sav-
age statistic is computed for each permutation, 
leading to the construction of the distribution of 
the Savage test statistic. 
 
Algorithm for exact p-values of Savage test 

statistic 

In Algorithm(SAVAGE), X is the arrangement or 
configuration of ranks.  The test statistic handles 
a two-sample problem, where K is the sample 
size. The algorithm for the generation of the dis-
tribution of the Savage test statistic for different 
sample sizes now follows (Odiase and Og-
bonmwan, 2005) for more details. 
 

 
1:   for I←1,N do 
2:     SAVI←0 
3:     n1←N-I+1 
4:     for J← n1,N do 
5:       SAVI←SAVI+1/j 
6:     end for 
7:   end for 
8:   for J1←1,K do 
9:     RANK←XJ1,1 
10:   I1←2 
11:   for J2←1,K do 
12:     XJ1,1←XJ2,I1 
13:     XJ2,I1←RANK 
14:  Compute statistic and restore original values 
 of X 
15:   end for 
16: end for 
17: for I←1,K-1 do 

Algorithm (SAVAGE) 
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for n > m.  For more details, see Odiase and Og-
bonmwan (2005). 

The Savage test statistic is a function of ranks. 
Therefore, in formulating the computer algorithm 
for the unconditional exact permutation distribu-
tion, a consideration is given to rank order statis-
tics. First obtain any arbitrary arrangement of the 
ranks of the observations in an experiment. Any 
such arrangement of ranks can be used for a full 
enumeration of all the distinct permutations of 
the ranks of the experiment.  For convenience, 
take a simple case as the initial arrangement of 
ranks such that 
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18:   RANK1←XI,1 
19:   for J←I+1,K do 
20:     RANK2←XJ,1 
21:     L←2 
22:     for I1←1,K do 
23:       for L1←L,2 do 
24:         if L←L1 then 
25:           T←I1+1 
26:         else 
27:           T←1 
28:         end if 
29:         for J1←T,K do 
30:           XI,1←XI1,L 
31:           XI1,L←RANK1 
32:           X(J,1) ←XJ1,L1 
33:           X(J1,L1) ←RANK2 
34:   Compute statistic and restore original values 
 of X 
35:         end for 
36:       end for 
37:     end for 
38:   end for 
39: end for 
40: for I←1,K-2 do 
41:   RANK1←XI,1 
42:   for J←I+1,K-1 do 
43:     RANK2←XJ,1 
44:     for M←J+1,K do 
45:       RANK3←XM,1 
46:       L←2 
47:       for I1←1,k do 
48:         for L1←L,2 do 
49:           if L←L1 then 
50:             T←I1+1 
51:           else 
52:             T←1 
53:           end if 
54:           for J1←T,K do 
55:             for L2←L1,2 do 
56:               if L1←L2 then 
57:                 T1←J1+1 
58:               else 
59:                 T1←1 

60:               end if 
61:               for J2←T1,K do 
62:                 XI,1←XI1,L 
63:                 XI1,L←RANK1 
64:                 XJ,1←XJ1,L1 
65:                 XJ1,L1←RANK2 
66:                 XM,1←XJ2,L2 
67:                 XJ2,L2←RANK3 
68:                 TS←0 
69:                 for CC2←1,K do 
70:                   TS←TS+SAVx(cc@,8) 
71:                 end for 
72:                 Restore original values of X 
73:                 CHECK←0 
74:                 for C0←1,COUNT1 do 
75:                   if SAVAGEC0←TS then 
76:                     FREQC0←FREQC0+1 
77:                     CHECK←1 
78:                   end if 
79:                 end for 
80:                 if CHECK←0 then 
81:                   COUNT1←COUNT1+1 
82:                   SAVAGECOUNT1←TS 
83:                   FREQCOUNT1←1 
84:                 end if 
85:                 Compute pdf of test statistic 
86:               end for 
87:             end for 
88:           end for 
89:         end for 
90:       end for 
91:     end for 
92:   end for 
93: end for 
 

The Algorithm(SAVAGE) was implemented in 
Intel Visual FORTRAN. The p-values generated 
from the distinct permutations for the Savage test 
statistic are presented in Tables 1 and 2.  The 
algorithm can be extended to any sample size. 
 
