SOME ASPECTS OF THE BIOLOGY OF *Tilapia zillii* (GERVAIS) (PISCES: CICHLIDAE) IN OPA RESERVOIR, ILE-IFE, NIGERIA

O.O. Komolafe Department of Zoology Obafemi Awolowo University Ile-Ife, Nigeria.

ABSTRACT

Some aspects of the biology of Tilapia zillii were examined between October 1997 and February 2000. Fish specimens were collected using a graded set of gillnets and castnets. Out of 1486 fish specimens, 867 were males while 619 were females. Regardless of their sex a significantly high number of fish were caught inshore (69.57%) than in the offshore areas (30.43%). In addition 48.65% of all fish specimens were caught in the middle segment of the reservoir. A wide range of fish sizes were caught and the species was not spatially distributed ($\chi^2_{cal.}$ 27.39 $<\chi^2_{tab.}$ 67.51; df. 820). The species fed on a variety of food substances predominantly shoreline aquatic macrophytes, algae and plankton. The feeding rhythm which started around 6.00am reached a peak by 3.00pm in the afternoon and it declined gradually until 6.00pm.

Keywords: Relative abundance, spatial distribution, stomach content, feeding rhythm, Tilapia zillii.

INTRODUCTION

African cichlid fishes are widely distributed species in lakes, rivers and even penetrating the smallest water bodies (Reed *et al.*, 1967). Over 200 species of the cichlid family have been reported in inland waters of West Africa (Holden and Reed, 1978). In West African sub-region, various aspects of the biology of *T. zillii* have been reported by Reed *et al.*, (1967), Fryer and Iles (1972), Buddington, (1979) and Trewavas (1983). Field observations by Lowe-McConnell (1969) showed that *T. zillii* lived in the shallow inshore and surface water bodies. Petr (1967b) reported *T. zillii* in Lake Volta while Arawomo (1987) reported the species in rivers Gurara, Usman and Jabi within the Federal capital territory of Nigeria.

The stomach content of a fish does not reflect consumers' food because some food items are quickly digested (Bagenal, 1978). However, stomach fullness and the percentage of empty stomach are direct evidences for evaluating feeding periodicity (Bowman and Bowman, 1980). An understanding of the factors governing fish production is necessary so as to improve production in the West Africa sub-region which is still dependent upon fish imports. This study therefore aims at providing basic information needed for production and proper management of *T. zillii* in the habitat.

MATERIALS AND METHODS

Opa reservoir is located on the campus of Obafemi Awolowo University, Ile-Ife, Nigeria. With about 116 square kilometres of land as catchment area, the reservoir (Longitudes 4°31' E to 4° 32' E and Latitudes 7° 29' N to 7°30' N; Figure 1) has a surface area of about 0.95 square kilometre while the maximum capacity is about 675 cubic metres. The minimum and maximum depths are 0.75m and 6.4m respectively. The catchment area is characterized by dry (October to March) and rainy (April to September) seasons. The reservoir receives high discharge of water from the catchment area making its water turbid in the rainy seasons.

The substratum of the reservoir is mainly mud and sand with submerged logs of wood. Shoreline vegetation is dense with macrophytes, including Komolafe

Commelina diffusa Burn, C. erecta Linn, Amarantus hibridus Linn. and Acroceras zizaniodes (Kunth) Dandy some of which eventually decompose during the rainy season. In this study, T. zillii specimens were collected using a graded set of gill nets measuring 160 metres long and a width of 3.78m with five different mesh sizes of 32 metres each for the distribution study. The mesh sizes were 2.5cm, 5.1cm, 7.6cm, 10.2cm and 12.7cm respectively. The gillnets were set between 6.00pm and 7.00pm in the evenings and left to fish. The fish caught were removed between 6.00am and 7.00am the following morning. The inshore area of the reservoir was the littoral zone where light rays could penetrate to the bottom during dry season while the offshore area was beyond the photic zone. The reservoir was demarcated into three segments on the basis of the depth and distance to the dam wall. Dam area was the area from the dam wall to a distance of about 500 metres into the middle of the reservoir with a depth range of 4.0m to 6.4m in rainy season. Middle segment was the mid-basin of the reservoir with a depth range of 3.0m to 4.5m while Upper segment covered the upper reaches of the reservoir with a depth range of 1.5m to 3.5m (Figure 1). These were done so as to carry out equal ran-

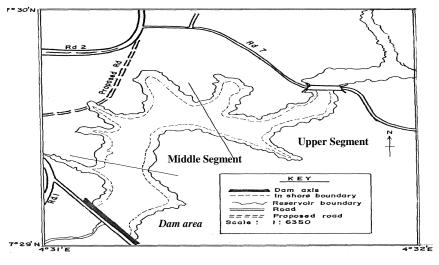
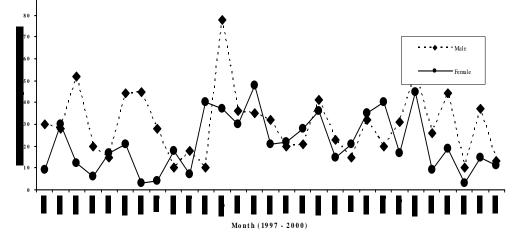


Fig. 1: Opa reservoir showing study site

50 Journal of Science and Technology, Vol. 28, No. 1, April 2008

dom sampling of fish and to facilitate the description of the actual area where the species was concentrated in the reservoir.