RESULTS 

The unconditional permutation algorithm de-
scribed so far was implemented for a two-sample 
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problem with sample sizes m and n. Tables 1 and 
2 present the exact permutation critical values for 
the Savage test statistic, while the values in pa-
rentheses are those obtained through other para-
metric approaches in Hajek (1969). 

The idea of formulating and implementing the 
methodology for the exact permutation paradigm 
is to obtain the exact distribution of a test statis-
tic. It is the exact distribution of a test statistic 

that guarantees that the probability of a type I 
error is exactly α.  R. A. Fisher compiled by hand 
32,768 permutations of Charles Darwin’s data on 
heights of self and cross fertilized plants 
(Ludbrook and Dudley, 1998).  Fisher examined 
the data at 5% level of significance thus: the null 
hypothesis of no significant difference in the 
means of the two samples is rejected under the t-
distribution (p-value = 0.0497) while it is ac-
cepted under the exact permutation distribution 

α 0.001 0.0025 0.005 0.01 

m n Sα α' Sα α' Sα α' Sα α' 
5 5         1.7718 0.0040 2.1385 0.0119 

6 6 2.0807 0.0011 2.2474 0.0022 2.5153 
(2.50) 

0.0054 
(0.0054) 

2.7153 
(2.70) 

0.0097 
(0.0097) 

7 7 2.6570 0.0009 2.9347 0.0026 3.1256 
(3.12) 

0.0050 
(0.0050) 

3.3847 
(3.38) 

0.0099 
(0.0099) 

8 8 3.2669 0.0010 3.5169 0.0025 3.7697 
(3.77) 

0.0050 
(0.0051) 

4.0569 
(4.05) 

0.0100 
(0.0099) 

9 9 3.8514 0.0010 4.1607 0.0025 4.4250 
(4.43) 

0.0050 
(0.0050) 

4.7536 
(4.76) 

0.0100 
(0.0100) 

10 10 4.4650 0.0010 4.8095 0.0025 5.1109 
(5.11) 

0.0050 
(0.0050) 

5.4666 
(5.46) 

0.0100 
(0.0100) 

Table 1: Lower critical values Sα for the Savage test statistic 

∑ ∑
= +−=

=
m

i

N

RNj i
j

S
1 1

1
; α' = P(S ≤ Sα), 5 ≤ m = n ≤ 10  

(If α' ≤ α, then  ≥= αα SS ; if α' > α, then  >= αα SS ) 

α 0.025 0.05 0.1 

m n Sα α' Sα α' Sα α' 

5 5 2.3885 0.0238 2.7218 0.0516 3.1341 0.1032 

6 6 
3.0764 
(3.07) 

0.0249 
(0.0249) 

3.4518 
(3.44) 

0.0498 
(0.0498) 3.9129 0.0996 

7 7 
3.7942 
(3.78) 

0.0251 
(0.0248) 

4.2148 
(4.20) 

0.0501 
(0.0495) 4.7288 0.0999 

8 8 
4.5292 
(4.52) 

0.0250 
(0.0249) 

4.9848 
(4.98) 

0.0500 
(0.0500) 5.5669 0.1000 

9 9 
5.2736 
(5.28) 

0.0250 
(0.0249) 

5.7762 
(5.78) 

0.0500 
(0.0497) 6.4100 0.1000 

10 10 
6.0375 
(6.03) 

0.0250 
(0.0249) 

6.5801 
(6.57) 

0.0500 
(0.0497) 7.2594 0.1000 

The values in parentheses are those presented in Table XI of Hajek (1969) 
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Table 2: Upper critical values Sα for the Savage test statistic 

∑ ∑
= +−=

=
m

i

N

RNj i
j

S
1 1

1
; α' = P(S ≤ Sα), 5 ≤ m = n ≤ 10  

(If α' ≤ α, then  ≥= αα SS ; if α' > α, then  >= αα SS ) 

α 0.001 0.0025 0.005 0.01 

m n Sα α' Sα α' Sα α' Sα α' 