A cast-net of 2.5cm mesh size was used to catch various sizes of *T. zillii*. The fishes were transferred to the laboratory where standard morphometric parameters were taken. The content of each fish stomach was weighed to the nearest 0.1gm and the volume obtained by water displacement in a measuring cylinder. Analyses of the stomach contents of fish specimen were done by frequency of occurrence and numerical methods (Hyslop, 1980; Costa *et al.*, 1992). Food


identification was done to genus and species level where possible. Feeding rhythm of *T. zillii* was studied on a three hourly basis starting around 6.00am until the same time the following morning. Stomach fullness of each fish specimen was noted and used to determine feeding rhythm.

RESULTS

In this study, eleven species of fish were caught. The most abundant fish was *Sarotherodon galilaeus* followed by *Oreochromis niloticus* and *Tilapia zillii*, respectively. These cichlid fishes constituted 99% of the total catch (Table 1). In the

Table 1:	Relative abundance of fish species caught by castnet and gillnet in Opa reservoir
----------	---

Fish species	Number of fish caught	Percentage
Sarotherodon galilaeus Linnaeus	1848	37.23
Oreochromis niloticus Linnaeus	1580	31.83
Tilapia zillii Gervais	1486	29.94
Hepsetus odoe Bloch	26	0.52
Mommyrus rume Cuvier and Valenciennes	4	0.08
Hemichromis faciatus Petrs	3	0.06
Hemichromis bimaculatus Gill	1	0.02
Schilble mystus Linnaeus	8	0.16
Heterobranchus bidorsalis Geoffery Saint-Hilaire	2	0.04
Clarias gariepinus (Burchell)	5	0.10
Malapterurus electricus (Gmellin)	1	0.02
Total	4964	100

Fig. 2: Relative abundance of fish caught per unit effort on monthly basis

Journal of Science and Technology, Vol. 28, No. 1, April 2008 51

Food items	Frequency of occurrence	Percentage	Number	Percentage
Bluegreen algae				
Anabaena sp.	10	3.95	193	1.03
Microcystis sp.	11	4.35	301	1.61
Oscillatoria sp.	6	2.37	116	0.62
Green algae-unicellular Closterium sp.	9	3.55	109	0.58
Cosmarium sp	15	5.93	308	1.65
Pediastrum sp.	3	1.19	8	0.04
Scenedesmus sp.	2	0.79	12	0.06
Green algae-filamentous				
<i>Euglena</i> sp.	8	3.16	27	0.14
Spirogyra sp.	2	0.79	5	0.03
Ulothrix sp.	12	4.74	683	3.65
Green algae-colony				
Ankistrodesmus sp.	29	11.46	3572	19.09
Diatoms				
<i>Melosira</i> sp.	22	8.70	2828	15.11
Navicula spp.	19	7.51	443	2.37
Dinoflagelate				
Peridinium sp.	4	1.58	138	0.74
Rotifier Branchinus sp.	6	2.37	27	0.14
Zooplankton				
Copepod sp.	3	1.19	7	0.04
Phacus sp.	20	7.91	394	2.11
Ostracod sp.	2	0.79	12	0.06
Higher plant fragments	42	16.60	9419	50.34
Insect remains	4	1.59	54	0.29
Fish scales	5	1.97	9	0.05
Fish eggs	19	7.51	46	0.25
Total	253	100	18711	100

Table 2: Stomach content analyses of T. zillii by number and frequency of occurrence methods in Opa reservoir

52 Journal of Science and Technology, Vol. 28, No. 1, April 2008

Table 3: Variation in food consumption in	relation to size
Small fish (10.00cm-17.9cm) total length	Big fish (18.0cm-29.0cm) total length
Microcystis sp	Microcystis sp
Ankistrodermus sp	Ankistrodermus sp
Closterium sp	Closterium sp
Navicula sp	Navicula sp
<i>Melosira</i> sp	<i>Melosira</i> sp
Phacus sp	Phacus sp
Anaebena sp	Anaebena sp
Cosmarium sp	Cosmarium sp
Scenedesmus sp	Scenedesmus sp
Euglena sp	<i>Euglena</i> sp
Insect remains	Insect remains
High plant fragments	High plant fragments
	Copepod sp
	Pediastrum sp
	Fish eggs
	Oscillatoria sp
	<i>Spirogyra</i> sp
	Fish scales
	Ulothrix sp
	Peridinium sp
	Branchionus sp
	Ostracod sp.

 Table 3:
 Variation in food consumption in relation to size

reservoir while 48.65% and 31.08% in the middle and dam area of the reservoir, respectively. This is similar to the distribution of *Oreochromis niloticus* in the same habitat where 30.57%, 41.78% and 27.65% of fish specimens were caught in upper segment, the middle and dam area of the reservoir, respectively (Komolafe and Arawomo, 2003). Fish specimens totalling 68.7% of the total catch were caught from the inshore area of Opa reservoir. This observation was also reported by Ita (1978) where 77.8% of *T. zillii* were caught at the inshore area of Lake Kainji. Petr (1967b) also reported a high concentration of *T. zillii* in the shallow inshore area of Volta lake. Inshore concentration of the cichlid fishes had been associated to the presence of breeding adults (Gwahaba, 1975). The concentration of *T. zillii* at the inshore area of Opa reservoir might be attributed to availability of the marginal aquatic macrophytes which form the main bulk of their food. This is in agreement with Arawomo (1982) for *Distichodus* sp. in Lake Kainji where the distribution was governed by the presence of emergent grasses and sedges in the shallow inshore area of the lake.

Journal of Science and Technology, Vol. 28, No. 1, April 2008 53

Feeding time/period	Fish Speci- men with full	Fish speci- men with ¾	Fish specimen with ½ stomach	Fish specimen with ¹ ⁄4 stomach	Fish specimen with nearly empty stom-	Total No Fish % of fish	Fish %
	stomach	full stomach	fullness	fullness	ach		
6am – 9am	21	50	32	L	1	111	16.69
9am – 12noon	84	39	21	6	15	168	25.26
12pm - 3pm	140	65	40	22	5	272	40.9
3pm – 6pm	16	14	17	31	0	78	11.73
6pm - 9pm	2	0	0	2	0	4	0.60
9pm - 12midnight	0	4	1	0	0	5	0.75
12am - 3am	0	0	0	0	15	15	2.26
3am - 6am	0	1	5	0	9	12	1.81
Total	263	173	116	71	42	665	
%	39.59	26.08	17.42	10.62	6.29		100

Table 4: Diurnal feeding rhythm of *T. zillii* in Opa reservoir

Some aspects of the Biology of Tilapia zillii

Komolafe

Natural food materials such as aquatic macrophytes and algae found in the stomach of T. zillii were similar to that of Abayomi (1986) and Komolafe and Arawomo (2003) on S. galilaeus and 0. niloticus in Opa reservoir respectively. Petr (1967a) in lake Volta and Akintunde and Imevbore (1979) in lake Kainji similarly reported that T zillii fed on aquatic macrophytes. Although there was an evidence of some selectivity on the plankton which the species ingested upon in Opa reservoir, aquatic macrophyte, which the fish mostly ingested have been reported by Buddington (1979) and Trewavas (1983) as food of cichlid fishes in West African water bodies. The species utilised the abundance of food in the habitat to its advantage. About 83% of all fish specimens fed during the day and the peak was between 12.00noon and 3.00pm (Figure 3). This was also the observation of Fawole (1996) and Komolafe and Arawomo (2003) in the same habitat were they reported the peak feeding periods between 12.00noon and 3.00pm for O. niloticus and S. galilaeus.

CONCLUSION

In every part of Opa reservoir were found *T.zillii* specimens during the period of study. About 49% of the fish were caught in middle segment showing that *T. zillii* was not spatially distributed in the reservoir where the fish ranked third in abundance. *T. zillii* was observed to feed during the day with a peak and 12.00noon and 3.00pm. A lot of natural food materials on which *T. zillii* selectively fed upon also supported its population in the habitat. The concentration of a large number of the specimens (70%) at the reservoir shoreline might also help to prevent a dense weed cover.