5 5         8.2282 0.0040 7.8615 0.0119 

6 6 9.9193 0.0011 9.7526 0.0022 9.4847 
(9.58) 

0.0054 
(0.0054) 

9.2847 
(9.28) 

0.0097 
(0.0097) 

7 7 11.3431 0.0009 11.0653 0.0026 10.8744 
(10.87) 

0.0050 
(0.0050) 

10.6153 
(10.61) 

0.0099 
(0.0099) 

8 8 12.7331 0.0010 12.4831 0.0025 12.2303 
(12.23) 

0.0050 
(0.0051) 

11.9431 
(11.95) 

0.0100 
(0.0099) 

9 9 14.1486 0.0010 13.8393 0.0025 13.5750 
(13.60) 

0.0050 
(0.0050) 

13.2464 
(13.27) 

0.0100 
(0.0100) 

10 10 15.2324 0.0010 15.0158 0.0025 14.7797 
(14.89) 

0.0050 
(0.0050) 

14.4675 
(14.54) 

0.0100 
(0.0100) 

α 0.025 0.05 0.1 
m n Sα α' Sα α' Sα α' 
5 5 7.6115 0.0238 7.2782 0.0516 6.8659 0.1032 

6 6 
8.9236 
(8.91) 

0.0249 
(0.0249) 

8.5482 
(8.54) 

0.0498 
(0.0498) 

8.0871 0.0996 

7 7 
10.2058 
(10.21) 

0.0251 
(0.0248) 

9.7852 
(9.79) 

0.0501 
(0.0495) 

9.2712 0.0999 

8 8 
11.4708 
(11.48) 

0.0250 
(0.0249) 

11.0152 
(11.02) 

0.0500 
(0.0500) 

10.4331 0.1000 

9 9 
12.7264 
(12.75) 

0.0250 
(0.0249) 

12.2238 
(12.25) 

0.0500 
(0.0498) 

11.5900 0.1000 

10 10 
13.9284 
(13.97) 

0.0250 
(0.0249) 

13.4009 
(13.43) 

0.0500 
(0.0497) 

12.7288 0.1000 

The values in parentheses are those presented in Table X of Hajek (1969) 

(p-value = 0.0527). Fisher concluded by noting 
that permutation test can therefore serve as an 
independent check on the classical methods in 
common use. 

Looking at Tables 1 and 2, there are some entries 
in the table that will lead to opposite decisions 
for a given null hypothesis when the exact per-
mutation and Hajek (1969) values are used.  For 
example, p-values for α = 0.05 when m = n = 7, 
9, 10 could lead to contradictory decisions when 

the given values of Savage test statistic in the 
tables are actually the observed values of the test 
statistic. 

The permutation critical values provided in this 
paper expose the danger in using asymptotic or 
parametric distributions to analyze small data 
sets when the exact functional form of the distri-
bution is not explicitly known. This becomes 
more obvious when the experiment leads to a p-
value close to the threshold level of significance. 

89 Journal of Science and Technology, Volume 27 no. 2, August, 2007 

Exact P-values of savage test statistic Odiase and Ogbonmwan 

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com



CONCLUSION 

The p-value obtained through unconditional ex-
act permutation are reliable and exact (Agresti, 
1992; Good, 2000). Obtaining exact p-values 
through unconditional permutation has remained 
elusive because of computational difficulties. 

In this paper, a straight forward approach has 
been adopted in obtaining exact p-values for 
Savage test through a careful enumeration of 
distinct permutations of the ranks of the observa-
tions for an experiment. The permutation algo-
rithm presented in this paper beats the limitations 
and difficulties experienced by other authors 
which probably led them to providing p-values 
via other simpler methods which do not truly 
provide exact p-values. With this algorithm, the 
p-values for Savage test statistic can be accu-
rately generated, thereby ensuring that the prob-
ability of making a Type I error is exactly α. 

In comparison with Tables X and XI of Hajek 
(1969) for the p-values of Savage test statistic, it 
is clear that the probability of a Type I error is 
not exactly α for some of the entries in Tables X 
and XI of Hajek (1969). The actual exact critical 
values are the results presented in this paper. 
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