ACKNOWLEDGEMENT

The author thanks the Opa Dam Authority of the Obafemi Awolowo University, Ile-Ife, for granting the permission to carry out the research in Opa Reservoir

⁵⁴ Journal of Science and Technology, Vol. 28, No. 1, April 2008

Komolafe

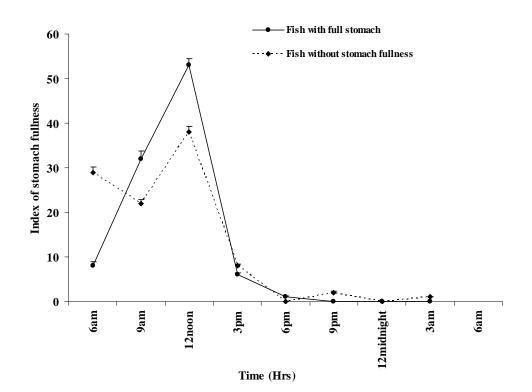


Figure 3: Feeding rhythm of *T. zillii* (Number of replicates = 8)

REFERENCES

- Abayomi, O.S. (1986). The distribution, food and feeding habits of *Sarotherodon galilaeus* in Opa reservoir, University of Ife, Ile-Ife, Nigeria. Unpublished M.Sc. dissertation of the University of Ife, Ile-Ife, Nigeria.
- Akintunde, E.A and Imevbore, A.M.A. (1979). Aspects of the biology of the cichlid fishes of Lake Kainji, with special reference to Sarotherodon galilaeus. Nig. J. Nat. Sci. 1 (i): 35-39.
- Arawomo, G.A.O. (1982). Food and feeding of three *Distichodus* species (Pisces: Characifomes) in Lake Kainji, Nigeria. *Hydrobiologia*, 94: 177-181.

- Arawomo, G.A.O. (1987). The fish fauna of the rivers in the new Federal capital territory, Abuja, Nigeria, *Ife Journal of Science*. 2(1 & 2): 37-43.
- Bagenal, J.B. (1978). Methods for assessment of fish production in freshwaters.
- Blackwell Scientific Publications. Oxford. 365pp.
- Bowman, R.E. and Bowman, E.W. (1980). Diurnal variation in the feeding intensity and catchability of Silver Hake (Merluccius bilinearis) Can. J. Fish. Aquat. Sc. 37: 1565-1572.
- Buddington, R.K. (1979). Digestion of an aquatic macrophyte by *Tilapia zillii*. J. Fish. Biol. 15 (4): 449-455.

- Costa, J.L., Assis, C.A., Almeida, P.R., Moreira, F.M. and Costa, M.J. (1992). On the food of the European eel Anguilla anguilla (L): in the upper zone of the Tages estuary, Portugal. J. Fish. Biol. 41: 841-850.
- Fawole, O.O. (1996). Some aspects of the population dynamics of *Sarotherodon galileaus* (Artedi) in Opa reservoir, Ile-Ife, Nigeria. Unpublished Ph.D. thesis of Obafemi Awolowo University, Ile-Ife, Nigeria.
- Fryer, G. and Iles, T.D. (1972). The cichlid fishes of the Great Lakes of Africa. Oliver and Boyd. Edinburgh. 641pp.
- Gwahaba, J. J. (1975). The distribution, population density and biomass of fish in an equatorial lake, Lake George, Uganda. Proc. R. Soc. Lond B. 190: 393-414.
- Holden, M.J. and Reed, W. (1978). West African freshwater fish. (West African nature handbooks). Longman Group Ltd., Lond. 88pp.
- Hyslop, E.J. (1990). Stomach content analyses -A review of methods and their application. *J. Fish. Biol.* 17: 411 - 429.
- Ita, E.O. (1978). An analysis of fish distribution in Kainji lake, Nigeria. *Hydrobiologia* 58(3): 233-244.
- Komolafe, O.O. and Arawomo, G.A.O. (2003). The distribution and feeding habits of a cichlid fish *Orechromis niloticus* Linnaeus in Opa reservoir, Ile-Ife, Nigeria. *Bioscience Research Communication* 5(5): 479-386.

- Lowe-McConnell, R.H. (1969). The cichlid fishes of Guyana, South America, with notes on their ecology and breeding behaviour. *Zool. F. Linn. Soc.* 48: 255-302.
- Pearcy, W.G. and Jullie, W.A. (1974). Food habits of deep sea macrourid fishes off the Oregon Coast. *Deep. Sea. Res. Oceanogr. Abstr.* 21 (a): 745-759.
- Petr, T. (1967a). Food preferences of the commercial fishes of the Volta Lake. University of Ghana Volta Basin research project, Technical report. X22.
- Petr, T. (1967b). Fish population changes in the Volta Lake in Ghana during its first sixteen months. *Hydrobiologia* 30: 193-220.
- Reed, W., Burchar, J., Hopson, A.J., Jenness, J. and Ibrahim, Y. (1967). Fish and Fisheries of Northern Nigeria. Published by Ministry of Agriculture, Northern Nigeria. Gaskiya Corp. Zaria. 226pp.
- Trewavas, E. (1983). Tilapiine fishes of the genera Sarotherodon, Oreochromis and Danakilia.The Dorset Press. Dorchester. British Museum (Natural History). 583pp.